Details:
-
Creators:
-
Corporate Contributors:
-
Subject/TRT Terms:
-
Resource Type:
-
Geographical Coverage:
-
Corporate Publisher:
-
Abstract:"In 2003, the states involved in the Midwest Smart Work Zone Deployment Initiative identified
portable rumble strips (i.e., rumble strips that require no adhesive or fasteners, making them
applicable for very short term work zones) as a high priority and solicited vendors for products to
be evaluated by the study. Recognizing that no existing product strictly met the requirements
cited in the solicitation, this research was proposed to develop a design for such a device based
on aerodynamic and static exploration. The work began with wind tunnel and computational
fluid dynamics (CDF) analyses to identify and estimate the critical forces acting on the roadway
in the wake of a tractor-trailer. Vehicle simulation packages were used to examine the horizontal
(i.e., sliding) force applied to the device by vehicle tires. Prototypes were developed and tested
using a sound meter to monitor the sound levels inside the vehicle and both accelerometers
mounted to a prototype strip and a high-speed video camera to monitor the interaction between
the tires and the strips and to record the strip’s response to the impact during traversal.
Based on the analyses conducted in this work, a strip can be constructed that will resist the lifting
forces in a truck wake, will not slide down the pavement, and will resist tipping even during
heavy braking. Some bounce is inevitable. A segmented design was adopted to help minimize
the effects of bounce, and a prototype was fabricated and tested to examine the performance.
In order for the strip to resist the lifting forces and the tipping forces, it must be fabricated from
solid steel (or something with an equal or greater specific gravity), and needs to be at least 1”
high in order to avoid requiring excessive widths. A 1.25” height is recommended, yielding a
recommended breadth of 4 to 6 inches. A 4” breadth prototype and a 6” breadth prototype were
fabricated and tested with a loaded tractor trailer at 60 mph. Significant bounce was observed,
but only in those elements struck by the tires. The adjacent elements did not move, resulting in
no net translation of the strip as a whole. No tipping, sliding, or lifting due to negative pressures
in the truck wake were observed.
Based on these results, the design developed in this study is a feasible solution for the need for portable rumble strips."
-
Format:
-
Collection(s):
-
Main Document Checksum:
-
Download URL:
-
File Type: