Performance of Concrete Pavements, Volume III: Improving Concrete Pavement Performance
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Performance of Concrete Pavements, Volume III: Improving Concrete Pavement Performance

Filetype[PDF-6.75 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed
English

Details:

  • Creators:
  • Corporate Creators:
  • Contributors:
  • Corporate Contributors:
  • Subject/TRT Terms:
  • Publication/ Report Number:
  • Resource Type:
  • Geographical Coverage:
  • Corporate Publisher:
  • Abstract:
    With the goal of improving future concrete pavement design and construction practices, this project evaluated the performance of 303 inservice concrete pavement sections located throughout North America. An extensive field testing program, consisting of pavement condition surveys, drainage surveys, falling weight deflectometer (FWD) testing, coring/boring operations, and roughness testing, was conducted in order to collect the information needed for analysis. Because many of these pavement sections are part of State-level studies on concrete pavements, a range of design variables (e.g., load transfer, slab thickness, joint spacing, drainage) thought to affect concrete pavement performance are present. Over one-third of the sections was evaluated under a preceding Federal Highway Administration study, meaning that 5-year performance trends are available for some of the sections. Additional pavement performance data are also available for 96 European concrete pavement sections and for 21 Chilean concrete pavement sections. The average age and average cumulative equivalent single axle loads (ESALs) for the North American sections are 16 years and 7.1 million, respectively, compared to 21 years and 21.8 million for the European sections and 9 years and 5.9 million for the Chilean sections. This volume presents pavement performance prediction models that were developed from the data collected under this study. Prediction models are presented for transverse joint faulting (doweled and nondoweled), transverse cracking [jointed plain concrete pavement (JPCP) and jointed reinforced concrete pavement (JRCP)], transverse joint spalling (JPCP and JRCP), pavement serviceability (JPCP and JRCP), and pavement roughness (JPCP only). Based on the results of the models and on the results of the field evaluation findings, guidelines for the improved design of concrete pavements are presented.
  • Format:
  • Funding:
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at rosap.ntl.bts.gov