Aerodynamic Effects of High-Speed Trains
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Aerodynamic Effects of High-Speed Trains

Filetype[PDF-245.41 KB]


  • English

  • Details:

    • Publication/ Report Number:
    • Resource Type:
    • Geographical Coverage:
    • TRIS Online Accession Number:
      01159302
    • Abstract:
      With the onset of high-speed train operations in the United States, a study was undertaken to determine the possible aerodynamic effects of these trains have on their surroundings. The aerodynamic interaction between a high-speed train passing other trains, and its effects on the structural integrity of window mounts and glazing as well as the stability of large lightweight empty container cars operating on adjacent tracks were analyzed. Although car-body roll of container car was not significant, the analysis indicates that the potential for derailment was greatest for cars with empty containers, while wheel lift was eliminated and the lateral to vertical wheel/rail forces (L/V) were much lower when all containers were fully loaded. Another area of investigation focused on the effects of aerodynamic pressure and airflow generated from high-speed trains to people standing on the passing station platform. Computational fluid dynamics analysis, rail dynamics simulation models, and field measurements using pitot tubes and aerodynamic dummies developed by the French National Railways (SNCF) were used to study these effects. Preliminary results show the aerodynamic effect of an Acela Express at 150 mph is less than that of a conventional train at 125 mph.
    • Format:
    • Main Document Checksum:
    • File Type:

    Supporting Files

    • No Additional Files

    More +

    You May Also Like

    Checkout today's featured content at rosap.ntl.bts.gov

    Version 3.26