Experimental Study of the Characteristics of a Hydrogen Flame from a Small Leak
-
2024-04-01
Details:
-
Creators:
-
Corporate Creators:
-
Corporate Contributors:
-
Subject/TRT Terms:
-
Publication/ Report Number:
-
DOI:
-
Resource Type:
-
Geographical Coverage:
-
Corporate Publisher:
-
Abstract:With a rising interest in hydrogen-fueled aircraft comes many design and safety concerns. There are many problems to be solved and safety standards and precautions established if aircrafts are going to be equipped with hydrogen. To that end, the objective of this project is to understand the fundamental characteristics of hydrogen flames. More specifically, small hydrogen flames resulting from leaks in diameter of less than 2mm will be studied and their flame characteristics recorded. To simulate leak conditions, a small-scale, horizontal custom hydrogen burner was made with five interchangeable nozzles, each representing a different leak. The nozzles varied in shape between circular and slot orifices, varied in size under 2mm, and the standard leakage flow rate varied was between 1SLPM (Standard Liters Per Minute) and 5SLPM. Nozzle exit-sensor spacing was an additional parameter which was varied between 1in (25mm), 2in (50mm), and 4in (100mm). A water-cooled gardon gauge was utilized to record impinging flame heat flux and K-type thermocouples were used to record cross-sectional flame temperature. Additionally, a flame tracking software was used to estimate the horizontal flame length from the nozzle exit up to the furthest horizontal reach of the flame. Results show that the most influential parameters for leakage flames are the leak size and the flow rate of hydrogen, while the leak shape (whether a crack or a pore) has little influence on the flame characteristics. Generally, increasing standard flow rate (SFR) of hydrogen while keeping leak size constant resulted in an increase in flame heat flux and flame temperature, while increasing the leak size for a given flow resulted in a decrease in flame heat flux and flame temperature. Additionally, reducing the nozzle exit-sensor spacing generally resulted in an increase in flame heat flux while a decrease in flame temperature.
-
Format:
-
Funding:
-
Collection(s):
-
Main Document Checksum:
-
Download URL:
-
File Type: