Development and Evaluation of Live-Bed Pier- and Contraction-Scour Envelope Curves in the Coastal Plain and Piedmont Provinces of South Carolina
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields



Document Data
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page


Development and Evaluation of Live-Bed Pier- and Contraction-Scour Envelope Curves in the Coastal Plain and Piedmont Provinces of South Carolina

Filetype[PDF-10.28 MB]

Select the Download button to view the document
This document is over 5mb in size and cannot be previewed


  • Creators:
  • Corporate Creators:
  • Corporate Contributors:
  • Subject/TRT Terms:
  • Publication/ Report Number:
  • Resource Type:
  • Geographical Coverage:
  • Corporate Publisher:
  • Abstract:
    The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, used ground-penetrating radar to collect measurements of live-bed pier scour and contraction scour at 78 bridges in the Piedmont and Coastal Plain Physiographic Provinces of South Carolina. The 151 measurements of live-bed pier-scour depth ranged from 1.7 to 16.9 feet, and the 89 measurements of live-bed contraction-scour depth ranged from 0 to 17.1 feet. Using hydraulic data estimated with a one-dimensional flow model, predicted live-bed scour depths were computed with scour equations from the Hydraulic Engineering Circular 18 and compared with measured scour. This comparison indicated that predicted pier-scour depths generally exceeded the measured pier-scour depths, and at times predicted pier-scour depths were excessive (overpredictions were as large as 23.1 feet). For live-bed contraction-scour depths, predicted scour was sometimes excessive (overpredictions were as large as 14.3 feet), but often observed contraction scour was underpredicted. For live-bed pier scour, trends in laboratory and field data were compared and found to be similar. The strongest explanatory variable was pier width, and an envelope curve for assessing the upper bound of live-bed pier scour was developed using pier width as the primary explanatory variable. Relations in the live-bed contraction-scour data also were investigated, and several envelope curves were developed using the geometric-contraction ratio as the primary explanatory variable. The envelope curves developed with the field data have limitations, but the envelope curves can be used as supplementary tools for assessing the potential for live-bed pier and contraction scour in South Carolina.
  • Format:
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at