Smart Charging of Future Electric Vehicles Using Roadway Infrastructure [Supporting Dataset]
-
2019-08-01
-
Details:
-
Creators:
-
Corporate Creators:
-
Corporate Contributors:
-
Subject/TRT Terms:
-
Publication/ Report Number:
-
Resource Type:
-
Geographical Coverage:
-
Corporate Publisher:
-
Abstract:Inspired by the fact that there is an immense amount of renewable energy sources available on the roadways such as mechanical pressure and frictional heat, this study presented the development and implementation of an innovative charging technique for future electric vehicles (EVs) by fully utilizing the existing roadways and the state-of-the-art nanotechnology and power electronics. The project introduced a novel wireless charging system, SIC (Smart Illuminative Charging), that uses LEDs powered by piezoelectric nanomaterials as the energy transmitter source and thin film solar panels placed at the bottom of the EVs as the receiver, which is then poised to deliver the harvested energy to the vehicle’s battery. Through the project, the energy-harvestable 2D nanomaterials (EH2Ns) were tested for their mechanical-to-electrical energy conversion capabilities and the relatively large-area EH2N samples (2cm x 2cm) produced high output voltages of up to 52mV upon mechanical pressure. An electrically conductive glass fiber reinforced polymer (GFRP) was developed to be used as physical support in the integrated SIC system. Furthermore, a lab-scale prototype device was developed to testify the mechanism of illuminative charging. The project team was able to prove the feasibility of SIC concept and the start to end conversion efficiency was calculated to be 40%. The project team also provided field implementation recommended framework based on the results from the small-scale prototype developed. The framework discussed how the developed SIC can be implemented in the field and what are the expected outcomes. The team recommended inserting the EH2N embedded in the GFRP, the LEDs and the needed circuitry in the wheel path of the vehicles on the pavement by cutting a sawtooth compartment with a width of 18’’ and a length of 8’ every couple of miles. On the vehicle, a PV array will be placed on the underside between the wheel wells of each side of the EV to capture the illumination from the LEDs embedded in the roadway. The detailed strategy is presented in this report. The total size of the described zip file is 2.12 MB. Files with the .xlsx extension are Microsoft Excel spreadsheet files. These can be opened in Excel or open-source spreadsheet programs. Docx files are document files created in Microsoft Word. These files can be opened using Microsoft Word or with an open source text viewer such as Apache OpenOffice.
-
Content Notes:National Transportation Library (NTL) Curation Note: As this dataset is preserved in a repository outside U.S. DOT control, as allowed by the U.S. DOT's Public Access Plan (https://doi.org/10.21949/1503647) Section 7.4.2 Data, the NTL staff has performed NO additional curation actions on this dataset. The current level of dataset documentation is the responsibility of the dataset creator. NTL staff last accessed this dataset at its repository URL on 2022-11-11. If, in the future, you have trouble accessing this dataset at the host repository, please email NTLDataCurator@dot.gov describing your problem. NTL staff will do its best to assist you at that time.
-
Format:
-
Funding:
-
Collection(s):
-
Main Document Checksum: