High RAP mixes design methodology with balanced performance.
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

High RAP mixes design methodology with balanced performance.

Filetype[PDF-1.05 MB]


  • English

  • Details:

    • Publication/ Report Number:
    • Resource Type:
    • Geographical Coverage:
    • Abstract:
      "The use of reclaimed asphalt pavement (RAP) and recycled asphalt shingles (RAS) can significantly reduce the increasing cost of hot-mix asphalt paving, conserve energy, and protect the environment. This report presents a comprehensive study focusing on methodologies to improve the performance of high RAP content mixes. Firstly this report addresses one major concern—RAP variability. It was found that in Texas the RAP materials are consistent and have low variability in terms of aggregate gradation and asphalt content, within individual stockpiles. The authors evaluated the impact of RAP on optimum asphalt content (OAC), rutting/moisture resistance, and cracking resistance. OAC generally increases with more RAP (and RAS) usage, but the increase in OAC is small when the RAP content is below 20 percent; increasing RAP content always improves rutting/moisture resistance as measured in the Hamburg wheel tracking test (HWTT). However, in the laboratory cracking resistance always reduces with increasing RAP content, especially when RAP content is 30 percent and above and also when RAP/RAS combinations are used. Additionally, the use of 10–15 percent RAP, without lowering virgin binder PG grade has a small impact on rutting/moisture and cracking resistance, but the influence, especially on cracking resistance, is much more significant when higher levels area used.

      A balanced RAP mix design approach is proposed in this study. In the proposed balanced mix design approach the final asphalt content is selected after optimizing the mix density, HWTT, and Overlay Test (OT) requirements. RAP handling in the process of mix design is critical, especially the mixing and compaction temperatures for high RAP mixes. It was recommended that the mixing and compaction temperatures used for the virgin binder be used for the RAP mix as well. Finally, the balanced RAP mix design procedure is demonstrated and validated through the construction of field test sections containing different levels of RAP. One of the interesting findings is that cracking requirement in terms of OT cycles should vary, depending at least on climate (cold vs. hot), traffic (heavy vs. light), and existing pavement condition (overlay over cracked pavements vs. new construction). For asphalt overlays over severely cracked pavements, a minimum OT requirement of 300 cycles previously proposed was further validated with performance data from the RAP sections on IH40 near Amarillo, Texas. More work is needed to develop criteria for different climatic zone and different pavement conditions."

    • Format:
    • Main Document Checksum:
    • File Type:

    Supporting Files

    • No Additional Files

    More +

    You May Also Like

    Checkout today's featured content at rosap.ntl.bts.gov

    Version 3.26