U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

A retrospective evaluation of traffic forecasting techniques.

File Language:
English


Details

  • Creators:
  • Corporate Creators:
  • Corporate Contributors:
  • Subject/TRT Terms:
  • Publication/ Report Number:
  • Resource Type:
  • Geographical Coverage:
  • OCLC Number:
    958270389
  • Edition:
    Final report
  • Corporate Publisher:
  • Abstract:
    Traffic forecasting techniques—such as extrapolation of previous years’ traffic volumes, regional travel demand models, or

    local trip generation rates—help planners determine needed transportation improvements. Thus, knowing the accuracy of these

    techniques can help analysts better consider the range of transportation investments for a given location. To determine this

    accuracy, the forecasts from 39 Virginia studies (published from 1967-2010) were compared to observed volumes for the forecast

    year. Excluding statewide forecasts, the number of segments in each study ranged from 1 to 240. For each segment, the

    difference between the forecast volume and the observed volume divided by the observed volume gives a percent error such that a

    segment with a perfect forecast has an error of 0%. For the 39 studies, the median absolute percent error ranged from 1% to

    134%, with an average value of 40%. Slightly more than one-fourth of the error was explained by three factors: the method used

    to develop the forecast, the length of the duration between the base year and forecast year, and the number of economic recessions

    between the base year and forecast year. In addition, although data are more limited, studies that forecast a 24-hour volume had a

    smaller percent error than studies that forecast a peak hour volume (p = 0.04); the reason is that the latter type of forecast requires

    an additional data element—the peak hour factor—that itself must be forecast. A limitation of this research is that although

    replication of observed volumes is sought when making a forecast, the observed volumes themselves are not without error; for

    example, an “observed” traffic count for a given year may in fact be based on a 48-hour count that has been expanded, based on

    seasonal adjustment factors, to estimate a yearly average traffic volume.

    The primary recommendation of this study is that forecasts be presented as a range. For example, based on the 39 studies

    evaluated, for a study that provides forecasts for multiple links, one would expect the median percent error to be approximately

    40%. To be clear, detailed analysis of one study suggests it is possible that even a forecast error will not necessarily alter the

    decision one would make based on the forecast. Accordingly, considering how a change in a traffic forecast volume (by the

    expected error) influences decisions can help one better understand the need for a given transportation improvement. A

    secondary recommendation is to clarify how some of these traffic forecasting techniques can be performed, and supporting details

    for this clarification are given in Appendix A of this report.

  • Format:
  • Alternate URL:
  • Funding:
  • Collection(s):
  • Main Document Checksum:
    urn:sha256:c51f251c9f07bc4e0bd10dd3ccbe516c5e7dccb9f35ef5f1df0f39f528a6b857
  • Download URL:
  • File Type:
    Filetype[PDF - 1.18 MB ]
File Language:
English
ON THIS PAGE

ROSA P serves as an archival repository of USDOT-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by USDOT or funded partners. As a repository, ROSA P retains documents in their original published format to ensure public access to scientific information.