Evaluation of High Performance Concrete in Four Bridge Decks as Well as Prestressed Girders for Two Bridges
-
2001-12-31
Details:
-
Creators:
-
Corporate Creators:
-
Contributors:
-
Corporate Contributors:
-
Subject/TRT Terms:
-
Publication/ Report Number:
-
Resource Type:
-
Geographical Coverage:
-
Edition:Final Report 12/29/97 to 12/31/01
-
Corporate Publisher:
-
Abstract:The South Dakota Department of Transportation constructed two three span high-performance concrete (HPC) bridges in the summers of 1999 and 2000. The twin prestressed girder bridges are located along Interstate 29 near Sioux Falls, South Dakota. In each bridge instrumentation was installed in two end span girders and in the deck of an end span of these structures. This report presents the results of the laboratory trial batches and testing to optimize HPC mix designs for the girders and the decks. Detailed strain histories in the girders and in the decks, and deflections of the girders prior to installation in the bridge and after they were installed in the bridge over the two-year period are also reported. For the high-performance bridge deck concrete two different coarse aggregates were used (quartzite and limestone) and ten mixes were cast with each aggregate. In each mix the percentage replacement of cement by weight with silica fume and fly ash was varied, keeping the w/c ratio constant. For the high-strength bridge girder concrete, twelve mixes were cast varying both the percentage replacement of cement with silica fume and the w/c ratios. The percentage replacements of silica fume investigated were 7%, 10% and 12% and the w/c ratios investigated were 0.28, 0.30, and 0.32. All concretes were tested for compressive strength, static modulus, modulus of rupture and chloride permeability. The addition of fly ash and silica fume reduced the chloride permeability of concrete significantly while increasing the compressive strength. Based on the analysis of results obtained, one mix was chosen, as the best mix having all the properties required for a high-performance bridge deck. Another high strength HPC mix was selected for the girders to satisfy the strength requirements for the early release of prestress strands and at 28 days. Detailed compressive strength time histories out to ages of one year were developed for the concrete used in the structures. Tests to determine the modulus of elasticity for both the girder and deck concrete were conducted at selected ages out to one year. Shrinkage blocks were cast and instrumented in order to monitor the development of shrinkage strains in the girders and the bridge decks. The total cost of the HPC bridges and the standard SDDOT present design bridges is almost the same. However, the life-cycle cost may be cheaper because of the anticipated longer life and reduced maintenance costs for the HPC bridges. Conclusions and recommendations are included in the report.
-
Format:
-
Funding:
-
Collection(s):
-
Main Document Checksum:
-
Download URL:
-
File Type: