Use of Ultra-High-Performance Fiber-Reinforced Concrete (UHP-FRC) for Fast and Sustainable Repair of Pavements [Supporting Dataset]
-
2018-12-11
Details:
-
Creators:
-
Corporate Creators:
-
Corporate Contributors:
-
Subject/TRT Terms:
-
Publication/ Report Number:
-
Resource Type:
-
Geographical Coverage:
-
Edition:Final report, May 2017 – May 2018
-
Corporate Publisher:
-
Abstract:This research presents a new methodology, which enables streets, roads, highways, bridges, and airfields to use an advanced fiber-reinforced concrete material, which can delay or prevent the deterioration of these transportation infrastructure when subjected to traffic and environmental loadings. The major problem of concrete is its considerable deterioration and limited service life due to its brittleness and limited durability. As a result, it requires frequent repair and eventual replacement, which consumes more natural resources. Ultra-high-performance fiber-reinforced concrete (UHP-FRC) introduces significant enhancement in the sustainability of concrete structures due to its dense microstructure and damage-tolerance characteristics. These characteristics can significantly reduce the amount of repair, rehabilitation, and maintenance work, thereby giving the transportation infrastructure a longer service life. This research addresses the strong need to develop fast and sustainable UHP-FRC materials for pavement repair that can be easily cast onsite without special treatments. This avoids any major changes to current concrete production practice and accelerates the use of UHP-FRC materials. This research investigated a new method for concrete repair by combining precast UHP-FRC panels with a small quantity of cast-in-place UHP-FRC for pavement repair without any dowel bars. In this method, a precast UHP-FRC panel is used along with cast-in-place UHP-FRC. The vertical repair surfaces of the existing concrete are roughened on site. The outer edges of the UHP-FRC precast panel are roughened before they are brought to the site (no dowel bars are needed). The depth of the precast UHP-FRC panel is the same as the existing pavement thickness. Only a small cast-in-place UHP-FRC joint (one to two inches wide) is done onsite. The roughened precast UHP-FRC panel is placed in the repair area and cast-in-place UHP-FRC is cast into the joint. Experimental results showed that using a roughened surface (up to about CSP 5) provides a very large bond resistance, which is enough to prevent faulting.
The total size of the described file is 2.81 MB. Files with the .xlsx extension are Microsoft Excel spreadsheet files. These can be opened in Excel or open-source spreadsheet programs. Docx files are document files created in Microsoft Word. These files can be opened using Microsoft Word or with an open source text viewer such as Apache OpenOffice.
-
Content Notes:National Transportation Library (NTL) Curation Note: As this dataset is preserved in a repository outside U.S. DOT control, as allowed by the U.S. DOT’s Public Access Plan (https://doi.org/10.21949/1503647) Section 7.4.2 Data, the NTL staff has performed NO additional curation actions on this dataset. The current level of dataset documentation is the responsibility of the dataset creator. NTL staff last accessed this dataset at its repository URL on 2023-07-27. If, in the future, you have trouble accessing this dataset at the host repository, please email NTLDataCurator@dot.gov describing your problem. NTL staff will do its best to assist you at that time.
-
Format:
-
Funding:
-
Collection(s):
-
Main Document Checksum: