Carbon Fiber Shear Reinforcement for Prestressed Bridge Girders
-
2017-09-01
-
Details:
-
Creators:
-
Corporate Creators:
-
Corporate Contributors:
-
Subject/TRT Terms:
-
Publication/ Report Number:
-
Resource Type:
-
Geographical Coverage:
-
Corporate Publisher:
-
Abstract:Corrosion of reinforcing steel reduces life spans of bridges throughout the United States; therefore, using non-corroding carbon fiber reinforced polymer (CFRP) reinforcement is seen as a way to increase service life. The use of CFRP as the flexural reinforcement in bridge girders has been extensively studied. However, CFRP transverse reinforcement has not been investigated as rigorously, and many of those studies have focused on carbon fiber composite cable (CFCC®) stirrups. The use of C-Grid® or NEFMACTM grid as options for transverse reinforcing has not been previously investigated. This testing program first determined the mechanical properties of C-Grid and NEFMAC grid and their respective development lengths. Five 18-ft long, 19-in deep beams were fabricated to test the C-Grid and NEFMAC, as well as conventional steel and CFCC stirrups. The beams were loaded with a single point load closer to one end of the beam to create a larger shear load for a given moment. Overall beam displacement was measured, and beams were fitted with rosettes and instrumentation to capture initiation of shear cracking. Test results were compared to theoretical shear capacities calculated using four different methods. The design method which provided the best prediction of shear strength was the AASHTO modified compression field theory, using equations for β and θ. The manufacturer’s guaranteed tensile strength should be used for design, as long as that strength is the average strength, as determined by at least five tests, reduced by three standard deviations. Shear cracks were controlled to a similar width as in beams with steel stirrups when at least two layers of grid were in place. An additional study was undertaken to determine if CFRP grids, either alone or in combination with traditional steel stirrups, could be used to control cracking in the end zones of pretensioned I-beams. Unfortunately, it was determined that, due to its low modulus, the amount of CFRP grid required to control cracking in the end zones was not economically feasible. Nevertheless, this study concluded that C-Grid and NEFMAC grid are both viable shear reinforcement options outside of the end regions. This report presents the initial recommendations for design.
-
Format:
-
Funding:
-
Collection(s):
-
Main Document Checksum:
-
Download URL:
-
File Type: