Analytical and experimental evaluation of an aluminum bridge deck panel. Part 2, failure analysis.
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates
...

to

...
Document Data
Library
People
Clear All
...
Clear All

For additional assistance using the Custom Query please check out our Help Page

ROSA P serves as an archival repository of USDOT-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by USDOT or funded partners. As a repository, ROSA P retains documents in their original published format to ensure public access to scientific information.
i

Analytical and experimental evaluation of an aluminum bridge deck panel. Part 2, failure analysis.



English

Details:

  • Creators:
  • Corporate Creators:
  • Subject/TRT Terms:
  • Publication/ Report Number:
  • Resource Type:
  • Geographical Coverage:
  • Edition:
    Final report.8/968/99.
  • Corporate Publisher:
  • Abstract:
    Aluminum bridge decks may prove to be an alternative to concrete decks for improving the performance of structural bridge systems. Combining excellent corrosion resistance with extremely low density, aluminum decks can prolong surface life, facilitate the construction process, and expand rehabilitation capabilities. Reynolds Metals Company (Reynolds) has invested considerable resources to develop a proprietary aluminum deck system. The Virginia Department of Transportation agreed to employ the Reynolds' deck system in two projects. Using Federal Highway Administration sponsorship, the Virginia Transportation Research Council initiated a study to evaluate the aluminum deck system. The first phase of this project analyzed the static response of a 2.74 m x 3.66 m (9 ft x 12 ft) deck panel. Both service-load and ultimate-load tests were performed on the panel at the Turner-Fairbank Structural Laboratory in the fall of 1996. The experimental and analytical evaluation of the ultimate load static tests is the subject of this report. The failure load and failure mechanism were predicted with great accuracy. The model data predicted panel failure at a load of 911.89 kN (205 kips) by yielding under the load patch, whereas failure during the laboratory test occurred at a load of 872.07 kN (196.05 kips) by gross yielding underneath the load patch.
  • Format:
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:
    Filetype[PDF-2.16 MB]

You May Also Like

Checkout today's featured content at rosap.ntl.bts.gov