Managing the Impacts of Different AV/CV Penetration Rates on Recurrent Freeway Congestion from the Perspective of Traffic Management: A Case Study of MD-100
-
2019-08-23
Details:
-
Creators:
-
Corporate Creators:
-
Corporate Contributors:
-
Subject/TRT Terms:
-
Resource Type:
-
Geographical Coverage:
-
Edition:Final
-
Corporate Publisher:
-
Abstract:In the near future, responsible highway agencies will need to effectively coordinate emerging autonomous vehicle (AV) flows while contending with daily recurrent congestion. This study presents a systematic procedure for understanding how AV flows impact traffic under different AV behavioral mechanisms (i.e., car-following and lane-changing), penetration rates, and volume levels. Using a congested segment of the MD-100 highway to illustrate the proposed procedure, the research results indicate that the presence of AV flows, depending on their adopted behavioral mechanisms, significantly impact (either positively or negatively) the overall traffic conditions. These impacts, varying with AV penetration rate and volumes, will be experienced indiscriminately by AV and non-AV vehicles. The study has further conducted extensive simulation experiments using the MD-100 network under various AV penetration rates and behavioral mechanisms by modeling the range of the behavioral mechanisms likely adopted by the AV flows with 135 sets of car-following and lane-changing parameters. The collected measures of effectiveness (MOEs) from the experimental results clearly show that at each AV penetration level, there exists a set of optimal behavioral mechanisms for the AV flows to coordinate with non-AV flows to best use roadway capacity and minimize congestion. Since such behavioral mechanisms vary with the AV penetration rate and the congestion level on different segments of the freeway, it justifies the need for a responsible highway agency to develop effective guidelines so that they can coordinate with the AV flows via the V2I infrastructure.
-
Content Notes:Date on cover: 11-23-2019
-
Format:
-
Funding:
-
Collection(s):
-
Main Document Checksum:
-
Download URL:
-
File Type: