Mechanical Bar Splices for Accelerated Construction of Bridge Columns
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Mechanical Bar Splices for Accelerated Construction of Bridge Columns

Filetype[PDF-62.72 MB]

Select the Download button to view the document
This document is over 5mb in size and cannot be previewed
  • English

  • Details:

    • Corporate Creators:
    • Publication/ Report Number:
    • Resource Type:
    • Geographical Coverage:
    • Corporate Publisher:
    • Abstract:
      Compared with conventional lap splicing, mechanical splicing is an alternative method of connecting bars in reinforced concrete (RC) structures, and is used mainly to reduce bar congestion in joints. Recently, mechanical bar splices, which are also referred to as bar couplers, have been used in laboratories as a new type of precast column connection to accelerate bridge construction. Nevertheless, current codes prohibit the use of bar couplers in the plastic hinge regions of bridge columns in high seismic zones. This may be due to a lack of systematic test data on the coupler performance, limited experimental studies on mechanically spliced bridge columns, and engineering precautions. The present experimental and analytical studies were performed to (1) generate the first-of-its-kind experimental database of the bar coupler performance, (2) quantify the coupler stress-strain relationship, and (3) quantify the seismic performance of mechanically spliced bridge columns. All U.S. manufacturers of mechanical bar splices were contacted to collect couplers that could potentially be incorporated into bridge columns. Ten different coupler products were selected, and more than 160 mechanical bar splices were tested under uniaxial monotonic and cyclic loading to failure. Properties of the couplers were established, and a coupler material model adopted from the literature was verified. Furthermore, a parametric study was carried out to investigate the seismic performance of mechanically spliced bridge columns utilizing the verified coupler models. More than 240 pushover analyses were performed. It was found that bridge columns incorporating couplers may exhibit 43% lower displacement ductility capacity compared with conventional RC columns, and the force capacity of these columns is slightly higher than that of the RC columns. Columns spliced with rigid and long couplers will show the lowest displacement capacities. Finally, new standard testing methods for mechanical bar splices were proposed based on the findings of the present study, and it was shown that consistent and reliable results could be achieved using the proposed testing methods.
    • Format:
    • Main Document Checksum:
    • File Type:

    Supporting Files

    • No Additional Files

    More +

    You May Also Like

    Checkout today's featured content at

    Version 3.26