Details:
-
Creators:
-
Corporate Creators:
-
Corporate Contributors:United States. Department of Transportation. University Transportation Centers (UTC) Program ; United States. Department of Transportation. Office of the Assistant Secretary for Research and Technology ; Carnegie Mellon University. Traffic21 Institute. Safety21 University Transportation Center (UTC)
-
Subject/TRT Terms:
-
Resource Type:
-
Geographical Coverage:
-
Edition:Final Report (July 1, 2023 - June 30, 2024)
-
Corporate Publisher:
-
Abstract:Developing an automated driving system capable of navigating complex traffic environments remains a formidable challenge. Unlike rule-based or supervised learning-based methods, Deep Reinforcement Learning (DRL) based controllers eliminate the need for domain-specific knowledge and datasets, thus providing adaptability to various scenarios. Nonetheless, a common limitation of existing studies on DRL-based controllers is their focus on driving scenarios with simple traffic patterns, which hinders their capability to effectively handle complex driving environments with delayed, long-term rewards, thus compromising the generalizability of their findings. In response to these limitations, our research introduces a pioneering hierarchical framework that efficiently decomposes intricate decision-making problems into manageable and interpretable subtasks. We adopt a two-step training process that trains the high-level controller and low-level controller separately. The high-level controller exhibits an enhanced exploration potential with long-term delayed rewards, and the low-level controller provides longitudinal and lateral control ability using short-term instantaneous rewards. Through simulation experiments, we demonstrate the superiority of our hierarchical controller in managing complex highway driving situations.
-
Format:
-
Funding:
-
Collection(s):
-
Main Document Checksum:
-
Download URL:
-
File Type: