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ABSTRACT 
This paper describes work in-progress that applies the 

finite element (FE) method in predicting the responses of 
individual railroad crossties to rail seat pressure loading in a 
ballasted track.  Both wood and prestressed concrete crossties 
are examined.  The concrete tie is modeled as a heterogeneous 
medium with prestressing wires or strands embedded in a 
concrete matrix.  The constitutive relations employed in the 
models are: elasticity followed by damaged plasticity for the 
concrete material, linear elastic bond-slip relations with 
potential initiation and evolution of damage to the bond for the 
steel-concrete interfaces, orthotropic elasticity followed by 
failure dictated by orthotropic stress criteria for the wood ties, 
extended Drucker-Prager plasticity for the granular and 
frictional ballast material, and elastic half space for the 
subgrade.  The corresponding material parameters are obtained 
from the open literature. 

Under a simplified pressure load uniformly distributed 
over the rail seat area, the FE method predicts tensile cracking 
at the tie base below the rail seats of a concrete tie and 
compressive failure in the rail seats of a wood tie.  The rail seat 
force-displacement relations are obtained from the simulations.  
The resultant rail seat forces at which tie failures occur are 
compared for concrete and wood ties. 

The FE method appears to be a promising tool for 
studying the railroad tie behavior under rail seat loading 
conditions in a ballasted track.  Experimental data will be 
sought to calibrate the material parameters and verify the 
modeling approach.  Additional track components, particularly 
rails, rail pads and fasteners, will be incorporated in future 
modeling efforts.  This detailed modeling approach may help to 

shed light on the rail seat deterioration failure mechanisms 
observed in some concrete ties. 

 
INTRODUCTION 

Ties are an integral part of a railroad track system which 
also includes rails, rail pads, insulators, fasteners and ballast.  
The main functions of a railroad tie include supporting the rails 
and transferring rail forces to the ballast bed, maintaining track 
gauge and rail inclination, and insulating the rails electrically.  
Because of the relatively short service lives of timber ties, 
alternative tie materials such as concrete, steel and plastic 
composites have been employed or explored.  In particular, 
concrete ties can be engineered to meet specific service 
requirements and add overall stability and performance to a 
railroad track structure.  They were estimated to last twice as 
long as timber ties with the potential of lowered life cycle costs.  
These favorable qualities led to great interests and the first 
major installation of prestressed concrete ties in North America 
in 1966 [1].  Figure 1 illustrates the dual block (or two block, 
twin block, Figure 1a) as well as the more widely used 
monoblock concrete crossties (Figure 1b). 
 

 
Figure 1:  Illustration of concrete crossties: (a) dual block and (b) 

monoblock (reproduced from [1]) 

Despite the stated advantages, concrete ties account for 
only about five percent of the ties in track in North America [2].  
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There have been concerns over unresolved performance issues 
of concrete ties that can lead to increased maintenance costs 
and shortened service lives.  One of the concerns is the 
susceptibility of concrete ties to rail seat deterioration (RSD), a 
failure mode identified as being most critical in a North 
American survey of railroad and transit authorities [2].  In an 
Amtrak passenger train derailment accident in Home Valley, 
Washington in 2005, significant rail seat abrasion (i.e., one of 
several possible causes of RSD failures) was observed on 
concrete crossties and believed to be the probable cause of the 
accident [3]. 

To meet the full potential of concrete ties in high speed 
and heavy haul services, a better understanding of their 
behavior under dynamic loading is needed.  The design wheel 
load of a tie can be calculated from the static wheel load 
adjusted by such factors as load distribution among adjacent 
ties, dynamic forces and rail pad attenuation [4].  Dynamic 
forces may result from irregularities on wheel and rail surfaces, 
including wheel flats, worn wheel profiles, rail corrugations 
and rail joints.  Both the magnitudes and the resonating 
frequency components of dynamic loads can lead to premature 
cracks in concrete ties [5].  In-situ data such as forces and 
deflections have been obtained from instrumented active track 
lines to better understand the loading environment that concrete 
ties are subjected to, and static and dynamic tests have also 
been conducted on individual ties to obtain basic performance 
data. 

Moreover, computational models have been increasingly 
employed as an inexpensive and flexible tool to study concrete 
tie behavior.  Such models have generally adopted two scales.  
The global track models often include rails, pads, ties, ballast 
and subgrade, which are treated as homogenized media.  A 
global track model typically covers the domain of about ten 
ties.  It may be subjected to static or dynamic loading 
conditions or coupled with vehicle models [e.g., 6-9].  
However, concrete crossties consist of prestressing strands 
embedded in a concrete matrix, and the component interactions 
may contribute substantially to the overall behavior of 
individual ties.  This calls for smaller scale models that account 
for the heterogeneity of concrete ties.  Models at this scale 
involve explicit representations of the strand and the concrete 
components [10] as well as their interfaces governed by bond-
slip relationships [11, 12]. 

The objective of this research is to develop small scale, 
detailed finite element (FE) models for railroad concrete 
crossties and study the responses of individual ties to rail seat 
loading.  The pretension release phase of the concrete tie 
manufacturing process is first simulated, and the resulting stress 
state serves as an initial condition as a concrete tie model is 
further subjected to rail seat loads.  Currently rail fasteners, rail 
pads and rails are not modeled, and the rail seat force is applied 
as a pressure load uniformly distributed over the rail seats.  The 
ballast and the subgrade are simulated with their respective 
geometric and constitutive characteristics.  A wood tie model is 
also developed and subjected to the same type of rail seat loads.  

The performances are then compared for wood and concrete 
crossties based on the FEA simulations. 

 
CONSTITUTIVE RELATIONS 

The commercial FE analysis software ABAQUS is 
employed in this study [13].  The constitutive relations of steel, 
concrete, concrete-strand interface, wood, ballast and subgrade 
are needed in modeling and discussed in this section. 

Steel 
The prestressing steel is assumed to be linear elastic with 

a perfectly plastic yield strength.  The Young’s modulus is 
30,000,000 psi (206,843 MPa) and the Poison’s ratio is 0.3.  
The steel material for the rail is assumed to be linear elastic 
with the same Young’s modulus and Poisson’s ratio. 

Concrete 
A damaged plasticity model is available for the concrete 

material.  Concrete behaves differently in tension and in 
compression as illustrated by the stress-strain curves in uniaxial 
tension and compression, respectively, in Figure 2.  In uniaxial 
tension, linear elasticity is followed by tension stiffening 
(Figure 2a), and in uniaxial compression, linear elasticity is 
followed first by strain hardening and then by strain softening 
(Figure 2b).  The compressive strength cu is often one order of 
magnitude higher than the tensile strength t0. 

For linear elasticity, the stress-strain (t-t for tension and 
c-c for compression) relations for uniaxial stresses may be 
expressed as 
 

0t0tt0t  , EE    (1a) 

 

0c0cc0c  , EE    (1b) 

 
where E0 is the initial Young’s modulus and c0 is the elastic or 
proportional limit in uniaxial compression. 

For tension stiffening in uniaxial tension, a stress-
displacement (t-wt) relation is adopted and expressed in a form 
modified from the exponential equation proposed in [14] 
 

0t0tt0t  ,0tt Ee w/aw     (2) 

 
where a and wt0 are constants to be determined.  Apparently t 
approaches 0 as wt.  If we assume that wt0 corresponds to a 
sufficiently small tmin such that 
 

tmint 0tt
 ww

 (3) 

 
and that the area under the t-wt curve up to wt=wt0 is equal 
approximately to the fracture energy Gf needed to create a unit 
area of cracked surface [15] 
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Figure 2:  Concrete stress-strain responses to (a) uniaxial tension 

(t-t) and (b) uniaxial compression (c-c) 
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then a and wt0 can be solved from Eqs. (2-4) as 
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The equation for the strain hardening in uniaxial 

compression is modified from the work referenced in [16-18] 
and expressed as 
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where A and n are constants to be determined and c0 is the 
strain corresponding to the maximum stress cu 
 

 cuc 0cc
  

 (8) 

 
The derivative of the hardening curve is further assumed to 
reach zero at the peak stress 
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Solving Eqs. (7-9) yields the hardening constants as follows 
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Last, the strain softening behavior is assumed to follow 

the empirical equation proposed in [18] and referenced in [19]  
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where r and k are empirical constants that can be calculated as 
 

1780 cu .r  (13) 

 
62670 cu .k  (14) 

 
in which cu is expressed in MPa. 

At the tension stiffening or strain softening stages, 
concrete will unload according not to E0 but to a degraded 
Young’s modulus E.  The tensile damage variable dt and the 
compressive damage variable dc are then introduced to define 
the degraded modulus in each case.  The damage variable dt in 
the uniaxial case may be defined according to Eq. (2) as 
 
  0tt1tt

w/awewd   (15) 

 
In uniaxial compression, the relationship between the plastic 
strain pl

c  and the inelastic strain in
c  (Figure 2b) is expressed 

as 
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where pl

c  may assume the empirical form suggested in [20]  

 

c
c0

2
cpl

c 13201660 

 ..   (17) 

 
The damage variable dc can then be calculated from Eqs. (12, 
16-17) with any given c. 

An overall stiffness degradation variable d is further 
defined as a function of both dt and dc, and it indicates the 
damaged state of a material integration point (0: undamaged; 1: 
completely damaged).  In addition to uniaxial relations, biaxial 
and triaxial behaviors are similarly defined.  This damaged 
plasticity modeling for concrete is based on the original work 
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by Lubliner et al. [21], which was further extended by Lee and 
Fenves [22] to account for the behavior under cyclic loads. 

The concrete model parameters used in this study are 
summarized in Table 1 for cu=7,000 psi (48.26 MPa).  It is 
assumed that t0=0.085cu, tmin=0.01t0 and c0=0.6cu, based 
on the general literature on concrete properties and especially 
[14,22].  The non-derived parameters in Table 1 (Gf and c0) are 
those of concrete specimens with an average uniaxial 
compressive strength of 6,364 psi (43.88 MPa) in [14]. 
 

Table 1:  Concrete model parameters 

Elasticity 
E0 ksi MPa 

4,631.5 31,933 0.2 
 

Uniaxial 
tension 

t0 Gf 
psi MPa lbf/inch N/mm 
595 4.1 0.322 0.056 

a 
wt0  

inch mm  
4.605 2.517 10-3 0.064  

 

Uniaxial 
compression 

c0 cu
psi MPa psi MPa 
4,200 28.96 7,000 48.26 
c0 A n 
1.84310-3 0.5485 2.823 
r k   
3.639 1.448   

 

Concrete-Strand Interfaces 
Cohesive elements are used to model the concrete-strand 

or concrete-wire interfaces.  Figure 3 illustrates a cohesive 
element with a negligible thickness.  It has a local coordinate 
system where n is the normal direction and s and t are the shear 
directions.  The corresponding traction components are tn, ts and 
tt, respectively.  Traction-displacement constitutive relations are 
adopted for the cohesive elements to model the interface 
behavior, that is, linear elasticity followed by damage initiation 
and evolution.  There are four damage initiation criteria 
available: maximum nominal stress and strain criteria and 
quadratic nominal stress and strain criteria.  For instance, the 
quadratic nominal stress criterion is stated as 
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where   is the Macaulay bracket, and 0

nt , 0
st  and 0

tt  are the 

nominal normal and shear strengths, respectively, for the 
interface.  Damage evolution can be displacement or energy 

based.  We currently employ a displacement based exponential 
softening law. 
 

 
Figure 3: Illustration of a cohesive element [13] 

The parameters needed for the interface modeling of 
concrete ties are the elastic stiffness K, the bond strength 0 (for 
the shear strengths) and the failure displacement u0.  With the 
lack of more appropriate data, the normal strength is assumed 
to be the same as the shear strength; this appears acceptable as 
the interfaces are unlikely to fail in the normal direction for the 
concrete tie applications.  While there have been numerous 
references characterizing the bond-slip relations between 
concrete and its reinforcing bars, tendons or strands, there has 
been far less research on the bond properties of prestressing 
strands or wires with concrete in railroad ties.  The average 
flexural bond strength obtained by Abrishami and Mitchell [23] 
for smooth seven-wire strands with a nominal 0.375 inch (9.525 
mm) diameter is adopted.  The same bond strength is assumed 
for the dented seven-wire strands or smooth single wires in this 
study; it is understood that this may not be accurate (see e.g, 
[25]) and that additional experimental study is merited to 
provide sufficient bond strength data for concrete ties.  The 
current interface model parameters are K=24,000 lbf/inch 
(4,203 N/mm), 0=701 psi (4.83 MPa) and u0=2 inches (50.8 
mm). 

Wood 
Wood is often characterized as an orthotropic material 

with which three perpendicular axes are attached: the 
longitudinal axis L parallel to the fiber (grain), the radial axis R 
normal to the growth rings, and the tangential axis T 
perpendicular to the fiber and tangent to the growth rings [24].  
Twelve constants (nine of which are independent) may be used 
to define orthotropic elasticity: three moduli of elasticity E, 
three shear moduli G and six Poisson’s ratios .  The Poisson’s 
ratio ij (i≠j i,j=L,R,T) has the physical interpretation of the 
transverse strain in the j-direction when the material is stressed 
in the i-direction.  In general, ij andji are not the same, and 
they are related by the following relation 
 

j

ji

i

ij

EE


  (19) 

 
The elastic constants define the elastic compliance according to 
the following equations 
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Further, tensile, compressive and shear strengths for an 

orthotropic wood material can be denoted as follows 
 

Table 2:  Orthotropic strength limits 

Symbol Description 
XLt Tensile strength in the fiber direction L 
XLc Compressive strength in the fiber direction L 
XRt Tensile strength in the radial direction R 
XRc Compressive strength in the radial direction R 
XTt Tensile strength in the tangential direction T 
XTc Compressive strength in the tangential direction T 
SLR Shear strength in the L-R plane 
SLT Shear strength in the L-T plane 
SRT Shear strength in the R-T plane 

 
The current modeling approach determines that if any of the 
strength quantities are reached in their corresponding material 
directions, the material is considered failed. 

 
The material properties of the white oak species in the 

wood handbook [24] were employed in the current study and 
summarized in Table 3. 
 

Table 3:  Wood material parameters based on the white oak 
species [24] 

EL (psi) ER (psi) ET (psi) 
1,958,000 319,154 140,976 
LR LT RT 
0.369 0.428 0.618 
GLR (psi) GLT (psi) GRT (psi) 
168,388 158,598 41,118 

 
XLt (psi) XLc (psi) XRt, XTt 

(psi) 
XRc, XTc 
(psi) 

SLR, SLT 
(psi) 

15,200 7,440 800 1,070 2,000 
 

Ballast and Subgrade 
The Extended Drucker-Prager model is applied to the 

ballast material.  It is a plasticity model suitable for simulating 
granular, frictional materials.  The main parameters used are 
Young’s modulus (30,168 psi or 208 MPa), Poisson’s ratio (0.3) 
and yield strength (58 psi or 400 KPa).  A quick parameter 
study by increasing the yield strength to 100 psi (or 689.5 KPa) 
shows only small differences in the predicted tie response.  
Similar modeling work for railroad ballast can be found in [26]. 

The subgrade is modeled as an elastic half space with a 
Young’s modulus 72,519 psi (500 MPa) and a Poisson’s ratio 
0.25 [27]. 

 
FINITE ELEMENT MODEL 

The macroscopic heterogeneity of a concrete crosstie is 
modeled as shown in Figure 4.  The geometry of concrete, 
strands/wires and their interfaces are explicitly represented and 
assigned the respective constitutive relations described above.  
The schematic of a full model including ballast and subgrade is 
shown in Figure 5.  With reference to a global track system, the 
x-axis corresponds to the longitudinal rail direction, y-axis to 
the vertical direction and z-axis to the transverse direction.  The 
concrete tie may be replaced with the homogeneous and 
orthotropic wood tie model to study the wood tie behavior.  The 
ballast and subgrade are modeled for a distance corresponding 
to one tie spacing along the longitudinal or x-direction.  The 
subgrade is bounded by a hemicylindrical layer of infinite 
elements intended to simulate the infinite nature of the 
subgrade support.  Infinite elements are assigned appropriately 
selected decay functions for their basic solution variables, and 
they are employed in conjunction with standard finite elements 
to model the far field [28].  The tie spacing is assumed to be 30 
inches (762 mm) for concrete ties and 19 inches for wood ties, 
and the ballast depth is 24 inches (609.6 mm) in this study. 
 

 
Figure 4: Macroscopic heterogeneity in concrete tie modeling: 

concrete, a strand/wire and their interface 
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Figure 5: Modeling of an individual crosstie sitting on ballast and 

subgrade bounded by an infinite element layer 

Railroad Concrete Crossties 
Figure 6 shows the geometry of a typical concrete crosstie 

and the necessary parameters to describe the geometry.  Two 
railroad concrete crossties are studied here, one with eight 
prestressing strands and the other with twenty four prestressing 
wires.  The geometric parameters of these two ties are shown in 
Table 4. 
 

 
Figure 6: Geometry of a concrete crosstie 

Table 4:  Geometric parameters of the 8-strand and 24-wire ties 

 8-strand tie 24-wire tie 

a, ac, A 
inch 8.980, 9.375, 10.375 8.998, 9.375, 10.375 
mm 228.1, 238.1, 263.5 228.5, 238.1, 263.5 

H, Hrs1, 
Hrs2, h 

inch 
9.938, 9.825, 9.425, 
7.125 

9.813, 9.825, 9.425, 
7.125 

mm 
252.4, 249.6, 239.4, 
181.0 

249.3, 249.6, 239.4, 
181.0 

w1, wrs, w2, 
w3, W/2 

inch 
13.125, 16, 9, 
12.875, 51 

13.125, 16, 9, 
12.875, 51 

mm 
333.4, 406.4, 228.6, 
327.0, 1295.4 

333.4, 406.4, 228.6, 
327.0, 1295.4 

Rail seat cant 1:40 1:40 
 

Table 5 further shows the respective strand/wire properties 
of both ties.  In addition to the given design data, the 
strand/wire volumes and interface areas are calculated and 
shown in italics in Table 5.  Compared to the 8-strand tie, the 

24-wire tie increases the bonding surface area by 65.6% while 
reducing the steel volume by 8.6%.  With assumed quarter 
symmetries in both the geometry and the loading, only one 
fourth of the schematic shown in Figure 5 is considered in FE 
modeling.  Figure 7 shows the typical quarter symmetric FE 
meshes for the 8-strand and 24-wire concrete crossties. 

 
Table 5:  Strand/wire properties of the 8-strand and 24-wire ties 

 8-strand tie 24-wire tie 
Strand type Seven-wire, indented Single wire 

Diameter 
inch 0.375 0.207 
mm 9.525 5.258 

Volume 
inch3 90.12 82.38 
cm3 1,477 1,350 

Interface area 
inch2 961.3 1592 
cm2 6,201.9 10,271 

Pretension 
force per 
strand/wire 

lbf 17,210 6,550 

N 76,554 29,136 

Pretension 
psi 155,822 194,630 
MPa 1,074 1,342 

Strength 
psi 270,600 260,000 
MPa 1,866 1,793 

 

 
Figure 7: Typical quarter symmetric FE meshes for the 8-strand 

and 24-wire concrete crossties 

Railroad Wood Crosstie 
The wood tie is assumed to have the same length as those 

of the concrete ties (102 inches), a width of 9 inches and a 
depth of 7 inches.  The material properties are assumed to 
follow those of the white oak species defined above.  A steel 
plate is used to cover the rail seat area. 

Boundary, Initial and Loading Conditions 
Roller boundary conditions are applied on the symmetric 

planes to enforce the symmetric conditions.  In addition, the 
ballast and subgrade models span a length equal to one tie 
spacing in the x- or longitudinal rail direction, and their y-z 
surfaces bounding the FE domains are also assigned roller 
boundary conditions to account for the infinite structures that 
continue along the x-direction. 

The strands or wires are assigned the initial pretensions 
specified in Table 5.  These prestresses are then released in the 
simulations to yield the initial stress and strain states in 
concrete ties before any additional loading may be applied.  
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These simulations are conducted as a static analysis step.  
Further, as illustrated in Figure 8, uniformly distributed 
pressure loads are applied directly on predefined rail seat areas.  
The simulation of this loading scenario is conducted as a 
dynamic analysis step. 

 

 
Figure 8: Illustration of uniformly distributed pressure loads 

applied directly on a predefined rail seat area 

Scope 
The FE models are used to study the behavior of 

individual railroad crossties supported by ballast and subgrade.  
The macroscopic heterogeneity and material nonlinearity of the 
concrete ties are considered, allowing the pretention released 
stress states to be determined from the simulations.  Due to the 
omission of rail fasteners, a load transferring path from the rail 
to the tie is not sufficiently defined, thus making it difficult to 
apply more realistic dynamic vehicle-rail loads at this modeling 
stage.  As a simplification, uniform rail seat pressures are 
applied instead. 

The FE framework developed in this paper is applied in a 
comparative study of the railroad tie behavior under direct rail 
seat loading scenarios.  We have not identified theoretical or 
experimental studies on the behavior of railroad ties under 
similar conditions and therefore, verification or validation of 
the current models is not conducted.  Mesh sensitivities, if any, 
will be mainly attributed to the softening behavior of the 
concrete and the interface elements.  However, for the purpose 
of this comparative study, it suffices to have comparable mesh 
sizes for the simulation results based on the computational tie 
models to be comparable. 

 
RESULTS 

The results obtained from the FE analyses of the 
pretension release phase are presented and compared for the 8-
strand and 24-wire ties.  The FEA results of the rail seat loading 
cases are compared for both concrete ties and the wood tie. 

Pretension Release 
The initial axial tensile stresses prescribed for the 

strands/wires are the same as the data shown in Table 5.  The 
initial pretension release is first simulated, and it results in tie 
deformations, some degree of interface deterioration toward the 
tie ends, compressive stress and strain states in the concrete and 

losses of pretensions in the strands/wires.  Figure 9 shows the 
deformation profiles of the 8-stand and 24-wire crossties after 
pretension release.  Figure 10 shows the contours of interface 
deterioration D, of which the main observations are: (1) the 
interfaces remain intact for most parts of the ties (bluish 
contours with D=0), (2) there are interface deteriorations 
toward the ends of the ties (greenish contours with D>0), and 
(3) interface deteriorations are more limited in extent for the 
24-wire tie than for the 8-strand tie. 
 

 
Figure 9: Predicted deformation profiles of the two concrete 

crossties upon pretension release 

 
Figure 10: Predicted interface deterioration contours for the 8-

strand and 24-wire ties after pretension release 

Figure 11 shows the contours of the minimum principal 
stress min along the tie’s longitudinal cross section at the 
center.  The 24-wire tie displays a slightly stronger compressive 
stress state upon pretension release than the 8-strand tie.  The 
residual tensions averaged for all strands/wires are plotted in 
Figure 12 as a function of the relative distance to the center of 
the tie.  The residual tensions are compared with their initial 
pretensions in this plot.  Figure 13 further plots the ratio of the 
residual tension to the pretension for both ties.  Again the 24-
wire tie shows better retention of the pretension than the 8-
strand tie, and this is consistent with the fact that there is more 
interfacial area in the 24-wire tie for bonding with the concrete. 
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Figure 11: Predicted compressive stress state contours in concrete 
for the 8-strand and 24-wire ties after pretension release (1 psi = 

6895 Pa) 

 
Figure 12: Predicted average residual tensions in the strands/wires 
as a function of the relative distance to the tie center (1 ksi = 6895 

kPa) 

 
Figure 13: Predicted average ratios of retained pretensions as a 

function of the relative distance to the tie center 

The data obtained from the simulations of the pretension 
release phase can also be used to calculate the transfer lengths 
of prestressing strands/wires.  Experimentally the strand end 
slips or the compressive strains on the concrete surface can be 
measured and the transfer lengths calculated from these 
measured data (see e.g., [29-30]).  The FE simulation method 
presented in this study can yield not only similar data to 
compare with the experimental results but also additional 
residual tension data for the strands/wires, which are difficult to 
measure in an experimental setting.  The latter may yield more 
accurate predictions of the transfer lengths. 

Direct Rail Seat Loading 
As illustrated in Figure 8, a pressure load increasing 

linearly to 50 ksi (344.7 MPa) in one second is applied on a 
predefined rail seat area of about 22.55 inch2 (145.5 cm2) for 
the concrete ties and 19.375 inch2 for the wood tie.  The 
duration of the load is randomly selected.  Under this pressure 
loading, tensile damages at the bases of both the 8-strand and 
the 24-wire concrete crossties are observed in the simulations.  
A concrete tie is considered damaged as the concrete tensile 
damage variable dt reaches a substantial amount (greater than 
0.1).  On the other hand, compressive damage is observed on 
the rail seat of the wood tie as the compressive stress along the 
rail seat loading direction reaches its strength limit in that 
direction. 

The vertical resultant forces acting on the rail seats are 
calculated for the quarter symmetric models and plotted in 
Figure 15(a) versus the corresponding displacements averaged 
over the predefined rail seat area.  It is noted that the rail seat 
forces in this and subsequent plots account for only half of the 
typical railroad wheel loads.  A rail seat displacement relative to 
the tie base is also calculated, and the resulting force-relative 
displacement relations are plotted in Figure 15(b) for the three 
ties.  All curves are plotted up to the point of perceived tie 
failure as defined above.  The 8-strand tie appears to be more 
susceptible to tensile cracking than the 24-wire tie, as 
evidenced by the lower rail seat force at failure (31.6 vs. 40.6 
kips).  As discussed, the wood tie fails with a different 
mechanism than that in the concrete ties; in addition, it presents 
a more compliant response overall and sustains a lower amount 
of rail seat force at failure (21.3 kips). 
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Figure 15: Rail seat force vs. (a) rail seat displacement and (b) rail 

seat displacement relative to tie base for the three railroad 
crossties (1 kip = 4.448 kN, 1 inch = 25.4 mm) 

CONCLUSIONS AND FUTURE WORK 
This paper presents an FE analysis framework for 

individual concrete crossties that takes into account their 
macroscopic heterogeneity and material nonlinearity.  In 
particular, the interfaces between the steel reinforcements and 
the concrete matrix are explicitly modeled and assigned bond-
slip relationships.  The FE method is able to predict the stress 
states in the two concrete ties with eight prestressing strands 
and twenty four prestressing wires, respectively, upon release of 
the pretensions in the reinforcing steel.  The 24-wire tie shows 
better retention of the pretensions than the 8-strand tie, likely 
owing to the increased bonding surfaces between the wires and 
the concrete in the 24-wire tie. 

A wood tie model following orthotropic elasticity and 
orthotropic stress failure criteria is also developed, and ballast 
and subgrade are included in modeling to provide support for 
the ties.  Under a simplified rail seat pressure loading, both 
concrete ties appear to experience tensile cracking failure at the 
tie base, whereas the wood tie experiences compressive failure 
in the rail seat under sufficiently large rail seat forces.  The 24-
wire concrete tie fails at a larger rail seat force than the 8-strand 
concrete tie.  Both concrete ties sustain larger rail seat forces 
than what the wood tie does upon tie failure.  The effect of 

subgrade modeling on the predicted damage states of concrete 
ties was discussed in a previous paper [12]. 

According to the analyses, a uniformly distributed rail seat 
pressure load does not lead to RSD failure in the concrete ties.  
In future work, the rail fastening system will be incorporated in 
the FE analysis framework in an attempt to simulate the 
complex stress states in the rail seats more accurately.  In 
addition, bond strength data will be sought for different 
strand/wire diameters and surface conditions.  The FE modeling 
approach will also need to be verified or validated with 
experimental results. 
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