U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Environmentally Acceptable Materials for the Corrosion Protection of Steel Bridges

File Language:
English


Select the Download button to view the document
Please click the download button to view the document.

Details

  • Creators:
  • Corporate Creators:
  • Contributors:
  • Corporate Contributors:
  • Subject/TRT Terms:
  • Publication/ Report Number:
  • Resource Type:
  • Geographical Coverage:
  • Contracting Officer:
  • Corporate Publisher:
  • Abstract:
    The recently promulgated environmental regulations concerning volatile organic compounds (VOC) and certain hazardous heavy metals have had a great impact on the bridge painting industry. As a response to these regulations, many of the major coating manufacturers now offer "environmentally acceptable" alternative coating systems to replace those traditionally used on bridge structures. The Federal Highway Administration sponsored a 7-year study to determine the relative corrosion control performance of these newly available coating systems. A battery of accelerated laboratory tests were performed on candidate coating materials with a maximum VOC content of 340 g/L (2.8 lb/gal). Accelerated tests included cyclic salt fog/natural marine exposure, cyclic brine immersion/natural marine exposure, and natural marine exposure testing. Natural exposure test panels were exposed and evaluated for a total of 6.5 years. The most promising coating systems were selected for long-term field evaluation based on accelerated test performance. The long-term exposure testing was conducted for 5 years in three marine locations. Panels were exposed on two bridges, one in New Jersey and one in southern Louisiana. The third long-term exposure location was in Sea Isle City, New Jersey. Thirteen coating systems were included for long-term exposure testing. These included 2 high-VOC controls and 11 test systems having a VOC level of 340 g/L (2.8 lb/gal) or less. Five of the test systems contained high-solids primers, two of the test systems contained waterborne primers, one system was based on a powder coating, and three systems were metallizing. The best performing systems were the three metallized coatings. These were initially less aesthetic than coating systems with high-gloss topcoats, but they displayed near-perfect corrosion performance after 5- to 6.5-year exposure periods. Of the traditional liquid applied coating systems, those incorporating inorganic zinc primers performed the best over near-white blasted and power-tool cleaned surfaces. High-solids epoxy coatings had a tendency to undercut at intentional scribes and rust worse than coatings with zinc-rich primers over less than ideal surface preparations. Current bridge painting methodologies and corrosiveness of various bridge substructures were investigated. Various bridge maintenance painting options were evaluated on a life-cycle cost basis using data developed in the program. The analysis points to the potential advantages of long-term durable coatings such as metallizing and alternative painting practices such as zone painting.
  • Format:
  • Funding:
  • Collection(s):
  • Main Document Checksum:
    urn:sha-512:5b97e4f434b223be8a2648b24485a12764240e9fc511f415802c652a8d79571f26f8525a752b5ae53c834dc598da3e91ec374bc33862bdbe8d1ec815b869ff51
  • Download URL:
  • File Type:
    Filetype[PDF - 59.27 MB ]
File Language:
English
ON THIS PAGE

ROSA P serves as an archival repository of USDOT-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by USDOT or funded partners. As a repository, ROSA P retains documents in their original published format to ensure public access to scientific information.