Effect of voids in grouted, post-tensioned concrete bridge construction : volume 2--inspection, repair, materials, and risks.
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Effect of voids in grouted, post-tensioned concrete bridge construction : volume 2--inspection, repair, materials, and risks.

Filetype[PDF-34.02 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed
  • English

  • Details:

    • Creators:
    • Publication/ Report Number:
    • Resource Type:
    • Geographical Coverage:
    • Edition:
      Technical report; Sept. 2003-Aug. 2008.
    • Abstract:
      Post-tensioned (PT) bridges are major structures that carry significant traffic. These bridges are designed and

      constructed because they are economical for spanning long distances. In Texas, there are several signature PT

      bridges. In the late 1990s and early 2000s, several state highway agencies identified challenges with the PT

      structures: mainly corrosion of the PT strands. The Texas Department of Transportation (TxDOT) performed some

      comprehensive inspections of their PT bridges. A consultant’s report recommended that all ducts be re-grouted.

      However, the environment in Texas is very different than the environments in which the corrosion of the PT strands

      were observed. The objective of this research was to evaluate the corrosion activity of strands for PT structures and to

      correlate this corrosion activity with general environmental and void conditions. To achieve this objective, timevariant

      probabilistic models were developed to predict the tension capacity of PT strands subjected to different

      environmental and void conditions. Using these probabilistic models, time-variant structural reliability models were

      developed. The probability of failure of a simplified PT structure subjected to HS20 and HL93 loading conditions

      was assessed. Both flexural failure and serviceability were assessed. Results indicate that the presence of water and

      chlorides can lead to significant corrosion rates and failure is dependent on this corrosion activity and the number of

      strands exposed to these conditions. These results are presented in Volume 1 of this report. To assist TxDOT with

      developing a plan to mitigate this corrosion, studies were performed to assess repair grout materials, inspection

      methods, and repair methods. In addition, a general methodology is presented on optimizing repairs. These topics are

      presented in Volume 2 of this report. An Inspection and Repair Manual was also developed from this research and is

      presented in a separate report. Results indicate that TxDOT should prevent water and chlorides from infiltrating the

      tendons — this can be achieved in part by repairing drain lines, ducts, and protecting anchor heads as these conditions

      can lead to early failure of PT bridges. Recommendations on inspections, repairs, and materials are provided,

      however, further research on the potential formation of galvanic coupling of strands embedded in both existing and

      new repair grouts need to be assessed.

    • Format:
    • Main Document Checksum:
    • File Type:

    Supporting Files

    • No Additional Files

    More +

    You May Also Like

    Checkout today's featured content at rosap.ntl.bts.gov

    Version 3.26