Precast Concrete Pavement Technology Implementation
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Precast Concrete Pavement Technology Implementation

Filetype[PDF-1.50 MB]


English

Details:

  • Creators:
  • Corporate Creators:
  • Contributors:
  • Corporate Contributors:
  • Subject/TRT Terms:
  • Publication/ Report Number:
  • Resource Type:
  • Geographical Coverage:
  • Edition:
    Final Report
  • Contracting Officer:
  • Corporate Publisher:
  • Abstract:
    Repair and rehabilitation of the aging highway infrastructure continues to be a challenging endeavor for all U.S. highway agencies. Thousands of miles of highway pavements need rehabilitation, and many of these highways carry over 100,000 vehicles/day, including a large percentage of trucks. Extended lane closures must be avoided to prevent compounding congestion—which means rehabilitation work must be completed rapidly. While many projects have been completed using rapid-setting concrete, results have been inconsistent. Precast concrete pavements (PCPs) have been shown to be promising alternatives. The production use of PCP has come a long way over the last 17 years. The technology is gaining wider acceptance in the U.S. for rapid repair and rehabilitation of concrete pavements as well as for heavily trafficked asphalt concrete pavements and intersections. Several U.S. highway agencies have implemented the PCP technology, and other agencies have constructed demonstration projects. In the U.S., the PCP technology is being used for intermittent repairs (full-depth joint repairs or full panel replacement) and for continuous applications (longer length/wider area rehabilitation) with service life expectations of at least 20 years for intermittent repairs and at least 40 years for continuous applications, without significant future corrective treatment. The Strategic Highway Research Program 2 (SHRP2) Project R05 was conducted from 2008 to 2012 to develop technical information and guidelines that would encourage the rapid and successful adoption of PCP technology. In 2013, the Federal Highway Administration (FHWA) created and managed the SHRP2 Implementation Assistance Program (IAP) to help State highway agencies, metropolitan planning organizations, and other interested organizations deploy SHRP2-developed products to deliver more efficient, cost-effective solutions to meet the complex challenges facing transportation agencies. During 2013, FHWA awarded a technical support contract to support FHWA’s efforts to promote wider implementation of PCP by highway agencies. This report summarizes the current state of the PCP technology and also provides details of the technical assistance provided under the FHWA technical support contract.
  • Content Notes:
    Contracting Officer’s Representative: Sam Tyson, P.E.
  • Format:
  • Funding:
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at rosap.ntl.bts.gov