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ABSTRACT 
This paper describes a planar or two-dimensional model to 

examine the gross motions of rail cars in a generalized train 
derailment.  Three coupled, second-order differential equations 
are derived from Newton’s Laws to calculate rigid-body car 
motions with time.  Car motions are defined with respect to a 
right-handed and fixed (i.e., non-rotating) reference frame.  The 
rail cars are translating and rotating but not deforming. 
Moreover, the differential equations are considered as stiff, 
requiring relatively small time steps in the numerical solution, 
which is carried out using a FORTRAN computer code.  
Sensitivity studies are conducted using the purpose-built model 
to examine the relative effect of different factors on the 
derailment outcome.  These factors include the number of cars 
in the train makeup, car mass, initial translational and rotational 
velocities, and coefficients of friction.  Derailment outcomes 
include the number of derailed cars, maximum closing 
velocities (i.e., relative velocities between impacting cars), and 
peak coupler forces.  Results from the purpose-built model are 
also compared to those from a model for derailment dynamics 
developed using commercial software for rigid-body dynamics 
called Automatic Dynamic Analysis of Mechanical Systems 
(ADAMS).  Moreover, the purpose-built and the ADAMS 
models produce nearly identical results, which suggest that the 
dynamics are being calculated correctly in both models. 

 
NOMENCLATURE 
Dk = truck center spacing for the kth rail car 
EC = lateral coupler force 
FC = coupler force 
FF = force at the front truck 

FR = force at the rear truck 
G = gap distance 
Ik = mass moment of inertia of the kth rail car 
Lk = length between couplers for the kth rail car 
LC = coupler length 
Mk = mass of the kth rail car 
m = coupler moment 
n = number of rail cars in train makeup 
S = maximum swing angle for coupler 
u = velocity component in the y direction 
V = initial train speed 
v = velocity component in the x direction 
Wk = weight of the kth rail car 
x = displacement in the x direction 
y = displacement in the y direction 
α = direction angle of truck 
β = direction angle of coupler 
γ = swing angle for coupler 
µ = coefficient of friction 
θ = angular displacement of rail car 
Ω = initial angular velocity to initiate derailment 
 
INTRODUCTION 

Train derailments occur infrequently, but their 
consequences can be severe.  Research is ongoing to develop 
methods to minimize and mitigate the damage resulting from 
train derailments.  For example, accident modeling has been 
identified as a potential method to improve the crashworthiness 
of railroad tank cars [1].   Moreover, three recent accidents 
have focused attention on the structural integrity of railroad 
tank cars under impact loading conditions [2, 3, and 4]. 
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Sponsored by the Federal Railroad Administration (FRA), 
the Volpe National Transportation Systems Center is 
conducting and managing a research program to examine the 
structural integrity of railroad tank cars under accident loading 
conditions.  The research program comprises three phases to 
assess the consequences of railroad tank cars involved in 
derailments. Each phase involves the development of 
computational models with different objectives:  (1) dynamic 
modeling to estimate the gross motions of rail cars in a train 
derailment, (2) structural finite element modeling to calculate 
impact forces inferred from the gross motions, and (3) damage 
assessment modeling to estimate the deformations of the tank 
car before catastrophic failure occurs. 

In this paper, the differential equations of motion are 
derived for a generalized train derailment scenario. These 
differential equations describe planar (i.e., two-dimensional) 
rigid-body motions of the rail cars in a right-handed and fixed 
(i.e., non-rotating) reference frame. 

Previous work has been conducted to examine the gross 
motions of rail cars during a train derailment.  For example, a 
special purpose model was developed in the 1970s [5] in which 
each car was assumed to behave as a rigid body with finite 
length but zero width.  A major limitation of this model was 
that the cars were assumed to remain coupled during the 
derailment. 

Another special purpose model was later developed that 
allowed the cars to decouple, but the criterion for decoupling 
was incomplete [6, 7].  A planar model was later developed at 
Queen’s University [8], in which the differential equations of 
motion were derived from Lagrange’s equations and were 
solved numerically using a special-purpose computer program 
written in FORTRAN. 

Commercial general purpose software programs for multi-
body dynamics have also been used to examine the gross 
motions of rail cars in train derailments.  For example, a three-
dimensional model of a 20-car train was developed using 
Dynamic Analysis Design Simulation (DADS) [9].  Another 
commercial program called Automatic Dynamic Analysis of 
Mechanical Systems (ADAMS) was used to develop a planar 
model for trains consisting up to 100 cars [10].  Results from 
the present work are compared directly to the ADAMS model.  
Explicit derivation and solution of the equations of motion can 
be used to provide a check on the motions calculated using the 
commercial programs, and vice versa. 

MATHEMATICAL FORMULATION 
Figure 1 shows the basic conventions for a right-handed, 

non-rotating description of the kth rail car in a train consist, 
where k=1, 2…n, counting back (right to left in the figure) 
from the first car to derail. 

 

Figure 1.  Rail Car Free-Body Diagram and Conventions 

 
The gross motion for each car is characterized by the 

coordinates (xk,yk,θk) at the center of mass.  The car itself is 
defined by its length Lk between couplers and the distance Dk 
between truck centers.  The couplers are defined by a length LC. 
The coordinates and the car parameters may be used to 
determine the positions of the front and rear couplers: 
 

1
2, cosFC k k k kx x L θ= +  1

2, sinFC k k k ky y L θ= +  (1) 
 

1
2, cosRC k k k kx x L θ= −  1

2, sinRC k k k ky y L θ= −  (2) 
 
Figure 1 also shows the definitions and positive sign 

conventions for the forces acting on the kth car.  Ground forces 
FF k and FR k act at the front and rear trucks, respectively, at 
angles αF k and αR k with respect to the x-axis.  The logic for 
determination of the ground forces and angles depends on 
whether the car has or has not derailed.  That is, the model 
includes two types of friction:  (1) on-track friction is an 
approximation of the maximum frictional force associated with 
emergency braking and (2) off-track friction is an estimate of 
the complicated resistive forces that are present when the car 
derails. 

If the car has derailed (xk equal to or greater than the X 
coordinate for the point of derailment), then FF k = FR k = 
µWk/2, where µ is the ground friction coefficient and Wk is the 
car’s rail weight.  These are assumed to be Coulomb friction 
forces acting opposite to the instantaneous local velocities of 
the respective truck centers: 
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( )1tanF k F k F k
v uα −=  ( )1tanR k R k R k

v uα −=  (3) 

 
where 
 

1
2 sinF k k k ku x D θ θ= −  1

2 cosF k k k kv y D θ θ= +  (4) 

 
1

2 sinR k k k ku x D θ θ= +  1
2 cosR k k k kv y D θ θ= −  (5) 

 
are the truck center velocity components and the dotted 
quantities refer to derivatives with respect to time. 

Coupler forces are positive in buff and act at angles βk-1,k 
and βk,k+1 with respect to the X-axis.  The positions of adjacent 
car ends determine the angles: 
 

( ) ( )1

1, 1 1tan /k k RC k FC k RC k FC ky y x xβ −

− − −
= − −⎡ ⎤⎣ ⎦  (6) 

 
( ) ( )1

, 1 1 1tan /k k RC k FC k RC k FC ky y x xβ −

+ + +
= − −⎡ ⎤⎣ ⎦  (7) 

 
The same positions also determine the gaps between adjacent 
car ends: 
 

( ) ( )2 2

1, 1 1

1
2

k k RC k FC k RC k FC kG x x y y
− − −

= − + −⎡ ⎤
⎣ ⎦  (8) 

 

( ) ( )2 2

, 1 1 1

1
2

k k RC k FC k RC k FC kG x x y y
+ + +

= − + −⎡ ⎤
⎣ ⎦  (9) 

 
The equation of motion for the kth car in the x-direction is: 
 

, 1 , 1 1, 1,

, 1 , 1 1, 1,

cos cos cos

sin cos

k k C k k k k C k k k k R k R k

C k k k k C k k k k

M x F F F

E E

β β α

β β

+ + − −

+ + − −

= − −

+ −
 (10) 

 
The equation of motion for the kth car in the y-direction is: 
 

, 1 , 1 1, 1,

, 1 , 1 1, 1,

sin sin sin

cos cos

k k C k k k k C k k k k R k R k

C k k k k C k k k k

M y F F F

E E

β β α

β β

+ + − −

+ + − −

= − −

− +
 (11) 

 
The equation of motion for the typical kth car in the θ-direction 
is: 
 

( ) ( )
( ) ( )
( ) ( )

1

1
2 , 1 , 1 1, 1,

1
2 , 1 , 1 1, 1,

1
2 , 1

sin sin

cos cos

sin sin

k k RC k FC k

k C k k k k k C k k k k k

k C k k k k k C k k k k k

k F k k k F k F k k R k

I m m

L F F

L E E

D F F

θ

θ β θ β

θ β θ β

θ α θ α

+

+ + − −

+ + − −

+

= +

+ − + −

+ − + −

+ − + −

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

 (12) 

 
The coupler hardware between two cars comprises two sets 

of knuckle, shank, and draft gear.  For the purposes of the 
present model, the two sets are treated as a single pin-ended 
bar, with the coupler force FC aligned along the bar, provided 
that neither individual swing angle limit has been reached.  The 
bar may begin to support a moment at one end, when an angle 
limit is reached, and may support moments at both ends if both 
angle limits have been reached.  Since the bar is also assumed 
to have no mass, force and moment equilibrium conditions 
applied to it require the presence of lateral forces, as well as the 
aligned force FC.  Figure 2 shows the coupler free-body 
diagram, together with the reactions on the cars, for the typical 
coupler between car k and car k+1. 

 

Figure 2.  Coupler Free-Body Diagram 

 
Figure 3 illustrates the coupler force curve assumed in the 

model. This characteristic includes a dead band or gap (0.25 
feet assumed) to simulate slack and free translation, which is 
centered about a nominal coupler length of 4 feet. The coupler 
stiffness is assumed to be 50×106 lb/ft.  
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Figure 3.  Assumed Coupler Force Characteristic 

 
In addition to the aligned coupler forces ECk,k+1, Figure 1 

shows lateral forces EC k,k+1, a coupler moment mRC k at the rear 
end of car k, and a coupler moment mFC k+1 at the front end of 
car k+1.  The positive sign conventions for the moments are 
defined such that they are in the directions shown when βk,k+1 
exceeds θk and θk+1.  For the front and rear couplers on the 
typical car k, the swing angles are: 
 

1,FC k k k kγ β θ
−

= −  , 1RC k k k kγ β θ
+

= −  (13) 
 
The moments are computed from these swing angles. 

The lateral force is derived from the moment equilibrium 
condition for the coupler: 
 

( ), 1 1 , 1/C k k RC k FC k k kE m m G
+ + +

= +  (14) 
 
where Gk,k+1 is the current value of the coupler gap. 

Figure 4 shows the coupler moment characteristic assumed 
in the model.  It includes a dead space between swings of 
±17.5º with a sudden rise when the swing angle is greater than 
the maximum swing.  In practice, the maximum swing angle 
and moment would depend on the type of coupler (e.g., plain-
E, shelf-E, etc.). 

 
Initial conditions 

The train consist is initialized in a slack configuration.  The 
point of derailment in the model is assumed to be the center of 
mass for the lead car.  Therefore, with the first car center of 
mass at x1 equal to zero (i.e., point of derailment), the trailing 
car centers are set equal to 
 

( )
1

1 0
1

1
for 2, 3

2

k

k j j j
j

x x L L G k n
−

+
=

= − + + + =∑  (15) 

 

where Go is equal to 4 feet.  This equation describes the mid-
slack condition, which is an arbitrary choice, but avoids the 
introduction of large initial coupler forces and has some degree 
of relation to real situations.  The initial conditions for all car 
center coordinates (yk, θk) are zero.  All initial gaps are 
Gk,k+1=G0.  All other initial angles αF k, αR k, and βk,k+1 are zero. 
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Figure 4.  Assumed Coupler Moment Characteristic 

 
Initial conditions for rate variables 

In general, the motion of the train in the generalized 
derailment presented here begins with an initial rotation 
imparted to the lead car and with all cars traveling at a given 
initial speed.  Thus, the initial velocities are 
 

kx V=  0ky =  (16) 
 
for all cars where V is the initial train speed.  The initial angular 
velocities are 
 
 1θ = Ω  and 0 for 2, 3k k nθ = =  (17) 
 
where Ω is the initial rotational speed of the first car to start the 
pileup. 

With these initial conditions, the lead car swings out in the 
direction of the initial rotation, with higher off-track frictional 
forces applied at the trucks opposing the direction of motion.  
As the cars derail, the coupler forces between cars create a 
moment couple.  The many highly coupled interactions cause 
the rail cars to form irregular buckling patterns. 

Numerical solution to the equations of motion is carried 
out using a Runge-Kutta algorithm with an adaptive time step 
[11], which is coded into a purpose-built FORTRAN computer 
program. 
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SENSITIVITY STUDIES AND RESULTS 
Sensitivity studies are conducted using the purpose-built 

model for derailment dynamics.  Baseline values were assumed 
and varied one factor at a time to examine the relative effect of 
various factors on the derailment outcomes in terms of (1) the 
number of derailed cars, (2) the maximum closing speeds, and 
(3) peak coupler forces.  Closing speed or velocity is the 
relative difference in speed or velocity between two impacting 
cars.  Table 1 lists the baseline values assumed in the sensitivity 
studies. 

 

Table 1.  Baseline Values for Sensitivity Studies 

Parameter Baseline Value 
Train length 60 cars 
Car weight 150,000 lb 
Initial translational velocity 37 miles per hour 

(mph) 
Initial angular velocity 0.2 radian per second 
On-track coefficient of friction 0.15 
Off-track coefficient of friction 0.50 

 
Each parameter was varied from its baseline value by ±20 

percent and ±50 percent while the remaining inputs, including 
car length and coupler characteristics, were set equal to their 
respective baseline values. Table 2 lists the range of values 
assumed for each factor in the sensitivity studies. 

 

Table 2.  Range of Values for Sensitivity Studies 

Parameter Range 
Train length 30 to 90 cars 
Car weight 75 to 225 kips 
Initial translational velocity 18.5 to 55.5 mph 
Initial angular velocity 0.1 to 0.3 radian per sec 
On-track coefficient of friction 0.075 to 0.225 
Off-track coefficient of friction 0.25 to 0.75 

 
Figure 5 shows the relative effect of changing each 

parameter on the number of derailed cars calculated by the 
purpose-built model.  The baseline case results in 13 cars 
derailing from the 60-car train.  Clearly, train speed has the 
greatest effect on the number of derailed cars.  Increasing the 
train speed by 50 percent over the baseline increases the 
number of derailed cars from 13 to 24.  Decreasing the initial 
train speed to 50 percent below the baseline reduces the 
number of derailed cars from 13 to 6.  Friction also has a 
significant effect on the number of derailed cars.  The relative 
difference between ground and rail friction coefficients is 
proportional to the force to decelerate the train.  Greater 
differences in friction coefficients lead to greater retarding 
forces which slow the train.  Moreover, friction forces have an 

inverse relationship compared to the other inputs.  That is, 
increasing friction reduces the derailment severity in terms of 
the number of derailed cars while increasing the value of the 
other parameters increases the number of derailed cars. 

Variation from Baseline (%)
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Figure 5.  Effect of Factors on Number of Derailed Cars 

 
Figure 6 shows the relative effect of changing each 

parameter on the maximum closing velocity calculated using 
the purpose-built model.  The baseline case results in a 
maximum closing velocity of 19 mph.  Train speed has the 
most significant effect on maximum closing velocity.  
Increasing the initial train speed by 50 percent over the baseline 
increases the maximum closing velocity by almost 60 percent.  
Decreasing the initial train speed by 50 percent below the 
baseline reduces the maximum closing velocity by 30 percent.  
Ground friction has a somewhat moderate effect on closing 
velocity.  Increasing ground friction by 50 percent over the 
baseline increases maximum closing velocity by more than 20 
percent.  Changing the other input parameters varies the 
maximum closing velocity by at most ±15 percent. 
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Figure 6.  Effect of Factors on Maximum Closing Velocity 

The relatively weak effect of initial rotational velocity on 
closing velocity means that the cause of the derailment (e.g., 
broken rail, wheel climb, excessive lateral-to-vertical wheel 
load ratio, etc.) does not have a significant effect on the 
maximum closing velocities in car-to-car impacts. 

If the coupler forces are relatively large, couplers can 
break and may potentially become impacting objects.  Figure 7 
shows the relative effect of changing each parameter on the 
peak coupler force calculated by the purpose-built model.  The 
peak coupler force corresponding to the baseline case is 1,821 
kips.  Increasing the initial train speed by 50 percent over the 
baseline value increases the peak coupler force by almost 
twice. 
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Figure 7.  Effect of Factors on Peak Coupler Force 

 
Repeating the sensitivity studies using the ADAMS model 

for derailment dynamics gives nearly identical results, which 
are presented in the appendix. 

CONCLUDING REMARKS 
This paper describes a purpose-built model to examine the 

dynamics of rail cars in a generalized train derailment.  The 
equations of motion were derived explicitly from Newton’s 
laws of physics, and were coded into a built-for-purpose 
FORTRAN computer program.  Sensitivity analyses were 
performed with the model to examine the relative effect of 
various factors on derailment severity in terms of the number of 
derailed cars, maximum closing speeds for colliding cars, and 
peak coupler forces that may potentially become impacting 
forces. 

The results from the purpose-built model were compared 
to those calculated using a commercial software code called 
ADAMS [10].  The computational times to run the purpose-
built FORTRAN model were much less than the ADAMS 
model (minutes versus hours).  Moreover, the two models 

produced virtually identical results.  This comparison provided 
verification of both analyses. 

The similarity of results from the purpose-built model 
presented in this paper and the ADAMS model suggests that 
the dynamics are being calculated correctly for the assumed 
scenarios in both models.  However, the assumptions at best 
provide only a simplified representation of actual conditions.  
For example, it is unlikely that the actual terrain at a derailment 
site will be perfectly level.  In addition, the effective friction 
between derailed cars and the ground is likely to vary.  Thus, 
the models provide a general representation but do not 
reproduce specific derailment events. 

Nevertheless, the general results can provide some useful 
insights.  For example, the closing velocities in post-derailment 
car-to-car impacts appear to average about half of the initial 
train speed. 

Another general result is that train speed appears to be the 
most important variable.  The assumed train speed was 
increased by a factor of 3 (18.5 to 55.5 mph) in a series of 
cases, with the following outcomes:  (1) the number of derailed 
cars increased by a factor of 4, (2) closing speed for potential 
collisions increased by a factor of 2.5, and (3) peak coupler 
force increased by a factor of 6. 
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APPENDIX 
Figure 8 shows the relative effect of the different factors 

on the number of derailed cars.  The purpose-built and 
ADAMS models calculate 13 derailed cars for the baseline 
case.  The ADAMS model calculates slightly more derailed 
cars as the train speed increases than the purpose-built model 
(see Figure 5).  The ADAMS results also show a slightly 
greater effect of friction on the number of derailed cars than the 
purpose-built model, which is attributed to different numerical 
methods used in the two models to solve the equations of 
motion. 
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Figure 8.  Effect of Factors on Number of Derailed Cars 
using ADAMS Model 

Figure 9 shows the variations in maximum closing speeds 
calculated using the ADAMS model, which are similar to those 
from the purpose-built model (see Figure 6).  Both models 
calculate a maximum closing speed of 19 mph for the baseline 
case. 
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Figure 9.  Effect of Factors on Maximum Closing Velocity 

using ADAMS Model 

 
Figure 10 shows the relative effect of changing each factor 

on the peak coupler force calculated using the ADAMS model.  
For the baseline case, the ADAMS model calculates a peak 
coupler force of 1,858 kips (compared to 1,821 kips from the 
purpose-built model).  Overall, the variations in peak coupler 
forces calculated by both models are similar (see Figure 7). 
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Figure 10.  Effect of Factors on Peak Coupler Force using 

ADAMS Model 
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