Implementation of Infiltration Ponds Research
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields



Document Data
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page


Implementation of Infiltration Ponds Research

Filetype[PDF-7.20 MB]

Select the Download button to view the document
This document is over 5mb in size and cannot be previewed


  • Creators:
  • Corporate Creators:
  • Corporate Contributors:
  • Subject/TRT Terms:
  • Publication/ Report Number:
  • Resource Type:
  • Geographical Coverage:
  • TRIS Online Accession Number:
  • Edition:
    Final Research Report
  • Corporate Publisher:
  • Abstract:
    Stormwater infiltration facilities help reduce the hydrologic impacts of residential and commercial development. The design of these facilities is particularly challenging because of large uncertainties associated with predictions of both short-term and long-term infiltration rates. Full-scale “flood tests” conducted at four infiltration facilities in western Washington suggest that lateral flow along the sides of the ponds may be significant. This is similar to “bank storage” that occurs in stream channels. More efficient designs may require a larger ratio of side area to bottom area and that maintenance activities should be considered for the sides as well as the bottom of the pond. Saturated hydraulic conductivity values estimated from measuring air conductivity and from regression equations derived from grain size parameters were compared to full-scale infiltration rates for 15 sites in western Washington. The estimated values for saturated hydraulic conductivity were up to two orders-of-magnitude larger than the full-scale infiltration rates for some sites and were two orders-of-magnitude smaller at others. These results show that infiltration rates cannot be reliability estimated on the basis of soil properties alone; information related to the hydraulic gradient is also important. Computer models were compared to identify the flow systems for which saturated models provide reasonable approximations. The difference between saturated and unsaturated flow models was lowest in highly permeable soils and increased as the hydraulic conductivity of the soil decreased. The simulations suggest that steady-state infiltration rates calculated with a saturated model will be 20 to 30% smaller than rates calculated with an unsaturated model for the range of hydraulic conductivities typically found beneath Western Washington infiltration ponds. A comparison of steady-state and transient simulations showed that the steadystate assumption may significantly underestimate infiltration rates.
  • Format:
  • Funding:
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at