Assessing the Impacts of Super Storm Flooding in the Transportation Infrastructure – Case Study: San Antonio, Texas [Supporting Dataset]
-
2019-08-01
Details:
-
Creators:
-
Corporate Creators:
-
Corporate Contributors:
-
Subject/TRT Terms:
-
Publication/ Report Number:
-
Resource Type:
-
Geographical Coverage:
-
Corporate Publisher:
-
Abstract:Flooding are likely to increase worldwide due to climate change. Large storms, referred here as superstorms, defined as events with return period equal or larger than 100 years, can lead to an increase of property damages and loss of life. The ability to predict and plan for the impacts of superstorms on transportation infrastructure is key to mitigate future damages and losses. This study analyzed 51 combinations of future projections for representative concentration pathways (RCP) 4.5 and 8.5 scenarios, which were used to calculate future 1st and 3rd quartiles, median, minimum and maximum intensity-duration-frequency curves (IDF). A HEC-HMS and GSSHA models were built for Leon Creek and Upper San Antonio watersheds. HEC-RAS 1D and 2D were used to evaluate flooding in 20 bridges and the extent of flooded area and roads in both watersheds and to test flood control scenarios. Land use modification with 5, 10 and 15% of LID areas in the watersheds were simulated. The use of levees and altering channels were evaluated. In addition, we evaluated how an increasing the storage capacity of the Olmos Dam would contribute to reduce flood impacts downstream. Results show that the 3rd quartile of projected IDF is closest to the one originated with observed precipitation, which is likely to increase in the future. The near future (2025-2049) under RCP 4.5 scenario presented the greatest increase in intensity. HEC-HMS models showed that discharge peak will increase for all future periods under both scenarios, for the 100- and 500-years storms. Flood projections generated by GSSHA for 100- and 500-years and future precipitation showed that flooded area can increase significantly. For instance, the increase in flooded roads can be more than 80% in near future for 500-year storm in Leon Creek watershed. HEC-RAS analysis showed that all 20 analyzed bridges can be flooded with 500-years storm with climate change and 15 with the 100-year storm. Simulation showed that LID implementation and the elevation of the Olmos Dam’s crest were ineffective to protect transportation infrastructure. Enhancing cross-sections of the main channels and the use of levees can mitigate the impact in some bridges. This study illustrates the need for updates in the design criteria of current and future transportation infrastructure. The total size of the described zip file is 24.8 MB. Files with the .xlsx extension are Microsoft Excel spreadsheet files. These can be opened in Excel or open-source spreadsheet programs. Docx files are document files created in Microsoft Word. These files can be opened using Microsoft Word or with an open source text viewer such as Apache OpenOffice.
-
Content Notes:National Transportation Library (NTL) Curation Note: As this dataset is preserved in a repository outside U.S. DOT control, as allowed by the U.S. DOT's Public Access Plan (https://doi.org/10.21949/1503647) Section 7.4.2 Data, the NTL staff has performed NO additional curation actions on this dataset. The current level of dataset documentation is the responsibility of the dataset creator. NTL staff last accessed this dataset at its repository URL on 2022-11-11. If, in the future, you have trouble accessing this dataset at the host repository, please email NTLDataCurator@dot.gov describing your problem. NTL staff will do its best to assist you at that time.
-
Format:
-
Funding:
-
Collection(s):
-
Main Document Checksum: