Virtual Waveform Design for Millimeter-Wave Vehicular Joint Communication-Radar
-
2019-05-01
Details:
-
Alternative Title:Joint Millimeter-Wave Communication and Radar for Automotive Applications
-
Creators:
-
Corporate Creators:
-
Corporate Contributors:
-
Subject/TRT Terms:
-
Publication/ Report Number:
-
Resource Type:
-
Geographical Coverage:
-
Corporate Publisher:
-
Abstract:Automotive joint communication and radar (JCR) waveforms with fully digital baseband generation and processing can now be realized at the millimeter-wave (mmWave) band. Prior work has developed a mmWave wireless local area network (WLAN)-based automotive JCR that exploits the WLAN preamble for radars. The performance of target velocity estimation, however, was limited. In this paper, we propose an adaptive virtual JCR waveform design for automotive applications at the mmWave band. The proposed system transmits a few non-uniformly placed preambles to construct several receive virtual preambles for enhancing velocity estimation accuracy, at the cost of only a small reduction in the communication data rate. We evaluate JCR performance trade-offs using the Cramer- Rao Bound (CRB) metric for radar estimation and a novel distortion minimum mean square error (MMSE) metric for data communication. Additionally, we develop three different MMSE-based optimization problems for the adaptive JCR waveform design. Simulations show that an optimal virtual (non-uniform) waveform achieves a significant performance improvement as compared to a uniform waveform. For a radar CRB constrained optimization, the optimal radar range of operation and the optimal communication distortion MMSE (DMMSE) are improved. For a communication DMMSE constrained optimization with a high DMMSE constraint, the optimal radar CRB is enhanced. For a weighted MMSE average optimization, the advantage of the virtual waveform over the uniform waveform is increased with decreased communication weighting. Comparison of MMSE-based optimization with traditional virtual preamble count-based optimization indicated that the conventional solution converges to the MMSE- based one only for a small number of targets and a high signal-to-noise ratio.
-
Format:
-
Funding:
-
Collection(s):
-
Main Document Checksum:
-
Download URL:
-
File Type: