Application of Nadal Limit in the prediction of wheel climb derailment
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Application of Nadal Limit in the prediction of wheel climb derailment

Filetype[PDF-827.96 KB]


English

Details:

  • Creators:
  • Corporate Creators:
  • Subject/TRT Terms:
  • Publication/ Report Number:
  • Resource Type:
  • Corporate Publisher:
  • NTL Classification:
    NTL-RAIL TRANSPORTATION-RAIL TRANSPORTATION;NTL-RAIL TRANSPORTATION-Rail Safety;NTL-SAFETY AND SECURITY-Rail Safety;
  • Abstract:
    Application of the Nadal Limit to the prediction of wheel climb derailment is presented along with the effect of pertinent geometric and material parameters. Conditions which

    contribute to this climb include wheelset angle of attack, contact angle, friction and saturation surface properties, and lateral and vertical wheel loads. The Nadal limit is accurate for high angle of attack conditions, as the wheelset rolls forward in quasi-static steady motion leading to a flange climbing scenario. A detailed study is made of the effect of flange contact forces Ftan and N, the tangential friction force due to creep and the normal force, respectively. Both of these forces vary as a function of lateral load L. It is shown that until a critical value of L/V is reached, climb does not occur with increasing L since Ftan is saturated and the flange contact point slides down the rail. However, for a certain critical value of L/V (i.e. the Nadal limit) Ftan is about to drop below its saturated value and flange climb (rolling without sliding) up the rail occurs. Additionally, an alternative explanation of climb is given based on a comparison of force resultants in track and contact coordinates. The effects of longitudinal creep force Flong and angle of attack are also investigated. Using a saturated creep resultant based on both (Ftan, Flong) produces a climb prediction L/V larger (less conservative) than the Nadal limit. Additionally, for smaller

    angle of attack the standard Nadal assumption of Ftan=μN may lead to an overly conservative prediction for the onset of wheel climb. Finally, a useful analogy for investigating conditions for sliding and/or rolling of a wheelset is given from a study of a disk in rigid body mechanics.

  • Format:
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at rosap.ntl.bts.gov