Mechanisms Involved in the Removal of Heavy Metals from Stormwater via Lignocellulosic Filtration Media
-
2018-01-01
-
Details:
-
Creators:
-
Corporate Creators:
-
Corporate Contributors:
-
Subject/TRT Terms:
-
Publication/ Report Number:
-
Resource Type:
-
Geographical Coverage:
-
Corporate Publisher:
-
NTL Classification:NTL-HIGHWAY/ROAD TRANSPORTATION-Soils and Geology;NTL-MARINE/WATERWAYS TRANSPORTATION-MARINE/WATERWAYS TRANSPORTATION;
-
Abstract:This report aims to supplement our previous report (Yonge et al. 2016; WA-RD 816.3) that assessed copper and zinc adsorption to lignocellulosic filtration media using laboratory tests and field-scale column tests for urban stormwater remediation. The current project extends the species of wood materials that were investigated in the earlier study. We performed laboratory tests using Douglas-fir crumbles, poplar crumbles, tanoak crumbles, lodgepole pine crumbles, Ultra-char of poplar, Ultra-char of alder, and Ultra-char of Douglas-fir to evaluate their ability to adsorb copper and zinc. The laboratory column test results indicated that the most efficient adsorption medium for both copper and zinc is ultra-char of poplar, followed by tanoak crumbles, poplar crumbles, ultra-char of Douglas-fir, Douglas-fir crumbles, lodgepole pine crumbles, and ultra-char of alder,in that order. However, the batch experiments showed that tanoak is the most efficient adsorption medium of the samples tested. Based on the summary results of both the column and batch experiments, among all the samples of wood crumbles and char, tan oak crumbles seem to be a better option for metal adsorption. One of the most important conclusions drawn from this project is that the surface areas of both wood crumbles and ultra-chars of different wood crumbles are highly relevant to their ability to adsorb copper and zinc. Building on our previous research, we found that surface area is a critical parameter for copper and zinc removal, and the role of functional groups is not as important as we had expected. Typically, chars have larger surface areas and fewer functional groups than wood crumbles. The presence of functional groups would favor metal adsorption when two materials share similar surface areas, which may explain the superior adsorption performance of raw wood crumbles over char that we reported in our previous report (Yonge et al. 2016).
-
Format:
-
Funding:
-
Collection(s):
-
Main Document Checksum:
-
Download URL:
-
File Type: