Data-Driven Computational Fluid Dynamics Model for Predicting Drag Forces on Truck Platoons
-
2021-10-01
Details:
-
Creators:
-
Corporate Creators:
-
Corporate Contributors:
-
Subject/TRT Terms:
-
Publication/ Report Number:
-
DOI:
-
Resource Type:
-
Geographical Coverage:
-
Edition:Final Report
-
Corporate Publisher:
-
Abstract:Fuel-consumption reduction in the truck industry is significantly beneficial to both energy economy and the environment. Although estimation of drag forces is required to quantify fuel consumption of trucks, computational fluid dynamics (CFD) to meet this need is expensive. Data-driven surrogate models are developed to mitigate this concern and are promising for capturing the dynamics of large systems such as truck platoons. In this work, we aim to develop a surrogate-based fluid dynamics model that can be used to optimize the configuration of trucks in a robust way, considering various uncertainties such as random truck geometries, variable truck speed, random wind direction, and wind magnitude. Once trained, such a surrogate-based model can be readily employed for platoon-routing problems or the study of pavement performance.
-
Format:
-
Funding:
-
Collection(s):
-
Main Document Checksum:
-
Download URL:
-
File Type: