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CHAPTER 1: INTRODUCTION 

OVERVIEW 
The trucking industry in 2019 contributed to 72.5% (11.84 billion tons) and 80.4% ($791.7 billion) of 
the nation's freight weight and revenue, respectively. More than 40 million trucks traveled a mileage 
of about 490 billion miles in 2018 (American Trucking Association, 2020). Commercial and freight 
trucks comprised 24.1% of the total US transportation energy use in 2019, while transportation's 
share of the total US energy consumption was 28% (US Energy Information Administration, 2021). 
Besides, heavy-duty vehicles are responsible for 20% of greenhouse gas emissions by the 
transportation sector in the United States (Quiros et al., 2017). Therefore, fuel-consumption 
reduction in the trucking industry is significantly beneficial to both energy economy and the 
environment. 

Intelligent transportation systems (ITS) and the development of autonomous vehicles are enabling 
truck platooning as a promising solution to fuel efficiency in the trucking industry. A truck platoon, or 
convoy, is a train of trucks that travel with small spacings between them to benefit from reduced air 
resistance (drag force). The study of drag-force reduction in truck platoons requires either 
experimental wind tunnel tests or computational fluid dynamics, CFD (Bhoopalam et al., 2018; 
Tsugawa et al., 2016; Zhang et al., 2020). CFD computations are computationally expensive, especially 
when the number of bodies in the fluid increases and when uncertain factors are considered, as is the 
case in our truck-platooning problem. We aim to develop a surrogate-based fluid dynamics model 
that can be used to optimize the configuration of trucks in a robust way, considering various 
uncertainties such as random truck geometries, variable truck speed, random wind direction, and 
wind magnitude. Once trained, such a surrogate-based model can be readily employed for platoon-
routing problems or the study of pavement performance. 

OBJECTIVES 
A surrogate-based fluid dynamics model for truck platoons is trained by a training dataset obtained 
from runs of a CFD simulation. 

In this work, we seek to create a model that accounts for variability and/or uncertainty in 

• the number of trucks in the platoon 

• truck geometry and the position of trucks with respect to each other (lateral positioning and 
headway) 

• the traveling speed of the platoon and the wind magnitude and direction 

all of which affect the drag force applied on the trucks. 

We have investigated supervised training of a deep neural network (DNN) as an effective prediction 
model of the drag forces for a given set of variables mentioned above. 
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CHAPTER 2: BACKGROUND ON CFD AND DATA-DRIVEN 
MODELS 
In this chapter, we provide background on the governing equations in computational fluid dynamics 
and the related literature on using fast surrogates to replace time-consuming CFD simulations. We 
also summarize the literature on modeling uncertainties related to wind magnitude and direction. 
Finally, a short background on deep neural networks, which is the mathematical form of our 
surrogate, is included. 

CFD GOVERNING EQUATIONS 

The motion of viscous fluid is governed by the Navier-Stokes equation, which can be written in 
different forms; see Figure (1) 

 
Figure 1. Navier-Stokes equation. 

where D/Dt is the material derivative, defined as ∂/∂t + u ⋅ ∇, ρ is the density, u is the flow velocity, ∇⋅ 
is the divergence, p is the pressure, t is time, τ is the deviatoric stress tensor, and g represents body 
accelerations acting on the continuum. 

The behavior of fluid, however, is typically chaotic; and the numerical solution of Navier-Stokes may 
not converge. To avoid this problem, Reynolds-Averaged Navier-Stokes (RANS) are used, along with 
turbulence models such as the k-epsilon model that is used in this work. 

MOTIVATION BEHIND DATA-DRIVEN MODELS 

Solving computational fluid dynamics problems is usually expensive for practical systems. Even 
though such a computational burden makes CFD results precious for potential further usage, 
obtained simulation data are disposed of once projects are over. The discard of CFD simulation 
results is done mainly because they are deemed to be project-specific data lacking a prospect for 
further applications and is also motivated by avoiding their storage cost, especially for large 3D 
transient-analysis cases. The development of machine-learning methods in the past decade has 
triggered a new wave of studies for exploiting CFD results to train surrogate models. In this chapter, 
three recent applications of CFD data-driven models are reviewed to highlight the significance of the 
approach. 
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RECENT WORKS ON CFD DATA-DRIVEN SURROGATE MODELS 

Wind Load of Buildings (Sang et al., 2021) 

Wind-load calculation is critical for structural design, especially for tall buildings where vibration is of 
additional importance. Using neural networks for predicting wind loads for different cross sections of 
buildings helps to avoid computationally expensive CFD for future designs. For different aspect ratios 
of a rectangular cross section, as well as different velocities and angles of attacks, drag coefficients 
are obtained from CFD. The generated data is then used in a supervised learning to train a deep 
neural network model that can predict drag coefficient for a given cross section, velocity, and angle of 
attack. The results of predictions using the trained model agree with the ground truth from CFD; see 
Figures (2-4). 

 
Figure 2. Velocity field for different aspect ratios of a building cross section (Sang et al., 2021). 

 
Figure 3. Velocity field for different angles of attack (Sang et al., 2021). 
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Figure 4. Drag coefficient verification results for different aspect ratios and angles of attack (Sang et 

al., 2021). 

Multiphase Flows (Ganti and Khare, 2020) 

Data from direct numerical simulations of multiphase-flow processes are employed to train a 
spatiotemporal surrogate model using Gaussian-based machine learning. Simulations are performed 
assuming the incompressible Navier-Stokes equations. The framework of surrogate modeling includes 
four steps: 

1. Data generation: Based on a ground-truth model, a design of experiment (DoE) is carried out 
to obtain enough data points in space and time. These data are then used to train the model, 
which predicts (or emulates) the results. 

2. Dimensionality reduction: The dimensionality of training data is reduced using principal-
component analysis, which produces eigenmodes, spatial basisfunction, and temporal 
coefficients. 

3. Regression: The results from dimensionality reduction in the previous step are treated as 
inputs to Gaussian process regression. The trained model is expected to emulate the dynamics 
of the system for any given operating conditions. 
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4. Evaluation: Flow fields are reconstructed using Galerkin estimation, which is then used for 
error quantification. 

The steps of modeling are presented in Figure 5. 

 
Figure 5. Surrogate CFD modeling for porous-media flows (Ganti and Khare, 2020). 

The proposed framework is examined for two examples: (1) flow over a cylinder and (2) injection of 
diesel jet into a quiescent nitrogen chamber. As presented in the following figures, the emulation 
results are very similar to the ground truth; see Figure 6 
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Figure 6. Surrogate CFD modeling for multiphase flows: emulation vs truth simulation (Ganti and 
Khare, 2020). 
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Porous-Media Flows (Takbiri-Boroujeni et al., 2020) 

Numerical flow-simulation data in porous media are used to train a surrogate model for predicting 
velocity fields and permeability tensors. The prediction may be applied to porous media that have not 
been used in the training. Surrogate-model results demonstrate a high accuracy relative to lattice 
Boltzmann simulation (Figure 7). Capturing the physics of the problem, such surrogate models reduce 
computational costs with respect to both memory and speed for the same numerical resolution. 

 

 

Figure 7. Surrogate modeling for porous media flows: (a) random porous media, (b) velocity from 
data-driven model, (c) velocity from truth simulation, and (d) error (Takbiri-Boroujeni et al., 2020). 

