Skewed Steel Bridges: Effect of Cross-Frame Layout on Lateral Flange Bending Stresses: [Technical Summary]
-
2016-02-01
-
Details:
-
Creators:
-
Corporate Creators:
-
Corporate Contributors:
-
Subject/TRT Terms:
-
Publication/ Report Number:
-
Resource Type:
-
Geographical Coverage:
-
Edition:Technical Summary
-
Corporate Publisher:
-
Abstract:Lateral flange bending stresses can arise from a number of sources, such as wind loading or eccentric concrete placement, but of particular interest are lateral flange bending stresses, fl, that occur due to skew. Lateral flange bending stresses that occur in skewed bridge systems tend to develop due to lateral forces transferred through cross frames which may connect adjacent girders at different span points. In lieu of a refined analysis, the AASHTO (2010) LRFD Bridge Design Specifications currently permit engineers examining bridges skewed more than 20° to use a minimum value of fl = 10 ksi for an interior girder and fl = 7.5 ksi for an exterior girder. The estimates for fl provided within the AASHTO LRFD Bridge Design Specifications are based on a limited data set for skewed bridges. Additionally, since the AASHTO LRFD Bridge Design Specifications state that cross frames or diaphragms should be placed in a staggered configuration when a bridge is skewed more than 20°, the approximate values provided for fl should not be expected to be indicative of the lateral flange bending stresses experienced when cross frames are instead carried parallel to the skew in bridges skewed beyond 20°.
-
Format:
-
Collection(s):
-
Main Document Checksum:
-
Download URL:
-
File Type: