Reducing seismic risk to highway mobility : assessment and design of pile foundations affected by lateral loading.
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields



Document Data
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page


Reducing seismic risk to highway mobility : assessment and design of pile foundations affected by lateral loading.

Filetype[PDF-2.70 MB]



  • Creators:
  • Corporate Creators:
  • Corporate Contributors:
  • Subject/TRT Terms:
  • Publication/ Report Number:
  • Resource Type:
  • Geographical Coverage:
  • Corporate Publisher:
  • NTL Classification:
  • Abstract:
    Damage in pile supported structures due to liquefaction and liquefaction induced deformation were reported in past earthquakes around the world (eg, Ansal et al. 1999, Seed et al. 1990, EERI 2010, EERI 2011, GEER 2010a, GEER 2010b, GEER 2011). For example, a reconnaissance report from a recent subduction zone event, the 2010 Chile earthquake (Mw=8.8), showed the pervasive nature of liquefaction and liquefaction-induced lateral spreading damage to bridge foundations (GEER 2010a, Yen et al. 2011). In terms of seismic hazard, the Pacific Northwest shares similar conditions from a Cascadia Subduction Zone (CSZ) earthquake source with the expected earthquake magnitude of 9.0 (Mw) and return period of 300 years (Atwater et al. 1995, Atwater and Hemphill-Halley 1997). The risk and damage from a CSZ earthquake event is widely recognized by the Oregon Department of Transportation (ODOT) as presented in a report by ODOT (2009). A large number of bridges were found to be vulnerable to a CSZ event, and repair and replacement costs of Oregon bridges have been estimated at more than 1 billion USD (ODOT 2009). Moreover, thousands of bridges require some kind of modification and/or seismic retrofitting to the foundation in order to improve seismic performance under liquefaction induced lateral spreading.

    To evaluate the seismic performance of bridge foundations and liquefaction mitigation alternatives, ODOT/OTREC funded collaborative research between Oregon State University (OSU), University of California at Davis (UCD), University of California at San Diego (UCSD), Hayward Baker Inc., and Pacific Earthquake Engineering Research Center (PEER). The main objectives of the research were to develop design charts for different liquefaction mitigation alternatives and to develop methodologies for assessing the performance of bridge pile foundations in laterally spreading ground.

    The cooperative research focuses on two aspects of liquefaction and liquefaction induced lateral spreading: (1) ground improvement methods, particularly using stone columns and deep soil mixing (DSM) grids, and (2) assess the seismic performance of bridge foundations (eg, drilled shaft, pile groups) and seismic retrofitting alternatives for the bridge foundation. Stone columns for liquefaction mitigation and pile groups foundation assessment were investigated by the OSU team, while DSM and large diameter piles/shafts alternatives were investigated by the UCD team. Research teams used OpenSees (, an open source computational platform for three dimensional (3D) finite element (FE) modeling and analysis. OpenSeesPL, a graphical user interface developed by the UCSD team, was used to investigate liquefaction mitigation alternatives (ie, stone columns and DSM grids) and the performance of pile foundations in liquefaction induced laterally spreading ground.

  • Format:
  • Funding:
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at