Modeling Traffic Accidents at Signalized Intersections in the City of Norfolk, VA.
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Modeling Traffic Accidents at Signalized Intersections in the City of Norfolk, VA.

Filetype[PDF-618.84 KB]

  • English

  • Details:

    • Resource Type:
    • Geographical Coverage:
    • Abstract:
      This study was an attempt to apply a proactive approach using traffic pattern and signalized intersection characteristics to predict accident rates at signalized intersections in a city’s arterial network. An earlier analysis of accident data at selected intersections within the City of Norfolk indicated that in addition to traffic volume, other controllable factors contributed to traffic accidents at specific intersections. These factors included area topography, lane patterns, type of road signs, turning lanes, etc. It is also known that administrative factors such as signal types, signal polices, road closures, etc., and maintenance factors such as road conditions, condition of the signals, condition of road signs, etc. also impact road accidents.

      The objective of this study was to relate these variables to accident rate and delineate variables that are statistically more significant for accident rate. Data on several topographical variables was collected in the City of Norfolk. These variables included number of lanes, turn lanes, pedestrian crossing, restricted lanes, etc. A linear regression model was used to establish relationship between these variables and the accident rate. The resulting regression model explained 60% of the variability. It also showed that four topographical variables are more important than other variables. These variables include number of lanes, number of turn lanes, presence of median and presence of permanent hazard like railway crossing. However, validation of model showed higher than expected variation. The model developed, in this study, overestimates the accident rate by 33%, thus, limiting its practical application.

    • Format:
    • Main Document Checksum:
    • File Type:

    Supporting Files

    • No Additional Files

    More +

    You May Also Like

    Checkout today's featured content at

    Version 3.24