A NOTE ON WIND UNCERTAINTY (HE ET AL., 2010) 

The magnitude and direction of wind affect the aerodynamics load applied to traveling vehicles. 
These wind parameters are uncertain during the movement of vehicles. The drag force and the fuel 
consumption of truck platoons are affected by wind uncertainty, which can be quantified for different 
geographical areas. The Weibull distribution is usually used for land-surface wind speeds (SWS). For 
North America, the parameter of Weibull distribution has been obtained for 3-hourly records for 720 
stations from 1979 to 1999. The distribution parameters depend on daytime/nighttime, land types, 
and seasons. At night, the Weibull distribution substantially underestimates the skewness of SWS 
over mountains, forests, and open land for larger values of the mean speed. For daytime, however, 
the Weibull curve is a well-fit model for SWS over all surface types and for every season (see Figure 
8). 
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Figure 8. The skew and mean values of Weibull distribution for different land types: mountain (M), 
forest (F), open land (O), and open water (W); and different seasons: December–February or DJF; 

March–May or MAM; June–August or JJA; and September–November or SON (He et al., 2010). 
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A NOTE ON DEEP NEURAL NETWORKS 
A deep neural network (DNN) is a model, inspired by the neurons in the brain, to approximate 
nonlinear functions. It consists of three types of layers: input, hidden, and output. Consider the 
following DNN that has two inputs, a single hidden layer with five neurons, and one output. Neurons’ 
connections are associated with weights (W) and biases (b), which through an activation function (Ф) 
give the output at each neuron. The model parameters (W) are optimized to minimize a loss function 
(J(W)), which is a distance between the output and the target values ,see Figure 9 
 

 

Figure 9. A single hidden-layer neural network (Chouksey, 2020). 

Optimization of the model is usually performed by the stochastic gradient method (SGD) where the 
true gradient of J(W) is approximated at a single sample (or a mini-batch of samples) and is 
formulated as 𝑊𝑊 ≔𝑊𝑊 − 𝜂𝜂∇𝐽𝐽𝑖𝑖(𝑊𝑊) with 𝐽𝐽𝑖𝑖(𝑊𝑊) denoting the single sample (or mini-batch) loss value 
and 𝜂𝜂 as the learning rate (or step size). Training by SGD is performed by shuffling samples multiple 
times until convergence occurs. 
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CHAPTER 3: SIMULTATION 

SIMULATION ENVIRONMENT 
Training a surrogate-based fluid dynamics model that addresses the variability and/or uncertainty of 
inputs requires a parametric analysis tool. ANSYS Fluent has the ability to parametrize the system 
input and outputs, which is called design of experiment (DoE). Also, surrogate-based fluid dynamics 
models require a large sample of CFD results, which can be obtained only through high-performance 
computing (HPC). Integration of ANSYS Fluent DoE and HPC provides a tool for generating CFD data 
efficiently. All the CFD simulations will be in parallel, executed on National Center for 
Supercomputing and Application (NCSA) iForge clusters, which hosts ANSYS. The iForge cluster has 44 
Skylake nodes, with each node including 40 Intel Skylake cores. There are also 2 GPU nodes available, 
each including 40 Intel Skylake cores and 4 V100 GPUs. The hardware has been well benchmarked to 
efficiently run CFD simulations and train a large-scale deep-learning model in parallel. 

CASE STUDIES 

CASE 1: Two-Truck Platoon 
 
A parametric two-truck platoon is designed as a proof of concept to demonstrate the data-driven 
model learnability. The model predicts the total drag force of the system for a given truck geometry, 
headway, lateral offset, velocity inlet magnitude, and direction. The parametric model is presented in 
Figure 10 and Figure 11. The velocity results of the transient CFD analysis are illustrated in Figure 12, 
which shows how a lateral positioning of the trucks affects the velocity field and, consequently, the 
drag force. Based on the results for 968 realizations of the system, a dense deep neural network 
(Figure 13) was trained by 85% of the dataset to predict the overall drag force of trucks from 15 input 
parameters (geometry and speed). As presented in Figure 14, with a dataset of under 1,000, the 
accuracy of the model is around 90%.  
 

 

Figure 10. Parametric model of trucks. Unif(a,b) represents uniform distribution between a and b. 
Units are SI. 
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Figure 11. 3D model of the parametric two-truck platoon. 

 

 

Figure 12. Sample velocity fields (side and top views). 

 



12 

 

Figure 13. The dense neural network architecture for predicting the total drag forces of a two-truck 
platoon. Note that hidden layers are followed by a ReLU function. The network inputs are the 15 

independent parameters mentioned in Figure 10, and the output is the total drag force. 

 

 
 

Figure 14. Mean absolute error (MAE) of the trained data-driven CFD model that predicts the 
overall drag force of two-truck platoon system. The hyperparameters are as follows: learning rate = 

1e-4 and minibatch size = 32. 

Input Layer ∈ ℝ¹⁵ Hidden Layer ∈ ℝ⁷ Hidden Layer ∈ ℝ⁷ Output Layer ∈ ℝ¹
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CASE 2: Five-Body Platoon 
CFD analysis of multi-body platoons becomes extremely computationally expensive when the number 
of trucks increases. Therefore, in the first step, rectangular cubes are considered instead of the 
parametric truck in the previous section. The input parameters for the model and a sample velocity 
field from transient CFD analysis are presented in Figures 15-16. The output of the model includes 
five drag forces for each body, predicted using a dense deep neural network (Figure 17) trained on a 
dataset of 100 samples. As shown in Figure 18, an accuracy of about 85% is achieved for this 
prediction. Sample drag forces for transient analysis of the bodies can be seen in Figure 19. 
 

    height = round(unif(3.5,5), 2) 
    length = round(unif(8,23), 2) 
    width = round(unif(2.4,2.6),2) 
 
    headway1 = (length+round(unif(5,30)*Bool[0], 2)) 
    headway2 = (length+round(unif(5,30)*Bool[1], 2)) 
    headway3 = (length+round(unif(5,30)*Bool[2], 2)) 
    headway4 = (length+round(unif(5,30)*Bool[3], 2)) 
     
    lateral0 = round(unif(-halfwidth,halfwidth), 2) 
    lateral1 = round(unif(-halfwidth,halfwidth), 2) 
    lateral2 = round(unif(-halfwidth,halfwidth), 2) 
    lateral3 = round(unif(-halfwidth,halfwidth), 2) 
    lateral4 = round(unif(-halfwidth,halfwidth), 2) 
     
    angle = round(unif(0,30), 2) 
    velocity = round(unif(20.1168,33.528),2) 

Figure 15. Parameters of the five-body platoon. Units are SI. 

 

 

Figure 16. Sample velocity field (top view). 
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Figure 17. The dense neural network architecture for predicting the drag forces of five-body 
platoons. Note that hidden layers are followed by a ReLU function. The network inputs are the 14 

parameters mentioned in Figure 15, and the outputs are five drag force values. 

 

Figure 18. Mean absolute error (MAE) of the trained data-driven CFD model, which predicts the 
drag forces of a five-body platoon system. The hyperparameters are as follows: learning rate = 1e-4 

and minibatch size = 16. 

Input Layer ∈ ℝ¹⁴ Hidden Layer ∈ ℝ⁷ Hidden Layer ∈ ℝ⁷ Output Layer ∈ ℝ⁵
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Figure 19. Comparison of drag forces at different angles of attack (yaw angles) (a) 0 and (b) 10 
degrees for a speed of 45 mi/hr. The leading object is indexed as 0; and followers are 1 to 4, 

respectively. The drag-force values increase as the yaw angle is increased from 0 to 10 degrees. 
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SUMMARY AND FUTURE WORK 
We investigated the learnability of neural network surrogate models used for the prediction of drag 
forces on trucks in a platoon. In particular, we developed and studied two models: (1) a parametric 
two-truck platoon and (2) a parametric five-body platoon with rectangular cubes as bodies. Even with 
limited data points (1,000 training data for the first model and 100 data points for the second model), 
the drag force is predicted with an accuracy of over 85%. As the next step, a model will be developed 
to combine the drag predictors of a simplified multi-body platoon and a single parametric truck. Such 
an insightful model can modularize bodies and address the effect of adding bodies on the drag forces 
of the system under parameters’ variability and uncertainty. 
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