Bridge Scour in Nonuniform Sediment Mixtures and in Cohesive Materials: Synthesis Report
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields



Document Data
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page


Bridge Scour in Nonuniform Sediment Mixtures and in Cohesive Materials: Synthesis Report

Filetype[PDF-9.58 MB]

Select the Download button to view the document
This document is over 5mb in size and cannot be previewed


  • Creators:
  • Corporate Creators:
  • Corporate Contributors:
  • Subject/TRT Terms:
  • Publication/ Report Number:
  • Resource Type:
  • Geographical Coverage:
  • TRIS Online Accession Number:
  • OCLC Number:
  • Edition:
    Final Report
  • Corporate Publisher:
  • Abstract:
    This report presents the summary and synthesis of the various components of the experimental study entitled “Effects of Gradation and Cohesion on Bridge Scour” conducted at Colorado State University between the dates 1991 through 1996. As a result of this effort, in excess of 250 new pier scour data was collected and a new equation was developed expressing pier scour in terms of the dimensionless excess velocity factor, flow depth, pier diameter and a correction factor for the coarse fractions present in mixtures was derived. The new method was tested with available data from previous research. This equation shows that gradation effects are not constant through the entire range of flow conditions but vary with flow intensity. Additionally, a new method to adjust FHWA’s Colorado State University pier scour equation for initiation of motion and sediment size was developed. Abutment scour experiments resulted in over 384 new points and 2 new abutment scour equations. The first equation was derived from a 0.1 mm uniform sand mixture and defines an envelop relationship. The second equation applies to mixtures with coarse fractions. A coarse size fraction compensation factor Wg is presented to account for the presence of varying amounts of coarse material in sediment mixtures under different dimensionless flow intensities. These new equations represented the experimental data accurately but have not been tested with field data. Effects of cohesion on pier and abutment scour was studied systematically, and in excess of 200 new data points were collected covering a range of flow and cohesive parameter values. Relationships were developed to explain the variability of bridge scour in cohesive materials for various cohesive material properties. This report summarizes results from the following six-volume series, which was not printed but was distributed to the National Technical Information Service and the National Transportation Library: FHWA-RD-99-183 Volume 1. Effect of Sediment Gradation and Coarse Material Fraction on Clear-Water Scour Around Bridge Piers. FHWA-RD-99-184 Volume 2. Experimental Study of Sediment Gradation and Flow Hydrograph Effects on Clear Water Scour Around Circular Piers. FHWA-RD-99-185 Volume 3. Abutment Scour for Nonuniform Mixtures. FHWA-RD-99-186 Volume 4. Experimental Study of Scour Around Circular Piers in Cohesive Soils. FHWA-RD-99-187 Volume 5. Effect of Cohesion on Bridge Abutment Scour. FHWA-RD-99-188 Volume 6. Abutment Scour in Uniform and Stratified Sand Mixtures.
  • Format:
  • Funding:
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at