Steel shear strength of anchors with stand-off base plates.
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Steel shear strength of anchors with stand-off base plates.

Filetype[PDF-4.93 MB]


  • English

  • Details:

    • Publication/ Report Number:
    • Resource Type:
    • Geographical Coverage:
    • Abstract:
      Sign and signal structures are often connected to concrete foundations through a stand-off annular base plate with a double-nut anchor bolt connection, which leaves exposed anchor bolt lengths below leveling nuts used in these connections. Cantilever sign and signal structures may experience high shear forces in anchor bolts due to torsion at the base connection resulting from wind loads. Grout pads, which may or may not be present in existing structures, offer additional restraint against these forces. Motivated by gaps in information and lack of uniformity in addressing anchor bolt steel shear strength in stand-off base plates, this research study was initiated to quantify the reduction in steel shear strength for anchors installed with stand-off base plates and develop draft design and maintenance guidelines for these systems. To satisfy these objectives, a three-phase experimental study was undertaken. Phase 1 utilized direct shear methodology to establish relationships between stand-off distance and ultimate steel shear strength. Phase 2 contained torsion tests of ungrouted and grouted circular groups of 5/8 in. and 1 in. diameter anchor bolts. Phase 3 comprised four full-scale tests containing circular groups of six 1.25 in. diameter bolts. Decreases in anchor steel shear strength were observed for all levels of stand-off distance, including those within the current permissible range for ignoring strength reductions caused by bolt bending. Grouted tests contained higher shear strengths commensurate with flush-mounted strength at high levels of connection deformation, while a fiber-reinforced polymer (FRP) retrofit around the perimeter of the grout pad resulted in higher strength at lower connection deformation. Design and maintenance recommendations include consideration for strength reduction of anchor bolts in all stand-off base plates, allowance for grout pad contributions to ultimate strength in double-nut connections, and use of grout pads as a viable retrofit for increasing the strength of existing ungrouted stand-off base plates.
    • Format:
    • Main Document Checksum:
    • File Type:

    Supporting Files

    • No Additional Files

    More +

    You May Also Like

    Checkout today's featured content at rosap.ntl.bts.gov

    Version 3.26