Relationship between Road Network Characteristics and Traffic Safety [Supporting Dataset]
-
2018-12-10
Details:
-
Creators:
-
Corporate Creators:
-
Corporate Contributors:
-
Subject/TRT Terms:
-
Publication/ Report Number:
-
Resource Type:
-
Geographical Coverage:
-
Edition:Final report, May 2017 – May 2018
-
Corporate Publisher:
-
Abstract:The Transportation and Capital Improvement of the City of San Antonio, Texas Department of Transportation (TxDOT) and other related agencies often make several efforts based on traffic data to improve safety at intersections, but the number of intersection crashes is still on the high side. There is no one size fits all solution for intersections and the City is often usually confronted with doing best value option analysis on different solutions to choose the least expensive yet more advancements. The goal of this project was to obtain the relationship between road network characteristics and public safety with a focus on intersections; perform a thorough analysis of critical intersections with high crash incidents and crash rates within the city of San Antonio, Texas, and analyze key factors that lead to crashes and recommend effective safety countermeasures. Researchers conducted the following tasks: literature review, crash data analysis, factors affecting crashes at intersections, and the development of possible solutions to some of the identified challenges. Several variables and factors were analyzed, including driver characteristics, like age and gender, road-related factors and environmental factors such as weather conditions and time of day. ArcGIS was used to analyze crash frequency at different intersections, and hotspot analysis was carried out to identify high-risk intersections. The crash rates were also calculated for some intersections. The research outcome shows that there are more male drivers than female drivers involved in crashes, even though San Antonio has more licensed female drivers than male drivers. The highest number of crashes involved drivers within the age range of 15 – 34 years; this is an indication that intersection crash is one of the top threats to the young generation. The study also shows that the most common crash type is the angle crash which represents over 23% of the intersection crashes. Driver’s inattention ranked first among all the contributing factors recorded. The high-risk intersections based on crash frequency and crash rate show that the intersection along the Bandera Road and Loop 1604 is the worst in the city, with 399 crashes and 8.5 crashes per million entering vehicles. The research concluded with some suggested countermeasures, which include public enlightenment and road safety audit as a proactive means of identifying high-risk intersections.
The total size of the described file is 10 MB. Files with the .xlsx extension are Microsoft Excel spreadsheet files. These can be opened in Excel or open-source spreadsheet programs. Docx files are document files created in Microsoft Word. These files can be opened using Microsoft Word or with an open source text viewer such as Apache OpenOffice.
-
Content Notes:National Transportation Library (NTL) Curation Note: As this dataset is preserved in a repository outside U.S. DOT control, as allowed by the U.S. DOT’s Public Access Plan (https://doi.org/10.21949/1503647) Section 7.4.2 Data, the NTL staff has performed NO additional curation actions on this dataset. The current level of dataset documentation is the responsibility of the dataset creator. NTL staff last accessed this dataset at its repository URL on 2023-07-27. If, in the future, you have trouble accessing this dataset at the host repository, please email NTLDataCurator@dot.gov describing your problem. NTL staff will do its best to assist you at that time.
-
Format:
-
Funding:
-
Collection(s):
-
Main Document Checksum: