Predicting Asphalt Mixture Skid Resistance Based On Aggregate Characteristics
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Predicting Asphalt Mixture Skid Resistance Based On Aggregate Characteristics

Filetype[PDF-5.45 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed
  • English

  • Details:

    • Corporate Contributors:
    • Publication/ Report Number:
    • Resource Type:
    • Geographical Coverage:
    • TRIS Online Accession Number:
      1143757
    • Abstract:
      The objective of this research project was to develop a method to determine the skid resistance of an asphalt mixture based on aggregate characteristics and gradation. Asphalt mixture slabs with different combinations of aggregate sources and mixture designs were fabricated in the laboratory, and their skid resistance was measured after different polishing intervals. The wheel-polishing device developed by the National Center for Asphalt Technology (NCAT) was used for polishing the slabs. Frictional characteristics of each slab were measured by sand patch method, British Pendulum, Dynamic Friction Tester (DFT), and Circular Texture Meter (CTMeter). Aggregates were characterized using a number of conventional test methods, and aggregate texture was measured using the Aggregate Imaging System (AIMS) after different polishing intervals in the Micro-Deval device. Petrographic analyses were performed using thin sections made with aggregates from each of these sources. Petrographic analyses provided the mineralogical composition of each source. The aggregate gradation was quantified by fitting the cumulative Weibull distribution function to the gradation curve. This function allows describing the gradation by using only two parameters. The results of the analysis confirmed a strong relationship between mix frictional properties and aggregate properties. The main aggregate properties affecting the mix skid resistance were Polish Stone Value, texture change before and after Micro-Deval measured by AIMS, terminal texture after Micro-Deval measured by AIMS, and coarse aggregate acid insolubility value. The analysis has led to the development of a model for the International Friction Index (IFI) of asphalt mixtures as a function of polishing cycles. The parameters of this model were determined as functions of (a) initial and terminal aggregate texture measured using AIMS, (b) rate of change in aggregate texture measured using AIMS after different polishing intervals, and the (c) Weibull distribution parameters describing aggregate gradation. This model allows estimating the frictional characteristics of an asphalt mixture during the mixture design stage.
    • Format:
    • Main Document Checksum:
    • File Type:

    Supporting Files

    • No Additional Files

    More +

    You May Also Like

    Checkout today's featured content at rosap.ntl.bts.gov

    Version 3.26