Alternatives to Steel Grid Decks – Phase II: [Summary]
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Alternatives to Steel Grid Decks – Phase II: [Summary]

Filetype[PDF-1.00 MB]


  • English

  • Details:

    • Resource Type:
    • Abstract:
      The primary objective of this research project was to investigate alternatives to open grid steel decks for movable bridges. Three alternative deck systems, including aluminum deck, ultra-high performance concrete (UHPC)-high-strength steel (HSS) deck, and UHPC-fiber-reinforced polymer (FRP) tube deck, were developed and studied in the first phase of this research project. The UHPC-HSS deck showed a great potential to serve as a viable alternative. However, more studies were needed on its components and system design before it was deemed ready to be implemented. Accordingly, this phase of the project covered all the studies needed for the design and implementation of the UHPC-HSS deck system. Also, suitability of an FRP bridge deck system as an alternative to open grid steel decks was evaluated. The UHPC-HSS deck was experimentally investigated at both the component and system levels. Studies included the deck-to-girder connection test for shear and uplift forces, deck-to-deck connection test, multi-unit specimen tests to determine the lateral distribution of live loads, full-scale test for fatigue loading and residual strength, and pullout and beam tests to evaluate the development length. The deck-to-girder and the deck-to-deck connections both proved to be adequate for the loading conditions expected from the HS20 truck and wind forces. Tests for the live load distribution showed that most of the load is taken by the ribs under or immediately next to the load. The deck panels and connections successfully endured two million cycles of repeated loading and had a residual strength beyond their target design load. It was shown that the development length of HSS rebars in UHPC can be reasonably predicted by ACI 408R-03. The dowel action of longitudinal steel reinforcement in UHPC and the uniaxial fatigue behavior of UHPC specimens were also evaluated through both experimental and analytical studies
    • Format:
    • Main Document Checksum:
    • File Type:

    Supporting Files

    • No Additional Files

    More +

    You May Also Like

    Checkout today's featured content at rosap.ntl.bts.gov

    Version 3.26