Karst Sinkhole Detecting and Mapping Using Airborne LiDAR [Supporting Dataset]
-
2019-08-01
Details:
-
Creators:
-
Corporate Creators:
-
Corporate Contributors:
-
Subject/TRT Terms:
-
Publication/ Report Number:
-
Resource Type:
-
Geographical Coverage:
-
Edition:Final Report Mar. 2018 – Mar. 2019
-
Corporate Publisher:
-
Abstract:The focus of this study is to detect sinkhole hazards using airborne light detection and ranging (LiDAR) data. The premise is sinkholes, particularly those close to transportation infrastructure assets, could cause substantial damages to infrastructure assets, and therefore, being able to accurately and rapidly detect them is essential. However, it is expensive, time-consuming, labor-intensive, and unsafe to survey sinkholes using conventional ground observation methods. This research project was focused on developing accurate and rapid airborne LiDAR-based sinkhole detection and mapping methods, and transfer the technologies to transportation engineers for implementation and workforce development. The project team also identified best practices for implementation of a state-level sinkhole hazard management system (SHMS). In addition, a guidebook was developed for airborne LiDAR-based sinkhole detection and mapping for professional education and training. The effectiveness of LiDAR to detect existing sinkholes has received very limited attention. Most of the research on LiDAR-based sinkhole detection postulates that morphological-based surface feature extraction methods can effectively detect sinkholes because of their geometric properties – sinkholes are oval-shaped concave depressions in the Earth’s surface. However, sinkholes have varying sizes, shapes, and appearance given various landforms, which adds even greater challenges to further improving the detection accuracy of methods that are based solely on morphology; for example, a dry stock pond may be incorrectly detected as a sinkhole. The proposed research used airborne LiDAR data in combination with auxiliary context such as site and association to improve the accuracy of the morphological-based sinkhole detection methods, and implement these by developing tools that can be used in standard geographic information systems (GIS). This methodology allows for the development of a robust LiDAR-based sinkhole detection toolset that provides an adequate degree of accuracy while maximizing the ability to assist inspectors with varying expertise.
The total size of the described file is 31.0 KB. Files with the .xlsx extension are Microsoft Excel spreadsheet files. These can be opened in Excel or open-source spreadsheet programs. Docx files are document files created in Microsoft Word. These files can be opened using Microsoft Word or with an open source text viewer such as Apache OpenOffice.
-
Content Notes:National Transportation Library (NTL) Curation Note: As this dataset is preserved in a repository outside U.S. DOT control, as allowed by the U.S. DOT’s Public Access Plan (https://doi.org/10.21949/1503647) Section 7.4.2 Data, the NTL staff has performed NO additional curation actions on this dataset. The current level of dataset documentation is the responsibility of the dataset creator. NTL staff last accessed this dataset at its repository URL on 2023-07-27. If, in the future, you have trouble accessing this dataset at the host repository, please email NTLDataCurator@dot.gov describing your problem. NTL staff will do its best to assist you at that time.
-
Format:
-
Funding:
-
Collection(s):
-
Main Document Checksum: