Welcome to ROSA P |
Stacks Logo
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
Clear All Simple Search
Advanced Search
Material Constituents and Proportioning for Roller-Compacted Concrete Mechanical Properties
  • Published Date:
  • Language:
Filetype[PDF-11.57 MB]

This document cannot be previewed automatically as it exceeds 5 MB
Please click the thumbnail image to view the document.
Material Constituents and Proportioning for Roller-Compacted Concrete Mechanical Properties
  • Resource Type:
  • ISSN:
  • Edition:
    Final Report
  • Abstract:
    Roller-compacted concrete (RCC) is increasingly becoming an alternative pavement type because of its construction expediency, reductions in material and construction costs, sustainability benefits, and overall structural capacity. Current RCC pavement mix design procedures select mix constituents and proportions based on strength requirements, workability, and field density. Discrepancies in mechanical properties are known to exist between field and laboratory compacted specimens. In order to move toward designing and constructing performance-based RCC mixtures—the effects of various mixture constituents, proportions, and compaction methods must be quantified. The gap between laboratory and field properties must be minimized as well. A wide range of RCC aggregate gradations were batched, tested, and found to impact RCC properties—especially compressive strength. The coarse-fine aggregate ratio was the parameter linked most directly to RCC compressive strength. Aggregate type (recycled aggregates, siliceous rounded sand and gravel, manufactured sand, and crushed aggregates) was also shown to affect aggregate packing density and RCC properties. Fly ash or ground granulated blast furnace slag replacement of cement statistically reduced the early-age RCC strength and likely would delay opening the RCC pavement to traffic. In general, fracture properties of RCC with virgin and recycled aggregates were similar or greater than fracture properties of conventional Portland cement concrete (PCC) pavements—which suggests similar or greater slab capacities and fatigue lives for RCC relative to PCC for the same slab thickness. Several types of macro-fibers incorporated into RCC were shown to statistically improve the RCC compressive strength as well as provide residual strength comparable to conventional fiber reinforced concrete. Past researchers have demonstrated that the gyratory compactor has the potential to be an alternative RCC mix design tool to the modified Proctor procedure. The gyratory compactor provides similar compaction mechanisms and energies relative to construction equipment for RCC (and asphalt) pavements. It also significantly reduces operator error in specimen preparation. The gyratory compactor was employed in this research to evaluate several laboratory mixture proportions and constituents focusing on aggregate gradations and cementitious content. It was also used to compare companion gyratory results to already constructed RCC pavements. The gyratory compactor was verified to be more sensitive to changes in aggregate gradation and cementitious content compared to the modified Proctor and vibratory hammer—which are commonly used methods for RCC mix design and specimen fabrication, respectively. It was also useful in evaluating the potential for delayed compaction on RCC mixtures with different admixtures, delay times, and mixture temperatures.

  • Format:
  • Funding:
  • Main Document Checksum:
  • Supporting Files:
    No Additional Files
No Related Documents.
You May Also Like: