Developing an Efficient Dispatching Strategy to Support Commercial Fleet Electrification [supporting dataset]
-
2024-01-02
Details:
-
Creators:
-
Corporate Creators:
-
Corporate Contributors:
-
Subject/TRT Terms:
-
Publication/ Report Number:
-
DOI:
-
Resource Type:
-
Geographical Coverage:
-
Corporate Publisher:
-
Abstract:The adoption of battery electric trucks (BETs) as a replacement for diesel trucks has potential to significantly reduce greenhouse gas (GHG) emissions from the freight transportation sector. However, BETs have shorter driving range and lower payload capacity, which need to be taken into account when dispatching them. This paper addresses the energy-efficient dispatching of BET fleets, considering backhauls and time windows. To optimize vehicle utilization, customers are categorized into two groups: linehaul customers requiring deliveries and backhaul customers requiring pickups, where the deliveries need to be made following the last-in-first-out principle. The objective is to determine a set of energy-efficient routes that integrate both linehaul and backhaul customers, while considering factors such as limited driving range, payload capacity of BETs and the possibility of en route recharging. The problem is formulated as a mixed-integer linear programming (MILP) model and propose an adaptive large neighborhood search (ALNS) metaheuristic algorithm to solve it. The effectiveness of the proposed strategy is demonstrated through extensive experiments using a real-world case study from a logistics company in Southern California. The results indicate that the proposed strategy leads to a significant reduction in total energy consumption compared to the baseline strategy, ranging from 7% to 40%, while maintaining reasonable computational time. This research contributes to the development of sustainable transportation solutions in the freight sector by providing a practical and more efficient approach for dispatching BET fleets. The findings emphasize the potential of BETs in achieving energy savings and advancing the goal of green logistics.
The total size of the zip file is 334 KB. The .csv, Comma Separated Value, file is a simple format that is designed for a database table and supported by many applications. The .csv file is often used for moving tabular data between two different computer programs, due to its open format. The most common software used to open .csv files are Microsoft Excel and RecordEditor, (for more information on .csv files and software, please visit https://www.file-extensions.org/csv-file-extension). The file extension .md is among others related to texts and source codes in Markdown markup language. Markdown is a lightweight markup language, to write using an easy-to-read, easy-to-write plain text format, then convert it to structurally valid XHTML (or HTML) (for more information on .md files and software, please visit https://www.file-extensions.org/md-file-extension).
-
Content Notes:National Transportation Library (NTL) Curation Note: As this dataset is preserved in a repository outside U.S. DOT control, as allowed by the U.S. DOT’s Public Access Plan (https://doi.org/10.21949/1503647) Section 7.4.2 Data, the NTL staff has performed NO additional curation actions on this dataset. This dataset has been curated to CoreTrustSeal's curation level "C. Initial Curation." To find out more information on CoreTrustSeal's curation levels, please consult their "Curation & Preservation Levels" CoreTrustSeal Discussion Paper" (https://doi.org/10.5281/zenodo.8083359). NTL staff last accessed this dataset at its repository URL on 2024-02-27. If, in the future, you have trouble accessing this dataset at the host repository, please email NTLDataCurator@dot.gov describing your problem. NTL staff will do its best to assist you at that time.
-
Format:
-
Funding:
-
Collection(s):
-
Main Document Checksum:
-
Download URL:
-
File Type: