Improving Methods to Measure Attentiveness through Driver Monitoring
-
2022-07-01
-
Details:
-
Creators:
-
Corporate Creators:
-
Corporate Contributors:
-
Subject/TRT Terms:
-
Publication/ Report Number:
-
Resource Type:
-
Geographical Coverage:
-
Edition:Final research
-
Corporate Publisher:
-
Abstract:Driver inattention poses a significant problem on today’s roadways, increasing risk for all road users. This report details our efforts in developing algorithms to detect driver inattention. A benchmark dataset was developed based on video review of driving events. Buffer-based algorithms were developed and compared using this benchmark dataset. The benchmark events were also used as a training dataset for machine learning models. Driver glance locations were important for determining driver attentiveness. In addition, vehicle speed was important for understanding the driving context, which was found to have a large impact on driver behavior.
-
Format:
-
Funding:
-
Collection(s):
-
Main Document Checksum:
-
Download URL:
-
File Type: