Performance measure that indicates geometry sufficiency of state highways : volume II -- clear zones and cross-section information extraction.
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Performance measure that indicates geometry sufficiency of state highways : volume II -- clear zones and cross-section information extraction.

Filetype[PDF-14.33 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed
English

Details:

  • Creators:
  • Corporate Creators:
  • Corporate Contributors:
  • Subject/TRT Terms:
  • Publication/ Report Number:
  • Resource Type:
  • Geographical Coverage:
  • Corporate Publisher:
  • Abstract:
    Evaluation method  employed for the  proposed  corridor  projects  by  Indiana Department  of  Transportation (INDOT)  consider road 

    geometry  improvements  by  a  generalized  categorization.  A  new method  which  considers the  change  in  geometry  improvements 

    requires additional information regarding cross section elements. Part of this information is readily available but some information like 

    the embankment slopes and obstructions near traveled way needs to be acquired. This study investigates available data sources and 

    methods to obtain cross‐section and clear zone information in a feasible way for this purpose. We have employed color infrared (CIR) 

    orthophotos,  LiDAR  point  clouds,  digital  elevation  and surface  models  for  the  extraction  of  the  paved surface,  average  grade, 

    embankment slopes, and obstructions near the traveled way like trees and man‐made structures. We propose a framework which first 

    performs a support vector machine (SVM) classification of the paved surface, then determines the medial axis and reconstructs the 

    paved surface. Once the paved surface is obtained, the clear zones are defined and the features within the clear zones are extracted by 

    the classification of LiDAR point clouds.  

     

    SVM classification of the paved surface from CIR orthophotos in the study area results with a classification accuracy over 90% which 

    suggests the suitability of high resolution CIR images for the classification of paved surface via SVM. A total of 21.3 miles of relevant road 

    network has been extracted. This corresponds to approximately 90% of the actual road network due to missing parts in the paved 

    surface classification results and parts which were removed during cleaning, simplification and generalization process. Branches due to 

    connecting  driveways,  adjacent  parking  lots,  etc., were  also  extracted together with the main road  alignment  as  by‐product.  This 

    information may also be utilized if found necessary with further effort to filter out irrelevant pieces that do not correspond to any actual 

    branches.  Based  on the  extracted  centerline  and  classification results, we  have  estimated the  paved surface  as  observed  on the 

    orthophotos. Based on the estimated paved surface centerline and width, we have generated cross section lines and calculated the side 

    slopes. We have extracted the buildings and trees within the clear‐zones that are also defined based on the reconstruction of the paved 

    surface. Among 86 objects detected as buildings, 14% were false positives due to confusion with bridges or trees which present planar 

    structure.

  • Format:
  • Funding:
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at rosap.ntl.bts.gov