Development of Specifications for High-Performance Fiber Concrete for Nevada
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

ROSA P serves as an archival repository of USDOT-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by USDOT or funded partners. As a repository, ROSA P retains documents in their original published format to ensure public access to scientific information.
i

Development of Specifications for High-Performance Fiber Concrete for Nevada

Filetype[PDF-8.38 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed
English

Details:

  • Creators:
  • Corporate Creators:
  • Corporate Contributors:
  • Subject/TRT Terms:
  • Publication/ Report Number:
  • Resource Type:
  • Geographical Coverage:
  • Edition:
    Final Report
  • Corporate Publisher:
  • Abstract:
    The project stated with an extensive summary of construction practices and experiences from different state agencies. Besides, a detailed summary of state DOT specifications was included in the report. The main objective of this study was to develop a mix design adjustment method for High-Performance Fiber Reinforced Concrete (FRC) that would maintain appropriate workability while improving hardened concrete performance. A literature review was conducted to examine existing methods for adjusting mix designs to account for fiber introduction. It was found that while increasing fine aggregate and cement paste content can make up for lost workability with the addition of fibers, no rational mix design adjustment method is available. Reference mix designs from the Nevada Department of Transportation and the Nebraska Department of Transportation were used, and this study focused on tailoring the mix design based on the parameter of excess paste. Excess paste serves to coat the aggregate particles and is critical for workability. To apply this method, a modified version of ASTM C29 was used to determine the void content of fiber-aggregate skeletons with varying fiber contents. Paste and fine aggregate content were then adjusted to maintain the excess paste quantity between reference mixes and mixes with fiber. A variety of tests, including slump, vibrated L-box, compressive strength, splitting tensile strength, flexural strength, drying shrinkage, and restrained shrinkage were conducted to evaluate the overall concrete performance. Results indicated that, for each mix design, adjusting based on excess paste provided a workable FRC with improved hardened performance. Eight slabs were then prepared for a large-scale examination of the constructability and mechanical behavior of the developed FRC. Throughout the study of FRC, an alternative concrete to Ultra-High Performance Concrete (UHPC) that would considerably outperform High-Performance Concrete (HPC) was developed. This study delves into the development of a new type of concrete called Super High-Performance Concrete (SHPC). SHPC is a high strength, self-consolidating HPFRC that would significantly cut back on cost and production limitations compared to UHPC as it can be produced with conventional drum-type mixers. Results indicate that SHPC outperforms HPC in matters of workability, compressive strength, flexural strength, and toughness and could potentially be a viable alternative of UHPC for applications such as bridge deck connections and overlays. The report also included detailed recommendations regarding the mix design, batching and mixing, quality control methods, and casting of HPFRC and SHPC that can be further used in the development of specifications for NDOT.
  • Format:
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at rosap.ntl.bts.gov