Influence of Guayule Resin as a Bio-Based Additive on Asphalt–Rubber Binder at Elevated Temperatures
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

ROSA P serves as an archival repository of USDOT-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by USDOT or funded partners. As a repository, ROSA P retains documents in their original published format to ensure public access to scientific information.
i

Influence of Guayule Resin as a Bio-Based Additive on Asphalt–Rubber Binder at Elevated Temperatures

Filetype[PDF-3.66 MB]


English

Details:

  • Creators:
  • Corporate Creators:
  • Subject/TRT Terms:
  • DOI:
  • Resource Type:
  • Right Statement:
  • Geographical Coverage:
  • Corporate Publisher:
  • Abstract:
    This study seeks to find the influence of replacing a portion of the asphalt–rubber binder with the bio-based material “guayule resin.” This replacement could be beneficial in terms of sustainability, economics, and environmental concerns related to the asphalt industry. Nine asphalt–rubber–guayule binders were investigated to find their rheological properties. Consecutively, the study proceeded with five selected binders being compared to the original asphalt (PG64-22). Investigations underwent whole matrices (crumb rubber modifier (CRM) residue included) and liquid phases (CRM residue extracted). Additionally, these properties were partially sought for their corresponding asphalt–rubber binders to compare and judge the contribution of the guayule resin. Likewise, a thermo-gravimetric analysis was done for the guayule resin to recognize its moisture and composition complexity. Such an analysis was also done for the as-received CRM and some extracted CRMs to determine the release and residue of rubber components. Outcomes showed that the guayule resin has the potential to compensate the performance required against the original asphalt at elevated temperatures while greatly decreasing the asphalt cement proportion. For instance, a blend of 62.5% asphalt, 12.5% CRM, and 25% guayule resin provided better performance than that of the original asphalt.
  • Content Notes:
    All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. Citation: Hemida, A.; Abdelrahman, M. Influence of Guayule Resin as a Bio-Based Additive on Asphalt–Rubber Binder at Elevated Temperatures. Recycling 2019, 4, 38.
  • Format:
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at rosap.ntl.bts.gov