Energy dissipation in twelve-foot broken-back culverts using laboratory models : final report.
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Energy dissipation in twelve-foot broken-back culverts using laboratory models : final report.

Filetype[PDF-6.97 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed
  • English

  • Details:

    • Alternative Title:
      Energy dissipation in twelve-foot broken-back culverts using laboratory models.
    • Publication/ Report Number:
    • Resource Type:
    • Geographical Coverage:
    • Abstract:
      This report represents Phase IV of broken-back culverts with a drop of 12 feet. The first phase of this research was performed with a drop of 24 feet, the second phase of this research was carried with for a drop of 6 feet, and the third phase of this research, performed was a drop of 18 feet. This research investigates the reduction in scour downstream of a broken-back culvert by forming a hydraulic jump inside the culvert. A broken-back culvert is used in areas of high relief and steep topography as it has one or more breaks in profile slope. A broken-back culvert in the laboratory represents a 1 (vertical) to 2 (horizontal) slope after the upstream inlet and then continuing 126 feet at a 1 percent slope in the flat part of the culvert to the downstream outlet. The prototypes for these experiments were either a two barrel 10-foot by 10-foot, or a two barrel 10-foot by 20-foot reinforced concrete culvert. The drop between inlet and outlet was selected as 12 feet. Three flow conditions were simulated, consisting of 0.8, 1.0 and 1.2 times the culvert depth.

      The Froude number (Fr1) of the hydraulic jump created in the flat part of the culvert ranged between 2.21 and 3.32. This Fr1 classifies the jump as an oscillating jump. The jump began nearly at the toe by placing sills in the flat part. For new culvert construction, the best option to maximize energy dissipation under open channel flow conditions is to use one 4.2-foot sill located 58.33 feet from the outlet. The maximum length of the culvert can be reduced from 45 feet to 58 feet. In pressure flow conditions, the optimal location was determined at a distance of 88 feet from the outlet for 2.5-foot sill. The length of the culvert can be reduced by 60 feet to 75 feet. Such a scenario is important where right-of-way problems exist for culvert construction. Also examined was a slotted sill which has a cut in the middle for cleanup purposes. In open channel flow conditions, the best option to maximize energy dissipation is to use one 5-foot slotted sill located 70 feet from the outlet. In the pressure flow conditions, the optimal slotted sill was 3.33-foot at a distance of 88 feet from the outlet.

      The regular and slotted sills contain two small orifices at the bottom to allow the culvert to completely drain. The impact of friction blocks was found to be minimal. No friction blocks were used to further dissipate the energy. In sedimentation experiments under regular and slotted sills, there was no sedimentation left.

    • Format:
    • Main Document Checksum:
    • File Type:

    Supporting Files

    • No Additional Files

    More +

    You May Also Like

    Checkout today's featured content at rosap.ntl.bts.gov

    Version 3.26