REPORT NO. FAA-RD-73-77 i

AIRPORT INFORMATION RETRIEVAL SYSTEM (AIRS)
SYSTEM DESIGN

‘.“',, Pop i
irk '
#:
o AR Manuel F. Medeiros
S Julie Sussman
]
4
w'
'_‘tr"‘:'.,'l
.I'
JULY 1973
T_ FINAL REPORT
LA
- DOCUMENT 15 AVAILABLE TO THE PUBLIC
A L) THROUGH THE NATIONAL TECHNICAL
1 .' ; ., INFQRMAT!ON SERVICE, SPRINGFIELD,
U VIRGINIA 22151,
II '_'r | ‘
S A
'. v _il

Prepared for

DEPARTMENT OF TRANSPORTATION

Sl . FEDERAL AVIATION ADMINISTRATION
i Systems Research and Development Service
f Washington DC 20591 !

NOTICE

This document is disseminated under the sponsorship
of the Department of Transportation in the interest
of information exchange. The United States Govern-

ment assumes no liability for its contents or use
thereof.

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No. 2. Government Accession No. 3. Recipient's Catolog No. j
FAA-RD-73-77 _“___j

4. Trtle and Subtitle 5. Report Date

ATRPORT INFORMATION RETRIEVAL SYSTEM (AIRS) | July 1973

SYSTEM DESIGN SR

7. Avuthor's) 8. Performing Organizotion Report No.
Manuel F. Medeiros and Julie Sussman DOT-TSC-FAA-73-16

9. Performing Organization Name ond Address 10. Work Unit No.

Department of Transportation FA-306/R4111
Transportation Systems Center 17, Contract or Grant No.

Kendall Square

Cambridge MA 02142 13. Type of Report and Period Covered

12, Sponsoring Agency Name and Address .

Department of Transportation Final Report

Federal Aviation Administration

Systems Research and Development Service 14. Sponsoring Agency Code
Washington DC 20591

15. Supplementary Notes

16. Abstract

This report presents the system design for a prototype air traffic
flow control automation system developed for the FAA's Systems Com-
mand Center. The design was directed toward the immediate automation
of airport data for use in traffic load predictions and flow control
operational support. The system employed computer services offered
by commercial time-sharing companies. The system was also designed
to serve as a technology foundation and an experimental tool from
which subsequent automation specifications could be derived. The re-
port covers the design decisions associated with the data base, the
user interface, the user language, the special processing and the
numerous operational considerations. Also included are the supporting
program designs for data base updating and integrity maintenance.
Finally, the report presents several recommended improvements to the
automation system.

17. Key Words F] ow Control , Air Traffic 18. Distribution Statement

Control, Central Flow Control

Facility, Automation, Information DOCUMENT IS AVAILABLE TO THE PUBLIC

Retrieval, Airport Information, THROUGH THE NATIONAL TECHNICAL
INFORMATION SERVICE, SPRINGFIELD,

Flow Control Procedures VIRGINIA 22151,

19. Security Classif. (of this report) 20, Security Classif. (of this page) 21. No. of Pages | 22, Price

Unclassified Unclassified 188

Form DOT F 1700.7 (s-69)

PREFACE

The automation system described in this report was
conceived and developed in the Information Sciences Division
of the Transportation Systems Center (TSC). The effort was
sponsored by the Systems Research and Development Service of
the Federal Aviation Administration (FRA1p). The work was
directed toward the immediate automation of the Systens
Command Center of the BAir Traffic Service through the
development of a prototype automation system employing
compu ter services offered by commercial time-sharing
companies. The prototype system was also required to serve
as a technological foundation and an experimental systen
from which future automation specifications could be derived
for subsequent phases in the System Command Center's
automation plan. The prototype, known as AIRS, hecame
operational in January 1972 and has since evolved to the
level described in this system design document., The first
version provided airport traffic information; later
improvements included airport arrival delay predictions,
advanced flow control procedures, quota flow control
procedures and airport reservation data updating,

A development of this scope wculd not have been
possible without the assistance, advice and cooperation of
many people. Within the Transportation Systems Center, the
authors sincerely appreciate the substantial contributions
of Richard D. Wright in the development and documentation of
the graphical display capabilities for the AIRS prototype
automation system. Special thanks to John R. Coonan for the
superior guidance and planning which assured the success of
this automation endeavor. Also greatly appreciated is the
technical counseling and the management support of Juan F,
Bellantoni in the formulation of the prototype systenm.

At the FAA, the authors are deeply indebted to the
Project Manager, Thomas E. Armour, for his steadfast support
and his comprehensive understanding of the automation
requirements, the technical approaches and the real world
considerations in guiding the development of this automation
system. The timeliness and efficiency of this development
is due to a great extent to the outstanding coordination and
cooperation of the RAir Traffic Flow Control Automation
Working Group, headed by Michael E., Perie. But the greatest
respect and heartfelt gratitude for continuous contributions
in formulating, evaluating and improving the operational
design of this automation system is directed to the staff of
the Systems Command Center, especially our automation
contact Robert A, Christopher. This staff patiently labored
through the birth and growth pains of this new automation
system and unselfishly gave of their valuable time and

effort to fruitfully and comprehensively integrate the

automation system into the daily functions of the Systens
Command Center.

Many valuable programming ideas incorporated into the
implementation of AIRS were developed with the help of
Gerald Jay Sussman of M.I.T.

ii

10l

11.

12.

TABLE OF CONTENTS

Introduction

General Discussion

Data Requirements

Controller Interface and Language Requirements

4.1 AIRS Language Mix
4,2 Time-Sharing Computer Interface

Centralized Data Base
5.1 Flight Schedules
5.2 Rirport Data

5.3 Flow Control Data
5.4 Other Data Files

AIRS Program Overview
Request Formulation

Request Analysis

8.1 The Dictionary

8.2 Word Recognition

8.3 Syntax Analysis

8.4 ARO Requests

8.5 Consistency and Sufficiency

i

1 Flight Retrieval Pointers
2 Filtering
3

Flight Retrieval

9,

e

9. Retrieval and Storage

Processing of Flight Data

10.1 Demand Counts

10.2 Airport Delay Predictions

10.3 Airport Flow Control Procedures
10.4 listings

10.5 Plots

Airport Data
11.1 Entering and Retrieving Airport Data
11.2 Entering and Retrieving Flow Control Data

ARO Cperations

iii

B
L]
[= W QY

(S, N, MEL T, NS}
i

b wd b (o) =

@ o W

)]
[}
-

~
[}
pry

[}
- O~ N -

1
~ o

[0 ole s 3o Ja s 2o s Jo <]
[}

]]
2 NN =

OO O Y
1
[w]

e N Y
OO
[}

W —=d

—
(]
[}
~

10-14

-
9
]
-
~

- =
[T S
[}
N = 2

oy

]
]

-~

13- Fail_

13.1
13,2
13.3
13.4
13.5
13.6
13.7

TABLE OF CONTENTS (continued)

Safe Provisions

Backup

Truncation

Checksum Errors

File Errors

Data Checking

Program Interruption
Nightly Fail-safe Procedure

14, Multiple User Management

15. Records and Messages

15.1
15.2
15,3
15.4
15.5

16. Days,
17. AIRS

17.1
17.2

Message~of -the-Day
MAIL

HELP

Usage Records
Comments

Dates and Times
Program Environment

Core Memory Versus Disc Storage
Monitor and Special System Software

18. Monthly Data Base Formation

19. Recommended Improvements and Expansions

References
Appendices
A, Desired Features and Selection Criteria for
Time-Sharing Computer
B. Major Chronological Events in Development and

Operation of AIRS

iv

Page

13-1
13-1
13-2
13-4
13-6
13-7
13-10
13-15

15-1
15-1
15-1
15-2
15-2
15-3

16-1
17-1
17-2
17-5
18-1

19-1

LIST OF TABLES

AIRS Data Requirements Summary
Summary of AIRS Request Operations
The Dictionary

Consistency and Sufficiency Examples
Sample Demand Tables

Celay Prediction Report

Cuota Flow Control Report

Sample Listing

Page

3-4

8 -4
8-18
19-2
10-5
10-13

1C-16

LIST OF ILLUSTRATIONS

Flight Schedules and Related Files
Airport Data File

Cverall AIRS Request Flow

AIRS Activity Request Flows

Sample Arrival Traffic Plot
Arrival Delay Prediction Plot

AIRS Overlay Structure

Major Monthly Update Operations

Monthly File Formation Overview

vi

Page
5-12

5-15

6-u4
129-19
10-21
17-6
18-2
18-3

AFCP
AIRS
ARO
ARTCC
ATC
CFCF
FAA
FSS
GA
GMT
IFR
NAS
0AG
SCcC

TsC

ACRONYMS AND ABBREVIATIONS
Advanced Flow Control Procedures
Airport Information Retrieval Systen
Airport Reservation Office
Air Route Traffic Control Center
Air Traffic Control
Central Flow Control Facility
Federal Aviation Administration
Flight Service Station
General Aviation
Greenwich Mean Time
Instrument Flight Rules
National Airspace Systen
Official Airline Guide
Systems Command Center

Transportation Systems Center

vii

ir

ki

1. INTRODUCTION

The Air Traffic Service of FAA has stated a critical
need for automating certain operational functions
indigenous to the Systems Command Center (SCC) and concerned
with the nationwide monitoring of air traffic control systen
status and control of air traffic flows (Ref. 1). The
Transportation Systems Center (TSC) is automating the most
immediate of these critical needs. This document describes
the TSC design and development of AIRS, an airport-oriented
automation system concerned with the problems of balancing
demand and capacity. AIRS is an acronym for Airport
Information Retrieval Systen, This acronym accurately
portrayed the first operational version of January 1972,
which rapidly retrieved demand information covering 1000
airports. However, the AIRS of today has been greatly
expanded to fill more of the SCC needs. 1In today's version,
arrival delay predictions, allocations for Advanced Flow
Control Procedures (AFCP) and flow rates for Quota Flow
Procedures are readily produced upon request. Every day the
latest flight schedules are routinely processed by the
Airport Reservation 0ffice (ARO) of the SCC to wupgrade the
accuracy of the monthly updated Official Airline Guide (OAG)
data (provided by the R. H., Donnelley Corp.) which
constitutes the heart of the AIRS data bank.

The critical need for automation is caused by the large
number of air traffic operations within the national
airspace and their complex relationships, particularly
during abnormal conditions. It often happens that a single
airport can disrupt the orderly movement of air traffic in
large areas of the country. For example, 1if Chicago's
O'Hare Airport were to suffer a substantial reduction in
landing capacity as a result of inclement weather, the
traffic converging on O'Hare would soon saturate the
airspace of the Chicago Air Route Traffic Control Center
(ARTCC) and spill into the adjacent ARTCC's, The presence
of these delayed flights affects the wmovement of other
flights in the congested airspace. Some means of predicting
the traffic demand upon airports and the magnitude and
duration of arrival delays under adverse conditions would
greatly aid in the accommodation and control of the affected
aircraft and would allow the ARTCC's to maintain orderly,
safe, and efficient movement in their airspace. Accurate
predictions of impending excessive delays will permit the
impacted field facilities (ARTCC's) to adjust procedures,
traffic distributions, and staff to handle the load and can
be used, if necessary, to implement nationwide flow control
procedures under the direction of the SCC to maintain the
flow within acceptable limits,

page 1-1

There are also enroute traffic delay situations which
have the potential for nationwide propagation, However,
these are 1less frequent than airport-induced problems,
Enroute traffic delay prediction ik far greater in the
complexity and scope of needed data for automation than 1is
airport delay prediction. 1Indeed, enroute and airport delay
interactions can not be separated in reality. But readily
available data tapes of airline . schedules, giving airport
departure and arrival times, can serve as a first
approximation for automation purposes of enroute flight
times during normal enroute status. Fortunately, the bulk
of airport arrival delay situations do not «coincide with
other enroute delays such as thunderstorm reroutes and major
route restrictions. The airports most often suffer local
wind, fog, and precipitation induced delays which have
little effect, if any, enroute.

The automation effort is divided 4into three phases,
The first phase is the most urgent, the development of a
prototype. The second is a more expanded prototype with
greater scope and capability, The third phase is a full and
comprehensive automation system based upon a dedicated
computer system. The three levels of automation are phased
to provide beneficial empirical results for consideration in
the subsequent levels, Responding to the immediate need and
concentrating on the major problem situation, the airports,
ISC conceived an information retrieval system (AIRS) based
upon airline schedules, AIRS was scoped for timely
development by delaying until a 1later time any detailed
enroute provisions. More important, the development and
implementation plan for AIRS provided maximum exchange of
information through frequent interaction between the
controllers and the program developers, This interaction
began as early as possible with the rapid implementation of
a version of AIRS which contained only the bare operational
elements. Sufficient capability was provided to tabulate
traffic demands and list certain flight information for any
of the 1000 airports having airline traffic. The SCC
experience, comments, and criticisms were then factored into
the current design and the subsequent new features. The net
result was the rapid evolution of this prototype toward the
specific needs of SCC, and the wmaximum accumulation of
operational experience with the associated training and the
integration of automation assistance into the normal
functions of the SCC. This operational experience provides
a sound foundation from which the specifications for the
final phase IIT automation can be developed. The
applicability of this experience to phase III specifications
is reinforced by incorporating into the AIRS prototype the
latest state-of-the-art technology in software design and
man-machine interface. AIRS gives the SCC staff a language

page 1-2

which is natural to their daily operatioas. The 1language
provides for easy program control and operation even though
the staff actually operates the computer through remote
teletype devices. The design maximizes services and
minimizes special computer +training through extensive
program-managed operations and built-in tolerance for and

forgiving of typing or command errors. The current AIXIRS
offers a wide scope of data processing and retrieval
capability and selectivity which portends an extended

useful life.

ATRS is more than the program which the SCC staff
operates. It is a system which includes nightly checking
programs as well as the monthly updating progranms. AIRS
makes extensive use of data files stored at the computer
facility in Waltham, Mass. These files are retained on disc
storage devices for immediate random access by AIRS,
Experience has shown that computer malfunctions can damage
these files and destroy the data to varying extent. Some
damage is undetectable to the AIRS program and may produce
errcneous traffic information and even propagate the damage
throughout other undamaged data files. A series of file
integrity checkout programs is run each night and reports on
the status of these data files in order to detect as early
as possikle any damage which might have occurred during the
day's operations. Some of the file damage can be and is
repaired by these nightly programs after evaluating the
detected damage. The AIPS program itself has some built-in
file integrity checking and file repair capability too.
However, only those detection and repair operations which do
not adversely affect the response time are built into AIRS.
The nightly programs are more thorough in their file
checking., The other major part of the AIRS system is the
set of mcnthly updating programs. Approximately two months
of flight data is maintained in the AIRS central data bank
at any one time. When next month's airline schedule data
tape is received from R. H. Donnelley, usually one or two
weeks prior to the next month, the central data bank is
purged of the earliest month's data and the new data is
appended to the current month. The update encompasses
programs to input data from the tape, filter it for flights
of interest, encode it in terms common to the data files,
sort it, merge it with that part of the current month's data
to be retained and finally, develop the cross-reference
files vital to the efficient and speedy retrieval process.

This introduction to AIRS would not be complete if vwe
did not discuss the computer selection. The SCC automation
requirements discussed above are of a real time nature. The
information needs are often spontaneous, responding to an
actual or impending problem. Further, the data bank must be

page 1-3

updated throughout the day to maintain an acceptable level
of accuracy. These two factors dictate that the automation
be on-line accessible in the SCC facility, be real time in
interrogate/response service and be efficient enough to
handle the support and computational loads without excessive
delay. Further, it is highly desirable that the wupdate
operations, customarily performed by a separate activity
from the central flow control operations, be simultaneous
yet non-interfering with the flow control operations. The
only computer systems which meet the above requirements are
time-sharing computers. The survey of available government
and commercial time-sharing systems which would meet the
operational and the programming needs for the AIRS prototype
resulted in the selection of First Data Corporation in
Waltham, Mass., which offered time-sharing service on a
PDP-10 computer system, seven days per week, 16 hours per
day. It is important to note that not having a dedicated
time-sharing system specifically for SCC automation purposes
imposes considerable constraint in the design and operation
of AIRS. 1In reality the SCC computerized operations are
cnly able to command a fraction (1/60) of the time-shared
computer's resources during heavy use. AIRS was therefore
scoped to perform within this resource limitation. Further
expansion and evolution of AIRS depends upon commanding more
of the computer's resources if acceptable response times are
to be maintained.

This document is designed to give a detailed overview
of the total AIRS system: the operational, the nightly
checking and the monthly updating programs. The document is
supplemented by the "AIRS User's Guide" and the "AIRS Systen
Support Manual™"™, both to be published shortly. (2
preliminary version of the "AIRS User's Guide" has been
distributed, Reference 7). The user's guide details the
language and operations of AIRS from the SCC operators'’
point of view, and the system support manual views the data
base management from an operational support perspective.
The combination of these three documents provides a thorough
understanding of the current version of BAIRS. Further
working level documentation will be provided, however, to
compile a complete AIRS programmers' reference library. The
working level documents are scheduled for completion 1later
and contain complete subroutine descriptions, flow charts,
and program level summaries and provide a compilation of all
program source code listings. The latter material would be
required by the programmers who might wundertake further
expansions to AIRS or incorporate major elements of AIRS
into other phases of the SCC automation.

This document presents the major elements which
constitute the AIRS system of today and, where fruitful, the

page 1-4

document develops the original system design considerations,
illuminating the evolutionary factors and effects. Prior to
immersion into the discussion of these major elements, a
general discussion is presented which covers the background
and key factors in TSC's involvement in automating the

Systems Command Center, The document then proceeds to
expand upon the data requirements, the AIRS language
requirements and the user interface. The viewpoint then

switches to examination of internal program operations such
as the centralized data files, request analysis, retrieval
operations and the spectrum of processing of the retrieved
data for specific purposes including demand 1loads, delay
predictions and control rates for Quota Flow. Next, the
real time entry of data is examined in terms of program
processing. At this point a sufficient understanding of
ATRS processing is achieved to introduce the fail-safe
requirements and the file management operations crucial to
the security and integrity of the AIRS centralized data
bank, Completing the understanding of the AIRS operational
program, the document covers the operations in the automatic
usage records and message features, The monthly update
programs are then detailed. The final chapter presents a
compilation of recommended improvements and expansions to
AIRS or its successor.,

page 1-5

L

2. GENEERAL DISCUSSION

The Central Flow Control Facility (CFCF) was
established in April 1970 to oversee the flow of aircraft
among the ARTCC's, Its primary objective is the balancing
of national air traffic flow to minimize delays without
exceeding controller capacity, thus maintaining safe and
orderly flows. This facility currently comprises the heart
of the FAA's Systems Command Center., Initial operations at
the CFCF concentrated on reacting to problem situations. It
soon became clear that some of these problems might have
been prevented if the facility could accurately forecast
traffic loading. The only practical approach to such
forecasting is through automation. This need, along with
several others, was factored into the plan (Ref. 1) to
develop full automation of the SCC.

Anticipating the requirements of the plan, the FAA's
Office of Management Systems, Management Analysis Division
began a pilot effort to introduce automation of airport and
enroute traffic forecasting into the CFCF. This pilot
development is reported in Reference 2, It became
operational in September 1971 and provided typical day
traffic loads for 14 high density airports and for key
sectors along several major routes between selected city
pairs., This pioneering effort was significant in focusing
attention on the benefits of timely automation wusing
commercial time-sharing computer resources, However, the
rcle of continued automation of the SCC was beyond the
jurisdiction of the FAA's Office of Management Systenms, At
this point the Transportation Systems Center was asked to
assume responsibility for this pilot operation and the
development of a frototype systen. In October 1971 TSC
accepted this responsibility. Evaluation of the operational
use of the pilot programs revealed that its enroute 1load
forecasting (Ref. 3) did not adequately cover the total
traffic and therefore could not produce a useful level of
accuracy. Expanding the enroute program to a useful level
of coverage would require an undesirable amount of time and
effort for consideration early in the prototype phase. The
pilot program for airport loading, however, was of greater
value to the CFCF operations. Its use resulted in £frequent
requests by the controllers for expansiorn to cover more than
the present 14 airports. The TSC evaluation of the
program's expandability concluded@ that the program was
incapable of being expanded within the host time-sharing
system and also that other needed upgrading was not possible
within the available core and the program's 1language
restrictions (pilot programs were written in a mix of BASIC
interactive language and FORTRAN batch language). It was
decided that all the available time-sharing computer

page 2-1

services would be surveyed and the most applicable selected.
Appendix A tabulates the principal desired features used as
selection criteria in this survey. Because of the final
selection of a computer system other than the one used in
the pilot programs, a period of parallel operation, pilot
and prototype, was planned until the prototype system could
assume the automation role. Work began on the prototype in
October 1971 and the <first operational version was
implemented in mid January 1972 in the CFCF.

The prototype, AIRS, covered all (1000) airports which
had scheduled air traffic which originated in and/or was
destined for the United States. It had the ability to
accept requests of a form natural to the controllers and to
respond to requests gqualified by specifications such as
date, time period, aircraft types, arrivals, departures,
airports of interest and airport pair traffic groupings.
The flexible language and the selectivity in requesting
information offered a considerable advancement over the
pilot programs, which were no longer used, The pilot
programs were phased out at the end of February 1972.

Many decisions were made in designing AIRS. It is
appropriate to quickly review these decisions which have a
profound impact on the architecture and functional blocks of
the AIRS system. Further details on these decisions will be
presented throughout the remaining chapters in the design
areas they most affect, First and foremost, AIRS was to be
a prototype system. Prototypes are usually aggressive in
advancing the state of the art, experimental in that
fulfilling all goals involves calculated risks, and timely
with regard to producing results with breadboard or
unoptimum elements., The design of AIRS strove toward these
qualities with one overriding consideration, that of
producing a practical, useful automation systenm.

The second decision was that the R. H. Donnelley
airline schedule tape be the main source of information.
Third, the system (like the origiual pilot program) would be
developed and implemented on a time-sharing computer and be
operated through remote terminals (teletypes and display
devices). Fourth, the operation of AIRS would be such as to
minimize computer training requirements by controlling as
many as possible of the computer functions within the single
AIRS system. A fifth decision was made to develop AIRS in
the FORTRAN high 1level programming language and, where
essential to the efficiency and capability, to use limited
amocunts of machine level assembly language,.

The sixth decision was to provide a full range of AIRS
operational capabilities for all airports in the data base.

page 2-2

The seventh was to make the information retrieval capability
as broad, yet as specific as required to meet both the
foreseen and unforeseen problem needs. This implied that
AIRS could not be restricted to retrieve and produce a fixed
list of rerorts as did the pilot programs, but must possess
an internal ability for structuring the retrieval process
and report formats subject to the needs of each information
request., The next decision concerned the response time for
AIRS' information retrieval, Most of the problems handled
by the SCC are transient in nature and require that the
automaticn be fast in order to be useful. It was therefore
decided that rapid retrieval was of critical importance in
the design of AIRS. Timely updating is also important, but
in a conflict situation where opposing design choices can
favor either speedy retrieval or fast updating, the speedy
retrieval approach is to be selected,

Ancother decision was to design AIRS to be easily
expanded., Such expansions as on-line updates, delay
prediction, graphical plots and enroute approximations were
envisioned. The AIRS design turned out to be upgradable
enough to integrate computations for AFCP and Quota Flow
Procedures, the needs for which developed after the first
implementation.

The next decision was to centralize the data into one
bank as opposed to maintaining separate data for each
progran. This produced the desirable situation of minimizing
the requirements for updating, maintaining and storing the
data. It was decided that simultaneous access to the
centralized data bank should be provided in order to
accommodate parallel operation of AIRS by several SCC users.
This required that operations involving writing on the files
be minimized and intermittent since two users can not write
on a file at the same time (i.e. two users must take turns
writing when there is a conflict).

Decisions were also made concerning exchange of
comments and record-keeping to help detect operational
difficulties and areas for improvement, Specifically,
two-vay communication through records maintained by AIRS was
incorporated into the design.

The last of these important original design decisions
was to minimize the input and output volume whenever
practical. For example, if the flow controller desired
information on the arrival traffic demand at J. F. Kennedy
Airport, the input request to AIRS might have been as
lengthy as: "ARRIVALS AT J. F. KENNEDY AIRPORT TFOR TODAY
FROM CURRENT TIME THROUGH THE NEXT FOUR HOURS™ or be as
short as "“A JFK." This shorter form required that the

page 2-3

program recognize special codes and apply default day and
time periods when appropriate. Since the wusers are air
traffic controllers in need of quick assistance and not
typists or computer operators, the shorter input is
obviously best. The output too, can be a lengthy work of
formatted art, but again, only enough output to
unambiguously convey the desired information is wanted. The
teletype devices used as remote input/output stations for
the computer have slow printing speeds, Titles, formats,
and data identifiers can consume considerable printing time
in comparison to the essential data being reported. Brevity
of reports will favorably improve AIRS response times.
Further, optional levels of detail within these reports is
another technique for minimizing outputs., The user, if he
desires more data, should bhe able to request it after
getting the initial abbreviated results. This means that
AIRS must retain sufficient data to produce upon request
these expanded reports following each retrieval operation
(after it outputs the abbreviated data). 1In a later version
of AIRS, the user would be given even greater control of
this output, control over the content, order and range of
data. This extra control permitted him to optionally set
the output formats for detailed reports.

The above decisions took place in October 1971, Since
then several major decisions have been added. For instance
in January 1972, decisions were made to add AFCP and the ARO
automation and in January 1973 to add Quota Flow Procedures
to AIRS. These Were major additions and will be treated in
detail in the subsequent chapters., As a result of these
expansions to AIRS, particularly the ARO real-time updates,
several major decisions were made to insure the integrity
and security of the AIRS central data bank. A period of
computer malfunctions prompted serious concern when loss of
automaticn for several hours followed some of the coaputer
failures. It was decided that AIRS be equipped with
internal integrity testing procedures and with file damage
checking. Further, file checkout programs would be
developed for automatic daily examination and repair of
files.

In October 1971, the initial design decisions discussed
above were completed and the program coding begun., The
programs were developed and checked out during the following
nonths and on January 12, 1972 a first version was turned
over to the CFCF for operational use., The flow controllers
could ask for arrival and/or departure data for any of 1000
airports known to AIRS. This would get a summary of hourly
traffic counts ‘and optionally the user could request
detailed data showing individual flights. Requests for
traffic could be specified with a broad range of conditions

page 2-4

such as retrieving just the arrival flights for an airport
from other specified airports which are Jjet aircraft and

will arrive on a particular date and time period. By the
end of June 1972 the Advanced Flow Control Procedures (Ref.
4 and 5) were operationally integrated into AIRS. The

automation of these procedures was substantially improved
over the predecessor AFCP automation being phased out of the
Kansas City ARTCC computer. The AIRS/AFCP could apply the
procedures to any airport in the AIRS data bank instead of

just the five fixed airports in the predecessor. The AFCP
zone structures could be created or modified in real tinme
instead of being pre-structured and fixed. The control

criterion of maximum air delays was expanded to consider
maximum stack (aircraft holding) 1limits in requlating
traffic flow, and the interval for allocations used in
regulating traffic flow rates was flexible from one
allocation per hour to six in order that controlled traffic
be better distributed.

In August of 1972, the Airport Reservations Office
began updating the AIRS data base for four high density

airports., This real-time update capability ppovided
improved accuracy for AIRS data, not only for these four
airports but for all the airports known to AIRS. The

improved accuracy of the AIRS data and the evolution of new
SCC flow control procedures led to the most recent expansion
to AIRS. In February 1973, the Quota Flow Procedures (Ref.
6) were added to the AIRS automation system. Quota Flow is
the successor to AFCP and portends a wide spectrum of flow
control application., In fact, this newest addition to AIRS
has already seen extensive use in the successful control of
nationwide traffic during many serious airport overloads.

The above three paragraphs highlight only a few of the
major events in the evolution of AIRS., Appendix B gives a
more comprehensive view of the AIRS chronology, clearly
showing the dynamic nature of this prototype automation
development. It depicts a rapidly evolving implementation
approach for automating an operational ATC facility. The
approach contrasts with most of the FAA's automation
history. The close relationship between TSC and FAR enabled
such an approach to be successful.

Looking ahead, AIRS possesses the potential for further
expansion in Phase II. In the near future 1limited amounts
of air traffic data will be available from the ARTCC's in
real time through existing teletype networks. This National
Airspace System (NAS) data could be used to update progress
of specific flights as they transit selected coordination
fixes in each ARTCC. This data would increase accuracy of
estimated arrival times, It is also possible to develop a

page 2-5

pseudo enroute prediction feature for AIRS which would
provide approximate enroute traffic load predictionms. This
could be rapidly automated and be in use during the time the
detailed enroute prediction ability of Phase II was being
developed., A third area for AIRS expansion is in automatic
communications, using the SCC's current teletype circuits.
Automatic transmission of AIRS reports and flow control
messages to field facilities would expedite many of the
functions based upon AIRS data. The full potential of AIRS
has yet to be achieved., As a prototype it has pioneered an
aggressive and fruitful realm of automation. Until it is
superseded by the next planned 1level of automation, AIRS
should provide the FARA's Syster Command Center with a
substantial foundation from which to perform the functions
of centralized air traffic flow control.

page 2-6

3. DATA REQUIREMENTS

The success or failure of many automation systems is
greatly dependent upon the balance between data required by
the system and data produced by it. It can happen that the
workload supporting the computer is far greater than the
value of the outputs. A great deal of attention was given
to the balance of inputs versus outputs in the scoping and
design of AIRS., In striving for the AIRS prototype system
to be both practical and useful, major trade-offs were made
between the operational workload required to maintain the
data bank and the potential accuracy level of the systenm's
output. If AIRS were to be an ARTCC f£flight-controlling
automation aid such as the NAS automation, there would be no
trade-off possible because the minutest data inaccuracies
would cause unacceptable errors. In the SCC application,
however, there is room for trade-offs because of the
predictive nature of the desired output. There are
innumerable real world effects which complicate the problem
of predicting the time of arrival of each aircraft at any
specific place, Ideally, if one could have perfect and
complete aircraft status information, the predictions would
be as accurate as possible. The accuracy of this ideal case
would be perfect for the near future, but would degrade as
one predicted further into the future and the real world
effects noticeably perturbed actual wmcvement from the
predicted aircraft movement. Since inaccuracies will exist
even in the perfect data collection system, it is reasonable
to consider less than perfect data collection, to see if and
vhen the accuracy will significantly degrade below an
acceptable level. The obvious benefit of reduced data
collection is the associated workload reductions in
maintaining the data bank, SCC trade-offs must also include
practical considerations in transmitting or collecting data
from the nationwide sources into this centralized data bank.
Teletype networks, voice lines, data tapes and
correspondence are available for transmitting different
kinds of data. Let's consider what kinds of flow control
information might be available through these collection

techniques. The teletype and voice circuits are very
similar in their message handling abilities, The data
transmitted is usually of the summary, filtered or
abstracted variety. Estimates of landing capacities,

numbers of aircraft holding, average delays, restriction
messages and the like are typical of what can be expected in
support cf the SCC automation system. The scope of these
messages can not be expected to cover all airports each day.
AIRS must therefore permanently retain some nominal
information of this type and permit updates only when
appropriate. Indeed, flight schedules might be updated for
a few airports im this manner as ARO does. The one

page 3-1

exception to the abbreviated data handling ability is when
there are computers directly connected to each end of the
circuit. ©Large vclumes of relatively raw data nmight be
transmitted up to the capacity of the circuit's bandwidth.
In the prototype design, this form of data entry was deemed
to be sufficiently far in the future (time was required for
hardware and software development) to discount the NAS or
terminal computers as an immediate source of £flight data
even though this data would be of great value in monitoring
the ATC status., Aside from this real time source of flight
data, there are files of data in the form of computer
readable magnetic tapes. One such source is in the form of
flight plan tapes (Bulk Store), used by the ARTCC's, These
tapes contain a large percentage of the flight plans for
short haul (less than 600 nm) air carriers, sone military
and some general aviation flights, Each ARTCC prepares its
own tape and the formats are currently non-standard. These
21 ARTCC tapes would be of value in determining the numerous
air routes between airports; but because the ATRS enroute
load prediction capability was to be delayed for a later
version, this source would not be applicable until a
detailed enroute expansion is available.

Fortunately, a single source of flight data in magnetic
tape form was available. The R, H. Donnelley Corporation
produces a monthly tape for FAA containing all the scheduled
domestic and foreign flights of concern to the CFCF. The
data does not contain general aviation or military £light
schedules, however. The flight schedule data contains for
each flight leg the associated airports, flight times,
aircraft type, flight identification and dates of operation.
This tape would require minimum update worklcad and could
provide a compact source of information from which airport
traffic predictions could be made. The lack of military
flight schedules was considered negligible because few
military flights operated from the major commercial airports
of interest. The lack of general aviation (GA) data was
considered a more serious omission. The only source of GA
flight data (IFR only) is from the ARTCC's or Flight Service
Stations (FSS). This GA information would be impossible to
obtain until a direct computer-to-computer network is
established, and even then the data would only be complete
for 30 minutes in the future and would degrade with longer
predictions. 1In lieu of this future source of data, the
most practical type of adjustment in traffic predictions for
GA flights at each airport would be to apply a GA factor (a
percentage of scheduled air carrier) to the scheduled
traffic in predicting the total traffic for the airport.

The last source of field data concerns correspondence
and reports. A limited amount of raw data, such as extra

page 3-2

section flights, are known early enough to permit 1limited
utility of this flight data in the central data bank, In
general, however, the sparse volume, and the long lead times
from preraration to delivery to computer entry, diminish the
value of this type of information., a practical use might be
to input only holiday traffic extra sections information.

The above sources of data pertain to the monitoring and
predicting of air traffic status. There are, however, two
other kinds of data required for SCC automation, the
procedural data and the AIRS system level data. The
procedural data refers to control parameter and 2zone
structures such as those used in computing quotas for Quota
Flow Control Procedures. The control data and zones must be
created by the SCC and entered into AIRS in the process of
developing procedures for each airport of interest, To be
operationally versatile, the AIRS prototype should be
capable of both editing and retaining permanently this data
in the central data bank.

The last kind of data required for ‘SCC automation 1is
the AIRS system level data. An airport information systen
cannot operate efficiently without fundamental data files
such as airport codes, center codes, aircraft type codes,
and special definition tables (e.g. Foreign airport
groupings, air taxi grouping). This data must be up-to-date
and complete if the system is to have full knowledge of its
data categories for encoding/decoding and retrieval
operations. AIRS uses these data tables in providing the
widest flexibility in retrieval capabilities and in giving
the maximum freedom of operation through a mnatural request
language.

The above data collection workloads have ranged £from
practical to impossible and the contributions to accuracy
from valuable to negligible. The success of the trade-offs
made in scoping the data collection for AIRS can only be
estimated at this time, but it appears that a good balance
has been achieved. The resulting data requirements in
support of AIRS are summarized in Table 3-1.

page 3-3

TABLE 3-1

Data Description

FIELD DATA

Flight schedules,
air carrier

Extra section
schedules

ARO schedule updates
for 4 airports (DCa,
JFK, LGA, ORD)

Airport landing
capacity estimates

Airport GA factor

Departure delays

PROCEDURAL DATA

AFCP & Quota Flow
control data

AFCP & Quota Flow
Zone Structures

SYSTEM LEVEL DATA

Airport Codes
Center Codes and
associated airports

Area Codes and
associated airports

Aircraft type codes
Air Taxi code and
associated airlines

Airline Codes

Source/Form

R.H.,Donnelley
(RHD) /Mag.
Tape

Airlines/Tele-
type & printed

FSS, ARTCC/
verbal, tele-
type, printed

ARTCC, Airport/

verbal

CFCF, ARTCC,
Airport/verbal

ARTCC, Airport/

verbal

CFCF, ARTCC/
verbal

CFCF, /
verbal
RHD/mag. tape
FAA Manuals/
printed
CFCF/verbal
RHD/mag. tape
RHD/printed

RHD/mag. tape

page 3-4

AIRS DATA REQUIREMENTS SUMMARY

Frequency

Monthly

aperiodic

Real-time
daily

edited as
required

edited as
required

as required

edited as
required

edited as
required
monthly as

required

monthly as
required

monthly as
required

monthly as
required

monthly as
required

monthly as
required

Entered by

TSC

ARO

ARO

CFCF

CFCF

CFCF

CFCF

CFCF

TSsC

TSC

TsC

TscC

TSC

TSC

4, CONTROLLER INTERFACE AND LANGUAGE REQUIREMENTS

In any interactive automation system there must exist a
means for man to direct and control the automation activity
to respond to his needs. This man/machine interface can be
divided into two areas, the activation or start-up of the
computer's resources and the instructions directing the
application of these resources, The first area deals with
connecting to the remote computer and turning on the AIRS
systen under the control of the computer's "monitor"
(operating system). The second area deals with operations
within the control of the AIRS system. In essence this
second area is the control language of AIRS. There exists a
wide range of freedom in designing the AIRS language. The
simplest approach might employ a set of buttons. Each
button tells AIRS to do a specific task. In the 1longest
approach the program might ask an extensive string of
questions designed to exactly elicit what the desired task
was. There are arguments for and against both extremes and
variations in between, The first section of this chapter
discusses the mix of language approaches employed by AIRS
and the reasons behind the mix. The second section
addresses the problems of the man in dealing with the
time-shared computer and also discusses the relationship of
these "mcnitor" interactions with the AIRS systen,

page 4-1

4.1 AIRS LANGUAGE MIX

In addition to the balance between data regquired by the
automaticn system and data produced by it, the success or
failure of the automation system is also greatly dependent
upon ease of operation and control. Since the system is
designed to be used and operated by ATC flow controllers, it
is imperative that the interface with the computer and the
request language be uncomplicated and easy to use. In the
ultimate, everything should be as simple as the pushing of a
special function button and presto, the desired data is
reported. Well, this is certainly not possible in the
prototype systenm. The scope of data would require an
excessive number of function buttons and the available
time-sharing computer systems are not capable of supporting,
without considerable cost and special equipment development,
a scheme of function button control. The closest
approximation to push button control is the normal teletype
keyboard used in conjunction with time-sharing computers. A
specific function can be attributed to a single character in
the keyboard. Additional functions than the number of keys
on the keyboard can be easily handled by combining
characters (i.e. encoding the function)., The fewer number
of characters composing a unique code word, the quicker the
request can be input. ° The more functions desired, the
greater the number of code words and the more difficult the
memorization requirements for the operator. Obviously,
mnemonic codes which have clear meaning to the operators
are best, If one combines mnemonic codes for further
specification of the requested data, the dinput becomes a
string of codes. EFase of use requires that it be natural to
assemble the string of codes in forming the total request.
The desire for easy request assembly 1leads to the
consideration of using a language approach which
approximates controllers' jargon. The language would not
only incorporate such mnemonic codes but would also pernmit
phrases and context meanings of these codes in the request
stream. The language should include freedom in the order
of many of the words in each request and use of punctuation.
The AIRS control language does in fact contain the full
benefit of a language natural to the controllers and the
conciseness of encoding.

Contrasting with this approach of coded requests is the
question and answer type of automation control. For complex
sets of retrieval and processing choices, it is often best
to lead the operator through request formation in a stepwise
dialog. This diminishes the demand upon the operator for a
compound entry of complete and exact specifications fronr
memory. The wide variety of operatiors in AIRS necessitates
a mix between the jargon language and dialog control to best

page 4-2

service the controllers.

There is yet a third approach to automation control and
that is the fixed format request entry. TFor static forms of
repetitive operations such as ARO data updates, neither
‘dialog nor jargon language inputs is essential, The price
of fixed format is its own rigidity; the fixed format can
not tolerate any deviations from the standard and only a
limited .assortment of standards is practical in most
situations. This third approach was wutilized in the
original AFCP and ARO automations. Incorporating this samne
approach into the AIRS automation system would minimize the
need for user retraining to continue these operations. This
was the primary factor in the application of fixed format
request entry for the AIRS automation of the Airport
Reservation 0Office's data updating.

In summary, AIRS required all three approaches to
controller interface in its lanquage specification. Details
of the AIRS user's language can be found in' reference 7.
Table 4-1 summarizes the various types of request operations
available in the AIRS user's language.

.One more area of discussion in the design of a user's
language concerns the demands upon the users for
completeness of request specification. Some of the burden
of entering complete specifications can be handled by the
computer. The request language can be designed to accept
partial inputs, determine the appropriate default conditioans
and construct the complete request for processing, For
example, most data requests concern the current day. For
user efficiency, entry of the date in a request should only
be required for other than today. The computer can insert
today's date when none is entered.,

page 4-3

TABLE 4-1
Type of Operation

Traffic load Summary

Listings of individual flights

Plots of summary data

Predicting arrival delays

Entering landing Capacities

Entering General Aviation
Factors

Entering Departure Delays

Look up Airport Characteristics

SUMMARY OF AIRS REQUEST OPERATIONS

Request Selectivity

*Places of origin and/or
destination: airports,
ARTCC's, Areas (e.g. ZEUR)

*Arrival and/or departure
loads

*Time period of interest

*Date (or day) of interest

*Airlines of interest

*Aircraft types

*Flight durations of interest

*By scheduled, controlled or
departure delayed times

*Time period of interest
*Sorted as desired

*Columns desired (e.g. flight
identification, origin
departure time)

*Time period of interest
*Graph data of interest (e.gq.
landing capacities,

arrival loads, holding
stacks, air delays)

*Destination airport
*Time period of interest
*Initial stack size and
occurrence time

*Airport of interest
*Time period of interest
*Normal (permanent) or
today only capacities

*Airport of interest
*Normal or today only

*Airport of interest
*Time period of interest

*¥Airport of interest
*Landing Capacities
*General aviation factor
¥Departure delays

*Time period of interest

page 4-4

TABLE 4-1 (continued)

Flow Control Procedures *Airport of concern
*AFCP or Quota Flow
*Edit control parameters

and/or zone structures
*Output controlled and/or
original scheduled
traffic levels or delay
predictions
*Initial stack size and
occurrence time
*Overriding start and
termination tiames

for flow control period

Airport Reservation Entries *Enter new flight schedule
*Cancel flight schedule
*Paper tape or interactive
entry mode

Information Exchange *Mail from TSC
*Comments from users
(i.e., SCC)
*Format explanations

page 4-5

4,2 TIME-SHARING COMPUTER INTERFACE

One of the major decisions discussed in Chapter 2
stated that the operation of AIRS be such as to nminimize

computer training requirements for the users. Minimizing
computer training simply means reducing the number of
operating system level activities for the user, Since

time-shared systens are mpulti-user 1in nature, it is
unreasonable to expect that the operating system be tailored
to suit one type of user at the expense of others, The
burden of handling the operating system aperations must
therefore be shifted to the AIRS program as far as possible,

In most automation systems, accidental mistypes during
inputs cause fatal errors and control returns to the
operating system level from the automation systen. Such
errors mean that a restart of the automation system is
required. This type of input error cannot be prevented, but
it can be accommodated by a "forgiving" automation system
which screens its own errors and decides what actions follow
detected errors. It retains control and avoids unnecessary
aborts to the operating system level, thus simplifying the
"what to do now" training.

Many auvtomation systems are composed of an assortment
of completely separate programs (subsystems). One type of
report might be produced by one program, a different variety
night be produced by another. Each program must be started
up by commands to the operating system; each requires its
associated training., AIRS avoids this separate program
approach and its extra training burden by integrating all of
the automation programs into one multi-functional system.

Occurrence of data file errors, sometimes caused by
computer malfunctions, often results in further user
interaction. When a file error is detected in a typical
automaticn approach, the system aborts what it was
processing and returns to the operating system level.
Attempts of the user to restart the automation system will
abort at the same point. Training is not going to help here
because it requires programmer attention. The system is out
until fixed. This situation is prevented in the AIRS systen
for the most common file damage situations. The user is not
left with an error message and an unusable file but instead
is given a message that the detected file damage has been
fixed and an instruction to restart AIRS.

There is another common situation of file damage
produced when the computer malfunctions. It is really not
damage in the usual sense but is the inconsistency of a
partially updated file. Special training in backing up data

page 4-6

files could restore the file to a working level, but this is
at a programmer training level. One would also 1lose the
entries made that day, It is far better to make the AIRS
systen go to extra lengths to provide recovery data
automatically with all critical file updates and to have
AIRS test files before using them, to see if they must be
restored first. This is indeed the designed capability in
AIRS. RAIRS can restore the integrity of any partially
updated file with at worst, the only 1loss being the last
item of data at the time of the computer malfunction.

As discussed in the previous section, the teletype or
display device permits the users to interact with the
computer through the keyboard. There 1is also another
interface feature associated with some of these teletype
devices, the paper tape unit., It is possible for the user
to prepare paper tapes by keyboard entry when not connected
to the computer. The user can then connect the teletype to
the computer and enter the paper tape in place of keyboard
inputs. For an operation such as flight data updates, this
paper tape wmode would permit considerable freedom in
scheduling the typing and the data entry work cycle to meet
practical operational conditions. This interface option for
ARO operations has been incorporated into AIRS.

In summary, AIRS has been designed to give the user a
second chance with input errors. It presents to the user a
general set of control options to activate vastly different
automation tasks ranging from listings to quota flow control
assistance. It maintains an operational 1level of file
1ntegr1ty by recovering from.partial file update damage and
repairs the most common form of system damaged files. And
it provides the freedom of paper tape buffering. All of
these extended automation capabilities add up to the
minimization of computer training and ease in operation for
the ATC staff at the ScCC.

page 4-7

Il
.
-
]
I u
]
]
-
I
|
I
-
L
-
.

5. CENTRALIZED DATA BASE

The domain of centralized data banks has been traversed
in many applications from libraries to computerized
information systems. There is a wealth of technology to
draw upon; a great portion is independent of whether
automated or manual, some is only practical witk computers.
One can seé in the library excellent examples of efficient
retrieval, A person can use the specially prepared index
and cross reference files to identify the book of interest,
he then uses the code number shown on the book's reference
card to go to the book rack, shelf level and cubical which
contains the book. 1A short serial search of the cubical
easily lccates the desired book. One can see 1in this
example the combination of techniques which aid speedy
retrieval. First the use of index or cross reference files
which insure rapid access to any part of the data bank.
Other techniques used involve grouping or categorizing (e.gq.
subject and author index files), codes which point to the
area of location and sorts such as alphabetized ordering.
The actual process of retrieval involves' serial searching,
binary searching (e.g. in a sorted card file one can narrow
down the area of search by spanning successively smaller
numbers of cards approaching the desired card) and random
accessing,

Looking into computerized information retrieval systems
one sees other applicable technology. The computer systenm
adds a new dimension to accessing by introducing hash
coding, the process of using the name of the desired item in
a transformation equation to identify the storage location
(address) of the item, Computers also allow blocks of data
to be scattered throughout an area of storage yet be
serially retrieved by a chaining technique which links each
block to another.

The problem of designing a central data base is the
development of the best mix of these techniques to produce
the most efficient file structures to fulfill the design
objectives. The AIRS design objectives which influence the
data base structure are:

1. Provide fastest access and data retrieval possible
within the time-sharing computer restrictions.

2. Provide efficient updating capability but not at
the sacrifice of retrieval speed.

3. Provide full range of operations for all airports
in the data base,

page 5-1

The design tradeoffs must also consider the time-sharing
computer's external storage (disc) capacities, access and
transfer rates, and the share of service expected during
normal ccmputer loading. Add to this the share of internal
storage (core) and buffering capacities for transferring
data to and from the storage devices and the problem becomes
more complicated,

This chapter presents the AIRS tradeoffs, the selected
goals and the effects of computer system restrictions in the
design and structure of its centralized data bank., The
discussicn will cover the files used during the operation of
AIRS., Discussed in later chapters will be three closely
related areas: the support files, the damage recovery
aspects of each applicable file and the non-centralized
(temporary) files. This chapter is subdivided into four
sections. The first addresses the major file, the flight
schedules, and its associated index files., The second
section treats the file of the airport parameters vital to
traffic predictions. The next section discusses the flow
control files needed for application of the AFCP and Quota
Flow Procedures. And the last describes the other data
files required by AIRS,

page 5-2

5.1 FLIGHT SCHEDULES

This section describes the main data base of AIRS - the
flight schedules, We will explain wvwhat information it
contains, how the information is represented, how it is
organized, how it is accessed, and how it is updated.

CONTENT
The flight schedules contain:

1. All scheduled flights (except helicopters) originating in
or departing from the U.S,. A "flight" is actually a
non-stop flight 1leg, These scheduled flights are
obtained monthly from Official Airline Guide data.

2., Unscheduled flights (extra sections, general aviation,
etc.) entered by the ARO for major airports, The fact
that the ARO normally only makes entries for certain
airports is due to FAAR operating procedures, not to
restrictions in AIRS., There are only'a few airports for
vhich the FAA requires reservations. AIRS treats all
airports alike, however, and is equally happy to accept
entries for any one., In fact, the ARO does enter extra
sections at holiday times for many more than their
standard reservation airports.

3. The ARO also cancels flights for the major airports (as
above, there is no restriction within AIRS to particular
airports). RAny flight can be cancelled, regardless of
how it got into the data base (whether from monthly
schedules or ARO entries).

The monthly schedules contain about 25,000 flights, and
the data base usually contains two months worth to provide
continuity. ARO entries add about 16,000 a month, bringing
the typical data base size to about 60,000 flights,

A "flight" in the data base consists of the following basic
data:

1. Flight ID (usually an airline and flight number)
2, Origin airport

3. Destination airport

4, Planned time of departure (in GMT)

5. Planned time of arrival (in GMT)

6. Effective date

7. Discontinued date

8. Days of the week on which it departs

9. Days of the week on which it arrives

10. RAircraft type (equipment type)

page 5-3

11. User class (whether scheduled air carrier, general
aviation, taxi, extra section)

It may also contain temporary information for the current
day giving different departure and arrival times as a result
of SCC-entered departure delays or flow control
restrictions.

FORM

211 flight schedules are stored on a single disk file,
In earlier systems, such as the pilot terminal model (Ref.
2) and the original AFCP system (Refs. 4 and 5), the
schedules for each airport were on separate files, making it
simple tc deal with the flights for each airport, However,
these systems only handled a few ajirports -- 14 in the pilot
model and 5 in the AFCP program. One of the decisions in
designing AIRS was to avoid making any advance assumptions
as to what airports would be of interest to flow
controllers, and thus we chose to make information on all
airports accessible. AIRS has in its data base over 1090
airports, and it would not be feasible to keep a separate
file for each.

Flight schedules on this file are stored in a standard
format., Each flight takes up the same number of words,
which include space for all the data the flight can contain
(see above). Since all flights have room for the temporary
delay data, flow control procedures or other delays can be
applied to any airport. Although this delay data is seldonm
used, allocating space for it in the standard format doesn't
require much space and simplifies processing. If the flight
format only contained the basic flight data, how would
temporary delays be handled? One method would be to put the
temporary data somewhere else (perhaps on a separate file)
and have a pointer to this data in the basic flight entry.
This would make 1later processing inefficient, since to
decide anything about a flight we would have to follow its
pointer to get the necessary data; jumping 'around during
disk access is much slower than reading sequentially from
one area, Another method would be to move the flight entry
to the end of the file, where there's room, and append the
added data to it. This would complicate both access and
processing, since entries would have different 1lengths and
formats. Also, since flights are accessed via indexes (as
we will see later), moving a flight to a new location
requires changing the indexes which point to it. Since
delays are imposed on many flights at a time, it would take
a lot of work to do this re-indexing.

page 5-4

Minimizing the number of words used per flight can
improve fkoth the abilities of AIRS and its response tinme,
Some data processing in AIRS, such as sorting flights for
listing and computing flow ccntrol restrictions, requires
working with large numbers of flights at once. But lack of
internal (in core) storage space limits the number that can
be worked with simultaneously. Obviously, the fewer words
per flight the more flights that can be stored internally.
A more important gain is in response time, since disk access
is the principal cause of slow response, Fewer words per
flight means fewer disk accesses to read the same flights,
hence shcrter run times. The gains are not only in reading
the schedules, but also in writing and reading scratch files
used to store flights temporarily during processing.

Two techniques are used to reduce the size of a flight
entry - packing and encoding., Most of the data in a f£light
entry do not require a full 36-bit word. We thus pack as
many items into each word as will fit. The PDP-10 machine
language includes instructions which make it easy to
manipulate (store and retrieve) arbitrary "bytes" counsisting

of any number of bits at any position in a word, Purther
compaction is achieved by encoding some of the data so that
it requires 1less space. For example, representing an

airport by a number instead of by its three-character nanme
cuts the amount of space it requires in half.

ACCESS

Flight retrieval would be excessively slow if we had to
sequentially search the entire schedule file. The
sequential reading alone (ignoring any processing dome on
the flights) would take several minutes. Random access is
available, but in order to make use of it we must know where
we want to access. We can find the desired flights more
efficiently by indexing the flights according to data (keys)
by which they will be retrieved. For example, they could be
indexed by origin, airline, planned time of arrival, etc.
Then to retrieve flights satisfying some indexed condition,
we would lock up that condition in the index and search just
the flights listed there. The schedules can be indexed by
any number of keys. Ther if a request specified more than
one indexed condition, we would look up both and combine the
information from the two to get our 1list of flights to
retrieve. This might narrow down the search still further.
For example, let's assume the schedules were indexed by
origin ~and destination. If a request were for JFK
departures to Miami, we would look up JFK in the origin
index and MIA in the destination index, then search only the
flights which appeared on both lists,

page 5-5

It might seem advantageous to index the schedules by all
possible keys - origin, destination, airline, planned time
of departure, planned time of arrival, aircraft type, etc.
Then almcst any condition appearing in a request could be
used, via the associated index, to reduce the schedule
search, By combining the information from all these
indexes, we should get a maximum narrowing down of the
search, since we would look up only the flights satisfying
all the indexed conditions. However, there are two reasons
not to go overboard on the indexing, but rather to
judiciously choose the best keys to index by. First of all,
the work required to manipulate the indexes may outweigh the
advantage they are designed to achieve, Merging indexes to
get a narrowed down 1list is in itself a time-consuming
process. Since the indexes are permanent, they will be on
disk files; thus accessing many indexes means doing a lot of
disk accesses. Also, some 1indexes would be very 1long,
requiring many accesses (for example, in an
hour-of-departure index, each hour would 1list about 2000
flights) . Secondly, indexes add work to data base updating
caused by ARO flight entries. If flights are to be accessed
only via indexes, then in order to be accessible, any
flights added to the schedule file must also be added to all
appropriate indexes., Obviously, the more indexes vwe use,
the more work it will take to add a flight, and the slower
schedule updates will be., Although retrieval speed is more
important than update speed, updating must not be made so
slow as to be impractical. We must therefore choose only a
few keys to index by.

There are three major factors in choosing a key to index
by:
1. It should be frequently used to access flights; otherwise
we're carrying the overhead of updating the index but
using it infrequently.

2. It should provide a good narrowing down of the search,
otherwise we're doing the work of manipulating the index
for very little benefit,

3. The indexing data should be constant; otherwise a request
which changed the flight data would also require the
index to be changed (the flight would no longer be listed
in the right place). This increases the workload of
making a change to the schedules.

We chose to index the schedules by origin and destination
airports, This choice satisfies the three factors above.

1. Since AIRS is airport-oriented, all requests for traffic
information must specify an airport of origin or
destination. (Actually, a center or defined area may be
used instead. This will be discussed below.) '

2. Since there are over 1000 airports in the AIRS data base,
indexing by airport narrows down the file considerably.

page 5-6

3. No requests in AIRS result in changing a flight's origin
or destination.

Another retrieval condition required in every request
(though it may be implicit) is a time period. However,
arrival and departure times are not useful to index by since
they violate factors 2 and 3 above. Since most requests are
for at least half a day, time periods provide little or no
narrowing of the search. They are also ncn-constant, since
imposition of flow controls or departure delays may
temporarily affect them. There is no point in indexing by
factors such as aircraft type which are rarely used in
retrieval.

We stated above that every request for traffic must
specify an airport. Actually, it must specify a place,
which can be an airport, a center (ARTCC), or a defined area
(such as Europe). Centers are defined as groups of airports
and areas as groups of airports and/or centers. AIRS
originally translated groups such as centers into their
constituents. Thus every request did have (implicitly)
airports in it. The indexes for these airports were looked
up and combined to get a resultant 1list Jjust as if the
airport names had been in the original request instead of
the center nanme, However, since centers contained many
airports and often several centers appeared in the sanme
request, the index manipulations for these requests turned
out to be so slow as to give unacceptably poor response. We
thus index the schedules by origin and destination centers
as well as by airports., Areas are still handled by
substituting the constituents and combining the indexes. It
makes sense to index by center, since center definitions are
permanent. Instead of doing the same time-consuming airport
combinations each time the center is used, it is economical
to just do them once, when forming the index.

ORGANIZATION

Although the indexes enable us to access only the
relevant parts of the schedule file, the disk access is
still much less efficient than it could be. Even when
randomly accessing specific words of a file, the entire disk
block containing the words is transferred into a buffer. If
the next words requested are from the same disk block, the
system recognizes that they are already in its buffer and
doesn't access the disk again. Thus the disk is accessed
only when the words to be read are in a different block from
the words last read. Our access would therefore be more
efficient if the flights we wanted were grouped together.
We thus sort the schedule file by airport (since it is
indexed by airport). Actually, it is sorted by destination

page 5-7

and subsorted by origin. This means that access by
destination is more efficient than access by origin, since
the flights for a destination are together while the flights
for an origin are scattered among various destinations. We
nmade destination retrieval more efficient since most flow
control requests (for arrival delay predictions, flow
control procedures, etc.) are concerned .with arrivals, He
could have made both types of retrieval equally efficient by
having two copies of the schedules, one sorted each way.

This is unfeasible, however, because:

1. The data base is so large that two copies would strain
the available storage;

2. ARO entries would have to be made on both copies and
added to both sets of indexes, doubling the amount of
work;

3. Data changes (such as delays) would have to be entered on
both copies.

The sorting is done once a month when the new Airline Guide
schedules are obtained. Entries made by the ARO throughout
the month are not in the sorted order. ARO entries will be
discussed later in this section.

CROSS~-REFERENCES
How do you look wup an airport or center in a

cross-reference (index), and what do you find when you do?
There are two cross-reference files, one for airports and

one for centers. Each airport (and center - everything we
say about the airport indexes also holds true for the
centers) has associated with it two 1lists - one 1list of

pointers to flights originating there, and one of pointers
to flights destined for it. The pointers are the relative
positions of the flights in the schedule file rather than
their absolute addresses, That is, a pointer value of 17
means the 17th flight, not the flight at word 17, The use
of relative pointers is possible because the schedule file
is fixed format, so given a relative position it is easy to
calculate the corresponding address. It is desirable to use
relative rather than absolute pointers because it is then
possible to reformat the schedule file, changing the number
of words per flight, without affecting the cross-references.
Such reformatting has indeed been necessary several tinmes
during the evolution.of AIRS. Since the £flight schedules
(except for ARO entries, a small percentage) are sorted by
airport, the cross-references will have many coasecutive
pointers. #We thus reduce their size by storing pointer
ranges rather than individual pointers, For example,
instead of listing the numbers 23 through 30, we would just
store the pair: 23,30,

page 5-8

Since the pointer 1lists vary in size, there is no
inherent way to know where to find the 1list for any
particular airport. We thus have a fixed format index oan
the start of the cross-reference file which gives, for each
airport, the address and length of each of its two (origin
and destination) pointer lists. The same number used to
represent the airport on the schedule file is used to
calculate the address of the airport's information in the .
fixed index. (AIRS translates from the airport names to
these numbers via the dictionary, discussed in 8.1.)
Centers, though not stored on the flight schedules, are also
assigned numeric values (via the dictionary) which are used
to calculate their positions in the fixed index of the
center cross-reference file,

The lists of pointer ranges are kept sorted in increasing
order. It is good to have them sorted when they are being
used, since:

If they are being used directly to retrieve flights,
there will be just a single pass through the schedule
file, thus getting the advantages of sequential access
(discussed earlier) ;
and

If they are being combined to take care of multiple
request conditions, the combination operations are much
simpler and more efficient with sorted lists (see 9.1).

It is obviously more efficient to store them sorted in the
first place than to sort them each time they are used, It
would be difficult to sort them at use time anyvay, since
the lists may be arbitrarily long and may not fit in core.

ARO ENTRIES

The new flight schedules typed into AIRS by the ARO are
added to the central schedule file and, in order to be
accessible, to the cross-references. How is this
accomplished?

New flights are appended to the end of the schedule file;
no attemgt is made to arrange them, We saw earlier that the
Airline Guide flight schedules are sorted by airport in
order to speed access to then. It isn't possible to
maintain this sort when adding flights, since to put them in
the area corresponding to their origin/destination
combination would require pushing all subsequent flights
do¥n to make rocom -- a gigantic wundertaking when you're
talking about tens of thousands of £flights. Since AIRS
isn't dependent on the sort, we neen't consider such
extremes, but can simply put the flights on the end of the
file in the order in which they are entered. If the ARO
groups the flights by airport wvwhen entering them, better

page 5-9

access times are maintained than if they allow them to be
fragmented.

In order to be accessible, a new flight must be added to
the cross-references for its origin and destination airports
and centers (if any). Since the new flight is at the end of
the file, its relative position is greater than that of any
other flight, so adding its pointer to the end of a
cross-reference list automatically maintains the sorted
order of the list. Cross-reference lists do not initially
have enpty space on their ends for adding pointers,
Expansion space can't be provided in advance, since it is
not known what airports will need expansion or how much
space they will need. Instead, when a list needs room to
expand, it is copied onto another area of the file which has
enough space, and allocated some extra space. If enough
additions are made to use up this space the 1list is moved
again. Since the pointers are stored in ranges, such that
any sequence of consecutive flights requires only two
pointer words, we see another advantage of grouping the
flights before entering then, namely that the
cross-references will grow 1less, thus being easier to
manipulate and requiring less frequent moving around.

The space vacated by a cross-reference list that has been
moved shculd be reusable by other 1lists that need space.
Each cross-reference file thus has associated with it a
free-space file, which keeps track of space available on the
cross-reference file. Areas that have been vacated are
recorded on this file, and areas to move to are chosen by
looking on this file. O0f course, if no adequate space is
available, the list is moved to the end of the
cross-reference file, extending it.

SUMMARY

Figure 5-1 shows the structure and interrelationships of
the schedule file, the cross-reference files, and the
free-space files, Two of the items shown have not been
discussed yet:

1. Recovery data:
During the processing of an ARO entry or cancellation,
there are times when the data base is vulnerable; if the
program were interrupted (as by a computer crash) at
certain instants, the files might be left in an
inconsistent and possibly unusable state. AIRS thus
stores enough data before performing the dangerous file
modifications so that it can recover after an
interruption and restore the integrity of the files. The
nature of this recovery data and procedure will be
discussed in detail later (13.6).

page 5-10

2.

To

Expansion room:

In order to aveid a certain type of damage, the files are
kept physically longer than is needed for their data.
Thus modifications that append to the files are appending
logically (to the data), not physically (to the file).
This will be explained in 13.2.

summarize the file contents,

The schedule file contains fixed format flight schedules.,

The terminal cross-reference file contains
variable-length lists of pointers to flights (on the
schedule file) for each origin and destination
terminal (airport). It also contains a fixed format
index, addressed by terminal, to locate these lists.

The terminal free-space file keeps track of the end of
the terminal cross-reference file (so it can be
appended to) and free areas (location and number of
words) on the terminal cross-reference file,

The center cross-reference file is analogous to the
terminal cross-reference file, bat for ARTCCs.

The center free-space file is analogous to the terminal
free-space file.

page 5-11

SCHEDULE FILE

Number of Flights

Recovery Data

Fixed Format
Flight Schedules
(8 Words/Flight)

TERMINAL CROSS-
REFERENCE FILE

Recovery Data

Fixed Format
Index

.

Variable
Length Pointer
Lists

TERMINAL FREE-
SPACE FILE

No. of Free Areas

End of Cross-
Ref, File

Pointers To
Free Space

Room For
Expansion

CENTER CROSS-
REFERENCE FILE

Recovery Data

Fixed Format
Index

Variable
Length Pointer

Space For
Adding Flights

Lists

.

Room For
Expansion

CENTER FREE-
SPACE FILE

No. of Free Areas

End of Cross-
Ref. File

Pointers To

Free Space

Room For

Expansion

Room For
Expansion

FIGURE 5-1

FLIGHT SCHEDULES AND RELATED FILES

page 5-12

5.2 AIRPORT DATA

In addition to flight schedules, AIRS must have certain
data on airports., This section describes the airport data
file, which contains some of this data. The rest will be
discussed in section 5.3,

Four types of information are stored on the airport data
file:

1. ARTCC
In order to make flow control allocations, AIRS must be
able to find out what center amn airport is in, Every

domestic airport has an associated center,

2. General Aviation Factor

Unscheduled traffic (general aviation, etc.) must be
taken into account in order to make meaningful
predictions, A factor, a percentage to apply to

scheduled traffic, is used to estimate unscheduled
traffic. The factor, which can be entered or modified by
the user for any airport, is a single value which applies
at all times on all days for that airport, A temporary
value can also be entered to apply for the current day
only.

3. landing Capacities
Landing capacities are necessary in order to do arrival
delay predictions or flow control. Landing rates, by
hour, can be entered or modified by the user for any
airport. The same landing rates apply regardless of day
of the week, but a temporary set of rates can be entered
to apply for the current day only.

4, Departure Delays
Departure delays can be applied by airport by hour of the
day and apply to the current day only.

Further discussions of the meaning and use of this
information will be found in chapters 9 through 12,

The simplest file structure would be to have a standard
block set up for each airport to hold all of the above data.
The data for a particular airport could easily be accessed
by using the numeric value associated with the airport to
calculate the address of its data block (as was done in
section 5.1 for the cross-reference files). However, this
would be extremely wasteful of storage space; although every
airport has a center, very few will ever have general
aviation factors, landing rates, or departure delays entered
for them. We therefore have small standard blocks for all

page 5-13

airports, accessed via the airport's number, containing only
the center and a pointer (address) to a larger block
containing the rest of the information, if any. The longer
data block is only created if and when data is entered for
the airport (see chapter 11.1), and contains space for all
the data that can be entered. Storage is also conserved
(hence access times reduced) by packing the data. Both
general aviation factors (today and normal) are stored in a
single wcrd, and all the data for each hour (today and
normal landing rates, departure delay) are packed into a
single word,

The file also contains information on any temporary data
entered and when it applies, so +that AIRS can reset it
automatically the next day (see chapter 11,1). Figure 5-2
schematically shows the airport data file.

page 5-14

ARTCC And
Data Pointers
For Each Airport

Data Blocks
For Airports

Temporary Data Re-
setting Information

Center

Address Of Data

FIGURE 5-2

AIRPORT DATA FILE

page 5-15

Typical Airport
Entry

5.3 FLOW CONTROL DATA

The incorporation of flow control procedures into the
AIRS system requires that certain control and traffic zoning
data be maintained in the centralized data bank., Beca use
flow control procedures can be tailored to each airport of
interest, the supporting data files must be maintained by
airport. These files could have been combined into one file

as organized in the previous section, 5.2. However, the
separate approach was selected to facilitate multiple flow
control procedures for a single airport, There are two

types of flow control files possible for each airport, the
first contains the control information and the second
contains the zone structure. Except for a single default
control file, these files are created and maintained by the
CFCF in accordance with the flow control needs (see Chapter
11.2). It is therefore possible for hundreds of these files
to exist in the central data bank as flow control procedures
encompass more airports, Currently, fewer than a dozen
airports are involved. The purpose of the default control
file is to initialize the control parameters when the CFCF
is developing the flow control procedures for another
airport.

The control files contain the following information for
the applicable airport:

1. The maximum air delay permitted during flow control
periods.

2, The maximum stack (airborne aircraft holding in
airport's area) permitted during flow control
periods.

3. The interval of time used in computing the
allocations and quota flow rates.

4. The choice of whether or not to incorporate the
general aviation traffic using the GA factor and,
if used, during which periods of time to employ it
(i.e. for airports with ARO updates, the GA factor
need not apply during the period in which ARO
operations apply) .

5. The choice concerning the applicability of flow
control procedures to airborne domestic and/or
foreign traffic.

6. The margins for take-off and landing times, to be

used in determining aircraft flight status (e.g. an
aircraft might be considered ineligible for flow

page 5-16

control ground delay when it is ten minutes from
take-off instead of on take-off).

The zone files contain airport grouping information
which is used in formulating the flow control allocations.
A zone file has the following data:

1. The number of zones in the file,
2. The control status of each zone.

3. A list of departure centers and airports comprising
each zone (i.e. the places of flight origin).

4. Within each zone, titled subsets of airport
groupings for tabulation of allocations or quotas
for that zone.

The structures of these two types of files are simple.
The amount and range of information within each is very
limited. The control file is a fixed 1list of control
parameters. The zone file is a mix of fixed data blocks and
one general area of storage used for the place lists, This
general area is accessed by using a pointer and number (of
entries) found in the fixed data block associated with the
zone number (zones are referenced by number). The use of
the files simply involves reading and storing in core all of
the information they contain.

page 5-17

5.4 OTHER DATA FILES

AIRS has three other central data files containing tables
which enable it to know about days and dates and to
translate back and forth between words in the user 1language
and their internal representations, These are as follows:

DATE FILE

This file contains the names of the months, and
associates with each month the number of days in it, the
first day in it, and the year in which the information is
true. AIRS automatically keeps this information up to date.
AIRS simply reads this file when it starts up and holds the
data in an array in core, The table is used for:

- translating from the internal representation of a month

(a number from 1 to 12) to its name for use in output -
the number is used simply to index the name in the
array

- figuring out the day of the week a given date falls on,

and vice versa

- calculating a date having some relationship to a given

date (e.g. calculate tomorrow's date)

The manipulation of dates and the updating of this file are
discussed further in chapter 16.

TRANSLATION FILE

This file contains four tables: the dictionary, the
airport table, the aircraft type table, and the center
table.

DICTIONARY: This table is described fully in section 8.1.
Briefly, it is a hash table in which each word in the
AIRS language is defined, providing the translation £from
user language to intermal representation. For example,
looking up an airport name gives the number used to
calculate the airport's location in the cross-reference
file (5.1) and in the airport data file (5.2). Actually,
the dictionary on this file does not contain all the
entries listed in table 8-1. It only contains airports,
centers, airlines, aircraft types, areas (groups of
places), aircraft type groups, and airline groups. When
AIRS is run, it reads in the dictionary and copies it
onto a scratch file., It then enters the rest of the
items on this copy. This is necessary because the values
of some types of words contain addresses within the AIRS
program., A change in AIRS can thus change these values.

page 5-18

By setting up a private dictionary and entering these
values in it at run time, each copy of AIRS makes sure it
has a correct (for itself) dictionary. The dictionary
(on the scratch file) is read by randomly accessing Jjust
the words desired,

ATRPORT TABLE: This is just a list of airport codes (such
as JFK). The number used to represent an airport (on the
schedule file, and for all internal use) serves as an
index to its name in this table, The table 1is simply
read into an array in core, where it is used to 1look up
airport names for output.

ATIRCRAFT TYPE TABLE: This is a 1list of aircraft type
codes, indexed by the numbers used internally (and on the
schedule file) to represent aircraft types. Like the
airport table, it is read into an array in core and used
to get codes for output.

CENTER TABLE: This is a list of center (ARTCC) codes,
indexed by the numbers used to represent centers, It is
read into am array in core and used to 1look up center
names for output.

GROUP DEFINITION FILE

There are words in the AIRS language standing for groups
of aircraft types, airlines, and places. AIRS handles these
by substituting for them the members of the group. The
group definition table has, for each group: the group nanme,
followed by the number of members in the group, followed by
the members of the group. These definitions are packed
end-to-end; the definition of the group name in the
dictionary supplies the index of the group's definition in
the table, The group table is read into an array in core
whenever a request containing a group is processed., It is
not kept in core throughout the run because it is
space-consuming and infrequently reeded.

Some of the programs which support AIRS also make use of the
date and translation files (see chapter 18),

page 5-19

v

6. AIRS PROGRAM OVERVIEW

Chapter 4 described the ways the user communicates with
AIRS (via a combination of dialog, fixed format requests, -
and a free-form request language), and table 4-1 summarized
the activities AIRS can be asked to perforn. Figure 6-1
shows the overall flow of AIRS. After AIRS is started up
and has initialized its files and data, it enters the basic
cycle of accepting a free-form request from the user,
analyzing it, and performing the requested activity. The
cycle continues until the user requests that AIRS quit. Two
of the activities have extensive user control cycles of
their own: These are diagrammed in figure 6-2. The flow
control activity has two dialog (question-and-answer)
cycles: one in which the user edits zones and control
parameters, and one in which he controls the flow control
reports and activities. The normal AIRS request cycle is
not resumed until the user so specifies. The airport
reservation activity goes through a request cycle similar to
the overall RIRS cycle. It accepts fixed format requests,
analyzes them, and performs the requested activities, The
3RO cycle continues until the user requests that AIRS quit
or that control return to the normal AIRS cycle.

Of course there are other user interactions and control
flows not shown in 6-1 and 6-2, but these show the major
loops of AIRS activity control. The various AIRS activities
will be discussed in the following chapters.

Initialization

Descriptions of the initialization operations are

scattered throughout this document. These include:

-Typing message, if any (15.1) and announcing existence of
mail (15.2);

-Reading and updating, if necessary, date information (5.4,
16) ;

-Reading translation tables and forming a run-time
dictionary (5.4);

-Resetting temporary data in centralized files if necessary
(11.1).

Request Analysis and AIRS Activities

Chapter 8 explains request analysis (for both the main
AIRS cycle and the ARO cycle) and for each type of request,
tells what chapters explain the associated processing (these
chapter references are in 8.3 under "Phrase Processing™ and
at the end of 8.4). For several activities, however, these
referenced chapters are not really the whole story. Chapter
7 describes how certain activities which need £flight data
invoke the retrieval activity by making an internal (i.e.

page 6-1

generated by and within AIRS) traffic load request., Thus in
these cases, the formulation and processing (through request
analysis, chapter 8, and retrieval, chapter 9) of this
internal request precede the main data processing operations
described for the activities,

page 6-2

l

User Starts
AIRS

)

AIRS
Initialization

Wait For
Request
From User

User Makes
Request

)

)

¥

Analyze
Request

Comment
0Or Error

!

Airport
Reservation
Entries

Quit:
Clean Up
And Exit
AIRS

Traffic
Load
Summary

Listing
of

Flights

Traffic
Load
Plots

Arrival
Delay
Prediction

Flow
Control
Procedures

Enter
Landing
Capacities

Invoke Appropriate Activity

Enter
General

Aviation Factors

Enter
Departure
Delays

Report On
Airport

Characteristics

Output
Mail
Message

Return For Next Request

FIGURE 6-1

OVERALL AIRS REQUEST FLOW

page 6-3

FLOW CONTROL PROCEDURES

Retrieve
Needed
Information

A {

Edit Control
Parameters
And Zones:
User Dialog

\

Compute Flow
Control
Recommendations

—

Output Desired
Contrel And
Data Info:
User Dialog

AIRPORT RESERVATION ENTRIES

Wait
For <t

Request

User Makes
Request

Analyze

Error
i

1
Request i
I
|

Invoke Appropriate Activity

Enter New
Flight

Cancel
Flight

Switch Mode:
Keyboard Or
Paper Tape Entry

Format
Explanation

Return For Next Request

Return to
AIRS Request

Quit
AIRS

FIGURE 6-2

AIR5S ACTIVITY REQUEST. FLOWS

page 6-4

7. REQUEST FORMULATION

The kinds of requests that can be made to AIRS are
summarized in table 4-1, and the "words" used in formulating -
them are summarized in table 8-1. (For a conplete
description of the AIRS request language, see the AIRS
User's Guide, Ref.7.) The overall cycle of AIRS operation
is:

1. Informs the user it's ready for a request

2. Reads in the characters typed by the user

3. AnalyzZes the request (see chapter 8)

L., Carries out the requested action (see later chapters)

5. Back to step 1

However, not all requests processed by AIRS are typed in by
the user. Some are formulated by AIRS itself in order to
get the information it needs to carry out a user request.
In particular, retrieval of traffic loads, the fundamental
AIRS operaton, is invoked both explicitly (by a user request
for traffic loads) and implicitly (by a user request, such
as a quota flow request, which leads AIRS to request traffic
loads).

ATRS formulates its request just as if it were an AIRS
user. It does the equivalent of typing it im by putting the
characters making up its request in the same place they

would be if a user had typed them in. It then calls the
appropriate parts of AIRS to analyze and process this
request, Once this AIRS-generated request has been

processed, the original processing continues, using the
retrieved data.

The fcllowing requests to AIRS cause internal request
generation:

1. Arrival delay prediction or flow contrcl procedures

In order to carry out these requests, AIRS must know the
arrival demand for the airport in question. The user's
request must specify a single airport of interest and cannot
specify a date or place any conditions (like the ones
possible in a simple traffic load request) on the traffic.
In order to process a request of this type, AIRS formulates
a request for the arrivals at the given airport for the
entire current operational day.

2., ARO schedule updates

Reservations: Under some circumstances, AIRS may be
required to check a flight being entered to be sure it has
not already been entered. It does this by formulating a
request for the scheduled departures from the given origin
to the given destination on the given date during the given

page 7-1

hour (it checks the whole hour in which the flight departs),
It can then check through the retrieved flights for the
particular one being entered by comparing flight IDs.

Cancellations: 1In order to cancel a flight in the data

base, AIRS must first £find it. A cancellation request
specifies either departure or arrival information and may
optionally include the other airport. For an arrival

cancellation, AIRS requests the scheduled arrivals at the
given destination (from the origin, if given) on the given
date during the flight's hour of arrival. For a departure
cancellation, AIRS requests the scheduled departures fron
the given origin (to the destination, if given) on the given
date during the flight's hour of departure. It can then
check through the retrieved flights, as above, to locate the
particular one to cancel.

3. Departure delay entry

Departure delays can be entered for the current day by
specifying the airport at which they apply and the hours
during which they apply. These delays are entered into each
affected flight in the data base. Thus AIRS makes a request
for the scheduled departures from the given airport for the
entire current operational day. It requests the whole day's
traffic since the user's request can specify any number of
hours and associated delays.

page 7-2

8. REQUEST ANALYSIS

AIRS accepts many types of requests, each having a great
deal of flexibility in its form and content. Chapter 6 -
showed the two main request cycles in AIRS (the ARO cycle
and the regular AIRS cycle) and the types of requests each
handles. Within each cycle, AIRS never knows in advance
what type of request to expect. This chapter explains how
AIRS analyzes requests., The methods used are very flexible,
allowing easy modifications and additions to request syntax.

The basic process (for the reqular AIRS cycle, not ARO)
is as follows. The request, which starts out as Jjust a
stream of characters, is scanned to 1locate the various
"yords" in it. Each word (except for numbers) is looked up
in the "dictionary," which defines it by giving a category
(e.g., classifying it as an airport code) and a specific
value (e.g. the number used to index information for the
airport) . The request is thus transformed from a character
stream tc a list of category-value pairs. This form of the
request is then examined for recognizable phrases, The
recognition of a phrase 1leads to information about the
request contents being stored in a standard form and
determines how the rest of the request is analyzed. Finally,
the standard form is examined and any default information is
filled in. It is the standard form that 1is wused later to
actually perform the requested action.

The following sections describe the various aspects of
request analysis mentioned above, as well as the analysis of
ARO requests., We have tried to not only describe how things
are done, but also why they are done that way. Limitations
of this implementation as well as its good points will be
discussed. Data processing in response to the analyzed
request is discussed in subsequent chapters.

page 8-1

8.1 THE TCICTIONARY

AIRS must have a large vocabulary including, among other
things, all airport codes for scheduled traffic (currently
over 1000), key words such as "LIST", and names of months.
What should its dictionary consist of, and how should it be
organized?

ORGANIZATION OF THE DICTIONARY

One agrroach would be to have separate lists of each type
of word - that is, a list of airports, a list of key words,
a list of months, and so on. Then to identify a word, we
would read through all the lists until we found it. We would
know what it was by knowing which list we found it in. This
is obviously inefficient; How would you like it if you had
to skim a whole dictionary to find a particular word? We
could take a lesscn from people and put all the words in a
single list im alphabetical order. Then we could find a word
by doing a binary search, 1like people do, taking
ever-decreasing jumps back and forth until we zero in on our
word. But with only one list, we don't know what a word is
by virtue of where we found it, so we must store a
definition along with the word. A third approach, still
using a single list with definitions, is to use hash coding
rather than alphabetical order. Hash coding means conmputing
an address (in a table) directly from the word in question,
so it can be found immediately. (We will not go into
algorithms for hash coding) . Of course, +this same address
computation is used when the table is formed, This is very
efficient (in time), since except in the case when several
words hash to the same address and further search is
required, we find the word immediately. This is the
approach AIRS takes.

The only drawback to a hash table is that it must have
extra space in it to avoid being cluttered (having many
words hash to the same space, thus 1longer lookup times).
This is not a consideration in AIRS since the dictionary is
already so big (requiring room for definitions as well as
words, and having close to 2000 words) that it can't fit in
core and has to be stored on the disk. A little extra space
on the disk is no problen.

DICTIONAEKY DEFINITIONS

It is not sufficient for the definition of a word to just
tell what type of word it is; that is, whether it is an
airport, a key word, etc. In many cases, in order to process
the request we need more specific knowledge about the word,
a defining value. For example, let's say a request asks for
J747s. We know from the dictionary that this is an aircraft

page 8-2

type, so vwe must test flights to see if their type is J747.
But on the master schedule aircraft types are encoded as
numbers to take up less space, so we must translate J747 to
its code number in order to do the comparison. The
dictionary should provide this code number as the value of
Ju7.

Thus the dictionary contains a two-part definition for
each word - a category and a value. The value is not always
an encoding value, as it 1is in the above example for
aircraft types. For each category the values are whatever is
appropriate for that category.

The following table shows the categories of words in the
dictionary, what words are assigned to each, and what values
are used to further define the words. Although AIRS nmust
understand numbers, they needn't be in the dictionary since
they can be directly recognized and evaluated.

page 8-3

Category

airport

center

area

airline

airline group

aircraft type

aircraft type

group

month

TABLE 8-1 -~

Words

3-letter codes for
all airports in the
AIRS schedules -
e.g, JFK

3-letter codes for
all U.S. ARTCCs -
e.g. ZNY

Words defined to
stand for groups of
airports &/or centers
Currently contains
foreign groups, such
as ZEUR (Europe)

2-letter airline codes
for all scheduled
traffic - e.g. TW

Words defined to
stand for groups

of airlines -
currently only TAXI,
standing for commuter
airlines

Codes for all aircraft
types of scheduled

flights. All start
with J, P, or T -
e.g., J727

Words defined to

stand for groups

of aircraft types.
Currently three are
defined - J(jets),
P(props) , and T(turbo-
props)

first 3 letters of
month name followed
by a period

e.g. APR.

page 8-4

THE DICTIONARY

Value

number used as code
for the airport

in the schedules -
also used to index
information about
the airport

number used to index
information about
the center

index to group's
members in the group
definition table

the airline itself
(same as the word)

index to group's
members in the group
definition table

number used as code
for the type in the
schedules

index to group's
members in the group
definition table

the corresponding
nunber from 1 to 12

Category

day

direction

request-type
key words

other key
vords

relation

flight data
selectors,
type 1

flight data
selectors,
type 2

TABLE 8-1
Words

first 3 letters of
day name followed
by a period

e.g. TUE.

A (for arrivals) or
D (for departures)

words which identify
the type of request
e.g. LIST, ?,

QFLOW, TEST

other key words used
in requests but not
classifying them -
e.g., STACK, -, FROM
LNDG

words standing for
arithmetic
relations -

e.g. L (less than),
G (greater than)

characteristics of
flights that can be
used in arithmetic
relations (see above)
and in listing
requests - includes
words for planned time
of departure, etc.

a) characteristics of
flights that can't be
used in relations,
just in listing
requests - e.g. ORIG
(origin), ...

b) words used in
listing requests to
stand for different
flight data selectors
dependent on context -
e.g. AIRP (airport)

page 8-5

continued

Value

a number from 1 to 7
starting with
Sunday=1

A=1,D=2

the word itself, or
a synonymous word if
any

the word itself, or
a synonymous word
if any

pointer to a progranm
which tests the
relation

pointer to a progranm
which selects
the data

pointer to a progranm
which selects
the data

a code number

VOCABULAEY RESTRICTIONS

There are two restrictions on words in the AIRS
vocabulary:

1. They cannot be longer than five characters:

This is nct much of a hardship, since most words AIRS should
know fall within this limit anyway. Airport codes are three
letters, aircraft type codes are at most four, etc. The only
problem is in inventing key words; it is sometimes hard to
think up short enough words with mnemonic value.

The reason for the five-character limit is that that is
the number of characters that can be stored in one word
(computer word) on the PDP-10, It would be ridiculously
wasteful to allocate two cowmputer words everywhere AIRS
words are being stored, since only a handful out of
thousands would use the extra space. It would introduce
non-uniformity and therefore added complexity in handling if
AIRS words tcok different amounts of space. Although this
could be done, it was not deemed to be worth the work. It
is desirable in any case to keep words concise to nminimize
the typing required to make a request,

2. A word cannot have two meanings:

At first glance, this seems obvious. However, there are
cases in which it would be nice to allow two. For example,
AIRS originally used as its names for months the first three
letters of the month name, But it turned out that several of
these were airport codes, so we now require a period after
the month abbreviations to make them unique. This again
keeps the dictionary and request handling simple and
uniform, since we know that looking up a word gives a simple
definiticn in a known form. Another reason for single
meanings, as we will see in section 8,3, is that the syntax
analysis can't handle ambiguity.

page 8-6

8.2 WORD RECOGNITION

Once a request has been formulated (see chapter 7) and
determined not to be a comment (see chapter 15.5), it is
broken up into "words," where a word is one of the following
types of character strings:

1. Number: a string of digits - e.g. 1230

2, Word: a string starting with a letter, containing
letters and/or digits, and possibly ending with a period.

3. Special symbol: any character other than a letter,
digit, or blank

For example, the request "A ORD J727,J3707 1200- 2000MAR. 20"
(727s and 707s arriving at O'Hare between 1200 and 2000 GHNT
on March 20) would break up into the words:

IIA" YORD™ IIJ727" ll'll llJ"o"ll ll1200" "t ll2000ll "MAR. W ll20|l

Although blanks serve to delimit words, they are not
necessary if there is no ambiguity. For example, in the
above request, "20C0" and "MAR." are recognized as separate
words because a word starting with digits can only contain
digits, so the "M" must signal the start of a new word.

FEach "word" is checked as follows:

1. Numkers: Since numbers are used in AIRS to denote
times, dates, landing rates, etc., none of which can be
bigger than 2400, numbers greater than 2400 are rejected as
erroneous.

2. Words: Since AIRS requires that a word fit into a
single computer word, words longer than five characters are
rejected as erroneous. Words up to five characters are
looked up in the dictionary. If a word isn't found, it is
rejected as an error.

3. Special symbols: Special symbols, like words (2), are
looked up in the dictonary. If they are not found, however,
they are simply ignored. Thus characters such as connma,
which have no special meaning in AIRS and are therefore not
in the dictionary, will still act as word delimiters.

page 8-7

Once the words have been identified, they are stored
along with their definitions, as found in the dictionary.
Each word is defined by a code categorizing it and a value
unique tc it. Although numbers are not in the dictionary,
they are easily assigned a category (number) and value
(their integer value) . Thus the above request would be
transformed into a table as follows:

Word Category Value

npn a direction The code number standing for
arrivals

"ORD" an airport the number used to encode ORD in

the schedule and to access
information about ORD

"J727" an aircraft type the number used to encode
J727 in the' schedule

"J707" an aircraft type The number used to encode
J707 in the schedule

"12C0%" A number 1200

iUy a key word L]

"2000" A number 2000

“MAR."™ A month 3 - i.e.the third month

na2ow A number 20

page 8-8

8.3 SYNTAX ANALYSIS

OVERVIEW

The category-value form of the request obtained in the
last section is now analyzed as follows. The beginning of
the request is compared to all possible patterns until one
is found that matches, The recognized request phrase is
processed as appropriate, then the part of the request
immediately fcllowing it is analyzed in the same way. This
process continues until the entire request has been
analyzed. If at some point no pattern can be found that
matches the request, the request is declared erroneous.

PHRASES

In the above, a pattern is a sequence (any length) of
cateqory-value pairs. The value may be unspecified, so that
any member of the category will match. For example, one
pattern for specifying a time period would be: any number,
followed by the key word "TO", followed by any number. This
is a three-word pattern in which the first and last words
need only be the right category (number), but the middle
word must have a particular value ("TO") as well as category
(key word). The request phrase "1800 TO 2200", for exanmple,
would match this pattern.

FLOW CF CCNTROL

Recognition of a phrase determines the sequence of
patterns to be tried in analyzing the next part of the
request. These may repeat patterns already tested, or may
be entirely different. For example, a demand request can
contain any of its possible phrases in any position, so in
analyzing a demand request we repeatedly ¢try the same
sequence of patterns. On the other hand, if we recognize
{(via the first phrase) that a request is for flight
listings, or for entering landing capacities, we must look
for phrases specific to these types of requests.

DISCUSSICN OF APPROACH

This phrase-oriented approach has the advantage of
clarity, since phrases are seen as a whole, hence ease of
syntax mcdification. This is important in an evolutionary
system such as AIRS, Since the first version of AIRS was
implemented, many phrases have been added or modified; even

page 8-9

nevw types of requests have been added. This approach also
has a disadvantage - it tends +to give insufficient error
diagnostics to the user. If no legal pattern matches the
next part of the request, all we know is that it doesn't
match. Other approaches which might have had better
diagnositics were rejected because they sacrificed program
clarity.

AMBIGUITY

It was pointed out in section 8.1 that a word cannot have
two meanings. If it could, the syntax analyzer would have
to decide between them; AIRS can't ask the user which one he
meant, since the request might have been formulated by part
of ATRS ({see chapter 7), not by the human user, But the
syntax analyzer can't handle ambiguity. Since it processes
a phrase as soon as it recognizes it and never looks at the
next part of the request until it has understood the current
part, it can't recognize that there is more than one
possible interpretation and look ahead to decide which one
makes sense. Fven it it could, there might be cases in
which it couldn't distinguish between the interpretationms,
since both might be meaningful.

PHRASE PROCESSING

We said that when a phrase is recognized, it is
processed; that is, information obtained from it is stored
in standard locations. Flags may be set or data items
recorded for use in executing the request. When a phrase
that determines the type of request is recognized, a switch
is set to indicate what AIRS should do to process the
request after it is completely analyzed. The storage
locations (if any) used to hold the standard information for
that type of request are initialized, and the request
analysis continues, In the following, we will show for each
type of request the standard items set as a result of
phrases that can appear in that request type. We will also
indicate (in brackets) the action taken after request
analysis for each request type.

DEMAND [traffic load retrieval - see 9, 10.1]
(note: this type of request is recognized by not being
any of the below types, not by recognition of any
phrase)

1. Places (airports, centers, areas) are divided into
two categories:

page 8-10

6.

a. Places of interest - the first place in the
request or, if a parenthesized group of places
appears first, all places in the group. These
are the places the arrival/departure flags,
times, etc. (below) refer to. I.e. For arrivals,
these are the destinations; for departures, these
are the origins.

b. Other, or restricting, places - those appearing
after the first group. These determine the
flights' "other end"™ - i.e., for arrivals, the
origin; for departures, the destination,

Areas are looked up in the group definition table
and replaced by their constituent airports and
centers. The places are further divided, depending
cn whether they are to be included or excluded
(vhether a minus sign precedes them). They are thus
stored in one of four lists:

a, places of interest to include

b. places of interest to exclude

c. other places to include

d. other places to exclude

time period (possibly one-ended), if any, is stored
(only one can be appear)

a single day and/or date can be stored

Aircraft types are stored in one of two lists: one
if they are to be excluded (were preceded by a minus
sign) and the other if they are to be included (were
not preceded by a minus sign)., Aircraft type groups
appearing in the request are loocked up in the group
definition table and replaced by their constituent
types. These are then treated as if they had
appeared individually in the request,

Airlines, like aircraft types, are stored in one of
tvo lists: one for airlines to include and one for
airlines to exclude. Airline groups are expanded
and stored like aircraft type groups.

Flags are set to indicate the appearance of keywords

which:

a. select arrivals and/or departures

b. ask AIRS to ignore certain or all departure
delays

c. speed up processing by locking out ARO or not
storing retrieved flights

page 8-11

7. Restrictions on time enroute, departure time, or
arrival time can be stored. This involves storing
the flight data 'selector, arithmetic relation, and
number making up the condition.

LIST [list flights - see 10.4]
stores time period, if any

SORT [sort for listing - no processing action; has no effect
unless it appears as part of a listing request - see
10,4 for effect]

stores the flight data selectors to sort by in separate
lists for arrivals and departures

INFO [format for listing - no processing action - see 10.4
for effect]

for each specifier in the request:

sets up format specification to be used vwhen typing
data

stores code numbers identifying what flight data to
report - separate lists for arrivals and
departures

stores column headers to put on report - separate
lists cf headers for arrval and departure reports

PLOT [plot demand data - see 10.5]
stores time period, if one is given

TEST [arrival delay predictions - see 10.2] and
AFCP,QFLOW [flow control procedures - see 10.3]

sets time period, if any
for delay prediction, used as report time period
for flow control, used as override time for

implementation

sets stack size, if any (only one can be given)

sets associated stack time, if any

stores airport (only one can appear)

sets flags indicating what key words appeared in
request
for example: TEST, QFLOW, AFCP, EDIT, XARO, CONT,

page 8-12

ENTER LNDG [enter landing capacities - see 11.1]
sets flag for today or normal values - initialized to
today value, set to normal if "NORM" appears
stores each airport along with the rates to entered for
it for each hour

? LNDG [report landing capacities - see 11.1]
stores time period of report, if any
stores list of airports specified, if any

ENTER GENAV [enter GA factor - see 11,1]
sets flag for today or normal values - initialized to
today value, set to normal if "NORM" appears
stores each airport that appears along with the
associated factor; if no factor given, sets it to
reset the factor to normal

? GENAV [report GA factors - see 11.1]
stores airports listed, if any, in an array

ENTER DEIAY [enter departure delays - see 11,1]
stores each airport along with the delay to be entered
for it for each hour
? DELAY [report departure delays - see 11.1]
stores time period of report, if given
stores list of airports specified, if any
ARO. [switches to ARO input mode for subsequent requests -

see B8.4]

no other request phrases

MAIL [print messages from TSC - see 15.2]

no cther request phrases

QUIT [causes AIRS to terminate]

no other request phrases

Recall that the phrases being recognized are series of
category-value pairs. When we say that a request item 1is
stored, we generally mean the value of the iten. In the
case of places in a demand request, both the category and
value are stored, since AIRS needs to distinguish between

page 8-13

centers and airports so as to know which cross-reference
file to use (see 5.1, 9.1). See table 8-1 for the meanings
of the values of various request words.

page 8-14

8.4 ARO REQUESTS

ARO requests are analyzed separately from all other AIRS
requests, A command (YRRO.") to AIRS puts the program into
ARO mode. The ARO request analysis and processing then takes
over until commanded by an "AIRS" request to go back to the
regular AIRS section., ARO request analysis is separate from
the regular AIRS for several reasons.

1. Requests contain flight IDs, which are up to seven
characters. The AIRS mechanism, as we have seen, allows
only five-character words, since it uses only one computer
word to store one word.

2. RAIRS request analysis expects to find each "word" 1in
its dictionary. Any word not there causes an error, However,
flight IDs cannot be in the dictionary, since new ones are
being entered all the time.

3. The dates/time format in ARO requests consists of a
string of five or six digits; the first one or two are the
date (no month) and the rest is the time, Even if AIRS could
handle the six-character field (which it can't), it would
treat it as a single number.

4, The ARO request formats were inherited from an earlier
system, so we had to deal with predetermined keywords (RA,
CXD, CXA, GA, AN, AT, AQ). Though by 1luck it turns out
these terms are unique in AIRS, the two-letter codes
potentially conflict with airline names and the three-letter
words with airport codes, so they have not been put into the
AIRS dictionary, since it can't have a word doubly defined.

Requests are scanned to locate the beginning and end of
each "word." Spaces are the only recognized delimiters. The
first word is then checked against a 1list of command
keywords to determine the kind of request., Some requests,
such as "TAPE", consist simply of the key word, so there is
no further analysis, and the request 1is simply processed.
Others, such as "RA", need further analysis. The reservation
and cancellation requests have fixed formats; that is,
certain fields must appear in a certain order (the only
optional field is the aircraft type). Thus rather than
trying to decide what each "word" is, then deduce the
meaning from the order and relationships of the words, as
AIRS does, ARO knows what the word in each position should
be. It analyzes each word on the assumption that it is what
it should be, considering it an error if it isn't
legitimate. For example, the flight ID can be any (seven or
fewer) characters, but the user class must be one of the
four legitimate codes. The airports (and aircraft type, if
any) must be legitimate codes, as determined by looking them
up in the regular AIRS dictionary. Date/time entries must
contain pcssible dates (less than 32) and times (less than
2u00) .

page 8-15

Thus the ARO request analysis uses the AIRS dictionary
for terms known throughout the system (airport and aircraft
type codes) and its own word lists for other words (command
keywords and user classes).

The kinds of requests recognized in ARO mode (and the
information contained in each) are:

reservation [enter a flight schedule - see 12]
£light ID
user class
origin airport
destination airport
departure date (not including month) and time
estimated time enroute
aircraft type (optional) - if omitted, make-believe
type "NONE" is substituted

cancellation [cancel a flight schedule - see 12]
either:
flight ID
crigin
departure date and time
destination (optional)
or:
flight ID
destination
arrival date and time
crigin (optional)
The optional airports are 1ignored if they are not
recognized. '

TAPE [switch to paper tape input - see 12]
KEY [switch to regular keyboard input - see 12]
HELP [explain request formats - see 15.3]
AIRS [return to regular AIRS input mode - 8.2]

QUIT [causes AIRS to terminate]

page 8-16

8,5 CONSISTENCY AND SUFFICIENCY

After a request has been completely recognized, it may need
to be checked for consistency and sufficiency of data
specification.

Examples of the types of situations discussed below are
given in table 8-2,

CONSISTENCY

If a request contains inconsistent data, it must be
rejected.

SUFFICIENCY

If a request is incomplete (is missing information which
AIRS needs in order to process it), AIRS will complete it
with reasonable values if it can, or reject it if it
can't.

Required Information

A free-form request may be completely recognized (8.3)
even though it is missing essential data. Such a
request will be rejected at this stage,

Optional Information

Default values are filled in for optional, omitted
items. Subsequent processing stages are ignorant of
whether the information came from the user or from
AIRS.,

OTHER ASSUMPTIONS
There are other assumptions made by AIRS to cover
unspecified information, but which are not really request
completion. These are of two types:

Unspecifiable

Certain information cannot be specified in a request;
AIRS always decides the values itself.

Optional and Unnecessary

Some optional information is not needed to process the
request, so values are not filled in. The processing
sections of the program take different actions
depending on whether or not this information was
supplied.

page 8-17

TABLE 8-2 - CONSISTENCY AND SUFFICIENCY EXAMPLES

CONSISTENCY

Dates in demand requests must be legal. Feb. 29, for
example, would be rejected except in a leap year.

If both a date and a day of the week are included in a

demand request, they must be consistent. That is, the given

date must fall on the given day.

A time period in a LIST or PLOT request must fall within the

time range for which data is available - i.e. the time

period of the last request which retrieved flights.
SUFFICIENCY - REQUIRED INFO

A demand request must include a place name (everything else
is optional!).

If a demand request is not for the current day (specifies a
date or day) it must specify a time period.

A request for flow control or arrival delay prediction must
include an airport.

SUFFICIENCY - OPTIONAL INFO

If no sort specified in LIST request, arrivals sorted by
arrival time and departures by departure time.

If no time period given -in LIST or PLOT request, time period
of available data assunmed.

demand request:
If no date or day specified, current day assumed.
If no times specified (and request is for current day) a
five-hour period starting with the current hour is

assumed,

If neither arrivals nor departures is specified, both are
assumed. :

If no times given for landing rate report (? LNDG), report
covers entire operational day.

If no times given for arrival delay prediction (TEST),
report covers entire operational day.

page 8-18

TABLE 8-2 continued
UNSPECIFIABLE INFO
Flight reservations and cancellations include date but not
month. AIRS chooses the month on the assumption that the
request is for a date between previous day and three weeks
in the future. A date not in that range is rejected.
OPTIONAL INFO

If no airports listed in landing rate request, all airports
having capacities are reported.

If no times given in flow control request, AIRS computes and
reconmnends times.

page 8-19

9, FLIGHT RETRIEVAL

This chapter describes how AIRS retrieves the flights
satisfying a demand request. We assume that the request has
already been analyzed and default conditions filled in, so
tlat we now have a complete specification of the desired
flights (see chapter 8.3). That is, we know:

1. the date and day of the week

2. the time period

3. whether arrivals, departures, or both

4, the airports &/or centers of origin §/or destination

5. restrictions as to aircraft type and airline (if any)

6. whether to ignore departure delays, flow control
delays, cr both

7. conditions on the time enroute, departure time, or
arrival time (if any)

The entire retrieval process from here on is done
separately for arrivals and for departures. AIRS uses the
flight specifications listed above to build its
representation of the meaning of the request. This
representation has two parts: a list of pointers to (flights
having the right origin/destination combinations (section
9.1, and a program to filter flights to select those
satisfying the rest of the conditions (section 9.2). It
then uses the pointers to (randomly) access the possible
flights, and one by one applies the filtering program to
them. It counts up all flights that pass the test, and
remembers them so that further processing can be done on
them if desired (see chapter 10, processing retrieved data).

page 9-1

9,1 FLIGHT RETRIEVAL POINTERS
THE IDEA

To read the entire flight schedule file, testing each
flight tc see if it satisifed the request conditioms, would
be prohibitively slow due to the 1large number of disk
accesses required, We narrow down the search by first
figuring out where on the file the flights having the
requested origin/destination combinations are; then we test
cnly those flights to see if they meet the rest of the
request criteria.

We discussed in chapter 5.1 the indexes (or
cross-references) to the schedules by airport and by center.
We can lcok up any airport or center in the index file and
find pointers to the flights originating or arriving there.
Chapter 5.1 also explained why we decided to use airports
and centers to index the schedules rather than, for example,
aircraft type or arrival time. The methods of retrieval
described here would apply no matter what we chose to index
by. The general idea is to use the request conditions
having associated cross-references to find pointers to the
flights satisfying those conditions, then to retrieve just
those flights and test them for the rest of the request
conditions. This section will explain how wvwe use the
cross-references to form a 1list of pointers to the
appropriate flights,

THE PROCEDURE

We savw in chapter 8.3 that the places named in a request
are divided into four groups according to their meaning 1in
the request:

group 1: places of interest to include

group 2: places of interest to exclude

group 3: restricting places to include

group 4: restricting places to exclude
For example, if we had a request for the traffic departing
all airports in the Miami ARTCC except Miami International
and Tampa International destined for any airport in the New
York ARTCC except Kennedy International and La Guardia, the
groups would be:

groap 1: Miami ARTCC

group 2: Miami International, Tampa International

group 3: New York ARTCC

group 4: Kennedy International, La Guardia

For the sake of simplifying the discussion, vwe will

assume we are processing a departure request, The same
discussion would hold for arrivals if we just interchanged

page 9-2

the words departsarrive and origin/destination. Thus places
of interest are origins and restricting places are
destinations, so the flights we want are the ones whose
origin is one of the places of interest to include but
not one of the places of interest to exclude
destination is one of the restricting places to include
but not one of the restricting places to exclude.

We form a list of pointers to these flights as follows:

In the index files, look up each place in group 1 to get
pointers to the flights originating there. Conbine these
all into a single list, L1. Thus L1 has pointers to all
flights with origins we want to include.

Look up each place in group 2 to get pointers to the flights
originating there. Combine these into a single list, L2.
Then 12 has pointers to all flights with origins we want
to exclude.

The flights with legitimate origins are those that appear on
11 but not on L2, To get these, we form L3 by
complementing L2 - that is, L3 has exactly those flights
not on L2, Then L3 points to all flights we do not want
to exclude. Thus the Elights we want are those that are
on both L1 and 13 - that is, the ones we were asked to
include and were not asked to exclude. We therefore form
L4, the list of all flights on both L1 and L3. L4 now
points to all flights with legitimate origins.

Similarly, we use the group 3 and group 4 places to get a
list, 15, of all flights with legitimate destinations,
Finally we get a list of all flights having the requested
originsdestination combinations by taking those flights
that are on both L4 (flights with requested origins) and

15 (flights with requested destinationms).

This final 1list is the one used to retrieve flight

schedules. Note that in the simple case of a request for

traffic for a single airport, the above procedure reduces to
just locking up the pointers for that airport.

POINTER MANIPULATION

Three basic operations are used in manipulating the pointer
lists:
compiement (forming a list of all things not on a list)
union (forming a list, without duplication, of all things
on either of two lists)
intersection (forming a list of all things on both of two
lists)

In particular, we took the intersection of:

page 9-3

the union of the origins to include

the complement of the union of the origins to exclude

the union of the destinations to include

the cogplement of the union of the destinations to
exclude

The operations operate on one or two lists of pointer
ranges in increasing order, as found on the cross-reference
files, and produce a list in the same form (sorted ranges)
on a scratch file. If more than two lists must be combined,
the first two are processed to form an intermediate answer
on a scratch file, then the third is combined with that
answer, and so on until they are all incorporated. Scratch
files must be used since the lists cannot be assumed to fit
in core.

Keeping the 1lists sorted enables AIRS to be very
efficient in manipulating them. For example, suppose you
have to find the intersection of two unordered 1lists of
numnbers (forget about ranges, for the moment), In order to
decide whether an item on the first list is on the second
list, you must search the second list until you either find
it (in which case it belongs in the answer) or exhaust the
second list (in which case it is not part of the answer).
You thus search the second list once for each item on the
first list. On each search you examine either the whole
list (if the item is not found) or (on the average) half the
list (if the item is found). Considerably less searching is
required if the 1lists are ordered, since you can stop
looking as soon as you find a number 1larger than the one
you're searching for. Then when searching for the next
number, you can start from where you 1left off on the
previous search, instead of from the beginning,. You are
thus making only one pass through each 1list, This can
further be thought of as going through the two 1lists in
parallel, moving a finger down each list., At each step, you
compare the two numbers pointed at. If they are the sanme,
that number belongs in the answer (the intersection) and you
move on to the next pair of numbers. Otherwise, the smaller
can be rejected (it can't appear anywhere later on the other
list) and the finger is moved down to examine the next
number on that list. Similar reasoning applies to the other
operations,

AIRS operates as just described, processing the lists in
a single pass. The comparisons are slightly more complex
for the lists of ranges AIRS deals with than for simple
lists of numbers, since the ranges must be checked for
overlap, not equality. In the case of intersection, the
overlap is the part that goes into the answer list; in the
case of union, overlapping ranges get combined into a single
range.

page 9-4

The efficiency of the operations, the fact that each list
is read exactly once and sequentially, is particularly
important because the lists are being processed directly
from the disk file. A nice bonus of the above method is
that the final answer list is sorted, so when it is used to
retrieve flights, the schedule file is accessed in one
sequential pass, with no Jjumping back and forth. As
discussed in 5.1, this is the most efficient way of
accessing the file.

page 9-5

9.2 FILTERING

We nowv have pointers to those flights having the right
origin/destination pairs. These are the flights that will
be accessed. This section discusses how the rest of the
request conditions are applied to the accessed flights. The
conditions are used to write a filtering program which tests
a flight and decides whether it satisifes the request.
Because this approach is unusual, we will first try to give
the rationale for it. We will then explain how the progranms
are written and run, and give some idea of what is contained
in the programs for AIRS flight retrieval. Finally we will
comment on other uses of this program mechanism throughout
AIRS.

Representation of meaning as a progran

Certainly the standard form specification of the desired
flights (formed in chapter 8 and reviewed inm the
introduction to this chapter) contains all the meaning of
the request. 1Items appearing in the request are classified
not only by their inherent meaning (e.g. a number) but also
by their role (meaning) in the specific request (e.g., end
time of period of interest). At this stage we could
certainly go directly to the retrieval process., The flights
would be accessed and a program would decide whether they
satisfied the request conditions. Most of the conditions
which can appear in a request (such as restriction by
airline) appear relatively rarely. The program that tests
flights, however, being a fixed program, must take all
possible conditions into account. It must first test
whether an optional condition does exist, then if so, apply
it to the flight. The program is run for each f£flight
accessed, so these tests are performed for each £flight,
Decisions on whether a condition (such as airline) is
applicable, however, depend only on the request, not on
individual flights. Why not make these decisions just once,
when the request is analyzed, then forget about them? A
person would certainly not follow a fixed, all-encompassing
procedure when doing wanual data selection, but would tailor
his procedure to fit each particular activity. For example,
a travel agent using the Airline Guide would probably not
pay attention to a flight's airline (unless an airline were
on strike) when compiling a list of possible flights for a
client. Although he is capable of making decisions based on
airline, he would not normally ask himself, "Do I have to
check the airline today?" each time he moved his eyes to the
next flight on the list,

Thus we would like to tailor the decision procedure to
the specific request, assembling just the appropriate tests,

page 9-6

making the decisions on what is relevant just once. But
putting together a procedure is another way of saying
writing a program. AIRS writes a flight filtering progranm
which, given a flight, tells whether it passes. This
tailored program is AIRS's representation of the meaning of
the request. It is used in deciding what flights satisfy
the request.

Decisions which are made only once can afford to be nmore
complex than decisions which must be repeated over and over.
Thus we could even include some optimization in this
program-writing. In assembling the program, we could choose
the order of tests to be performed depending on the request
contents so as to narrow down flights with fewer tests, For
example, if a request restricts retrieval to one aircraft
type and covers a 24-hour period, it might be good to test
for aircraft type first. However, if it restricts retrieval
to twenty aircraft types and a one-hour time period, testing
the time period first might be better, Such order
optimization is not done in AIRS's program-writing, but it
could be.

Writing and Running Programs

How can a FORTRAN program write and run a program?
Programs can only manipulate datal Programs are programs
and data is data and never the twain shall meet (apologies
to Rudyard Kipling). Certainly AIRS cannot write a FORTRAN
program, which would have to be compiled, loaded, and
executed, none of which could be done within AIRS., Nor
could it write a program in any external language, which
would require control of the compiler or interpreter for
that language. AIRS programs are written in a special,
internal language designed for the purpose, and AIRS
contains an interpreter for that language. (Note: The
language and interpreter are more closely related to LISP,
reference 9, than to any other standard language, and the
ideas for them were derived from LISP.) The elements of the
language are just data items to the rest of AIRS, which
writes a program by putting the elements into an array (the
program-writing area) . It can then call the interpreter,
passing it a pointer to the start of the program (the index
in the array where it starts).

Programs are made up of operators and operands, written
in prefix form. For example,

(AND (GREATER PTD 1200) (LESS PTD 1500))
is an expression which, if evaluated (interpreted) with
respect to some flight, would have value true if the
flight's planned time of departure fell between 1200 and
1500, and false otherwise. "AND" is the operator in the

page 9-7

top-level expression, and it has two operands (in this
case), each of which is an expression having an operator and
two operands, etc, The interpreter can perform a variety of
"primitive" operations in terms of which all programs are
written. These include, for example: 1logical operators
(and, CCype04) arithmetic operators (plus,minus,...);
relations (greater than, less than,...); operators to
extract each item from a flight record (airline, planned
time of departure,...); operators to store items in a
flight record; and many more.

The interpreter (hence the language) is recursive - that
is, it calls itself, While trying to evaluate an
expression, it may have to evaluate a subexpression, which
it calls itself to do, before it can continue with the
original operation. Expressions can thus be nested to any
depth. Moreover, although a TFORTRAN program can't call
itself (or result in a call to itself before it has
returned), this recursive language can, for example,
contain an AND subexpression in an AND expression. This
recursive interpreter was quite natural to write in PDP-10
assemply language.

AIRS Filtering Prcograams

We will not describe in detail the programs written by
AIRS to filter flights, but just give a general idea of
what's involved. Every request will need tests for a
flight's date and time, but tests of such conditions as
aircraft type are included only if applicalbe. But even the
date/time tests vary from request to request. For example,
if the time period covers more than one day (e.g.
1800-02C0), the day to be tested depends on the time of the
individual flight. The date and time tests also depend on
whether arrivals or departures are being processed In one
case, arrival times must be checked, in the other, departure
times. Also, since the effective dates of a flight schedule
refer to its departure, the date test for arrivals is more
complex than that for departures. Depending .on the
individual flight, the departure and arrival days may or may
not be the same. Thus if a request is for arrivals on June
18, a flight must be tested for flight either on June 18 (if
it departs and arrives on the same day) or on June 17 (if it
departs and arrives on different days).

Another complexity results from the treatment of delays
(airport delays, 11.1; or AFCP controls, 10.3). Although a
flight schedule in the data base may stand for nmany
repetiticns (on different dates) of the same flight, it can
normally only contribute one instance of the £flight ¢to a
request answer, because requests cover at most a 24-hour
period and the flight, being for the same time on each of

page 9-8

its days, can only exist once in 24 hours. If delays are
entered into the flight schedule for some day, however, that
flight record can conceivably contribute two instances of
the flight to a request answer: one at the regular time on
some day and one delayed from the previous day so as to fall
within the same requested period. There is thus no
filtering program we can write that could answer yes or no
on a flight (presumably also telling whether the delayed or
reqular flight passed) when delays are concerned., The
solution requires that two filtering programs be written,
cne to catch flights that satisfy the request due to delayed
flight, and one for scheduled f£flight. Fach flight is
processed through both programs, so it may correctly pass
cnce, twice, or not at all. Of course, the content and even
existence of the two programs will depend on the request,
since the user may override (ignore) delays if desired.

Other Uses

Certain commonly used programs, such as those to extract
data from a flight record, are written just once, when AIRS
is initialized. Any part of AIRS that wants information on
a flight calls the interpreter with a pointer to the
appropriate pre-written program. No part of AIRS other than
these programs needs to know the format of a flight record,
and most parts don't even need to know (in detail) what's
contained in it. TFor example, there are programs to return
the planned time of departure (which is extracted from the
flight record) and the estimated time enroute (which 1is
computed from the flight record). The interpreter also
takes care of all storing of data in flight records. In
table 8-1, where certain words were given dictionary values
which were pointers to programs, these programs were the
ones we meant.

page 9-9

9.3 RETRIEVAL AND STORAGE

Now that we have pointers to the possible flights and
programs to test the flights, we are ready to perform the
retrieval., This entire procedure (including the formation
of the pointers and the program) is done separately for
arrivals and for departures, since the two directions result
in both different pointers and different prograams, The
retrieval proceeds as follows.

The pointers are either on a scratch file or
cross-reference file in increasing order. They are used to
read in flight schedules, one at a time. The sorted
pointers make the access more efficient than it would be
otherwise by making it locally more serial, as discussed in
5.1, Each flight has the testing program run on it.
Actually, as we saw in 9.2, a flight schedule having delays
in it can fly twice during the span of a request - once with
its delayed time and once with its scheduled time for the
next day. Thus there are really two testing programs, one
to see if the flight passes when it flies its scheduled time
and one to see if it passes for its delayed tine, The
flights that pass the test are counted up - the flight is
counted twice if tt passes both tests, since it 1is really
two flights. A separate count is kept for each hour and for
arrivals and departures. During arrival processing flights
are counted by their hour of arrival, and during departure
processing they are counted by their hour of departure,

The response to a user's demand request is simply a table
of traffic counts (see 10.1). However, for many requests,
the actual flights must be known, not just the number. A
listing may be desired after a demand request (10.4), the
request may have been made by AIRS in order to make arrival
delay predictions (10.2) or do flow control (10,3), etc.
Thus the flights that satisfy the request are remembered as
well as counted. Since all the processing activities need
the flights grouped by hour, they are remembered grouped by
hour. Remembering consists of copying the flights, by hour,
onto a scratch file (there is no room to hold them in core).
Along with each flight is stored its pointer, since several
processing activities (entering delays, 11.1; implementing
AFCP controls, 10.3; cancelling a flight, 12) modify flights
- i.e. write back different information into the flight on
the master schedule file - hence need to know where they
came from. Since a flight schedule, if it has delays in it,
really is different flights on different days, an indication
of which set of flight times (scheduled, departure-delayed,
AFCP-controlled) were applicable in this retrieval is kept
too. Arrival delay predictions and flow control require the
flights in time order. If the retrieval was performed for

page 9-190

one of these activities the flights on the scratch file are
sorted to be in time order, not just hour order.

There is a limitation in the current AIRS that only a
hundred flights can be remembered for any hour (that is, a
hundred arrivals and a hundred departures). This is because
the saving of flights is done with an intermediate stage, to
make grouping them by hour more efficient. When a flight
passes the retrieval test, it is not actually saved. Just
the added information about it described above (pointer to
it and indicator of delays vs. scheduled) is saved, din an
array in core, arranged by hour, When the retrieval is
finished, the pointers saved for each hour are used to
re-access the flights and save them on the scratch file.
The 100-per-hour 1limitation thus derives from the room
available to save the pointers in core.

If a user makes a demand request and is sure he will only
want a table, not a listing, he may so indicate by including
a key word ("XLIST") in the request. AIRS will then skip
the remembering of the flights, saving considerable time.

page 9-11

10. PROCESSING OF FLIGHT DATA
10.17 DEMAND COUNTS
DEMAND TABLFE

We saw in 9.3 that the flights retrieved in response to a
demand request are counted up by hour (arrivals by arrival
hour and departures by departure hour). AIRS responds to a
user-generated demand request by typing out a table showing
these hourly counts, and also the estimated unscheduled
traffic (computed from the GA factor) 4if it <can be
estimated.

Table 10-1 shows two sample demand tables, one in which
the GA factor was applied and one in which it wasn't. The
table contains a heading telling the date and time period
covered by the data, then gives the number of arrivals and
departures by hour. Of course, if the request was for just
the arrivals or just the departures, only the appropriate
cclumns appears., If the GA factor is applicable, the
arrival and departure columns are further broken down into
scheduled traffic (A/C column) and estimated unscheduled
traffic (G/A column). All of the time intervals reported
start and end on the hour except, perhaps, for the starting
and ending times of the report, which match the request
times,

GA ESTIMATES

AIRS must decide whether it makes sense to apply the GA
factor and, if so, whether the normal or current-day value
applies. Since the GA factors are derived historically as a
percentage of total scheduled traffic, it doesn't make sense
to apply them to partial traffic counts, such as only the
jets or only the traffic from certain centers, The factor
is thus not used if the request placed any restrictions on
the traffic. It also can't be used if the request was for
demand at more than one airport, since each airport has its
own factor and the traffic count is a single value, not
broken down by airport.

If it does make sense to make an estimate, the factors
are looked up (on the airport data file). If the airport
has no factors, then of course no GA estimate will be made.
If it has a current-day factor differing from the normal
factor, AIRS must decide which one to use for each hour of
data. (See 11.1 for an explanation of what date/time period
the "current-day" factor applies to.) The appropriate
factor is then applied as a percentage to each hour's
traffic counts. The resulting counts are included in the
demand table and also stored along with the counts of
retrieved flights for use in further listings (10.4).

page 10-1

TABLE 12-1 - SAMPLE DEMAND TABLES

REQUEST=B2S JUN.18 FROM 2200 T0 0100

IT IS NOA4 1755 THU, JUN. 28

2200 MON, JUN. 18 TDO 0100 TUE. JUN. 19

TIME ARRIVALS DEPARTURES

A/C G/A A/C G/A

2200 26 9 29 10
2300 22 7 21 7
0000 27 9 16 5
0100

REQUEST=A BOS JUN,18 FROM 2200 T 0100 ZNY
IT IS NOW 1757 THU. JUN. 28

2200 MON. JUN. 18 TO 0100 TUE. JUN. 19

TIME ARRIVALS

2200
2300
0000
0100

Do,

page 10-2

10.2 AIRPORT DELAY PREDICTIONS

The previous section described the processing required
in reporting arrival and departure demands upon airports.
Knowing these arrival demands and, if given estimated
airport landing capacities, it should be possible to predict
arrival delays, if any, and also the number of aircraft

holding in the arrival terminal's airspace. This section
describes how AIRS predicts these data in response to a
request to "TEST" for airport delays. The approach takes

the flights on a first-come-first-served basis (arrival
times) and simply puts each arrival into the next available
landing slot. When there are more arrivals than landing
slots, the program simulates them in a holding queue wuntil
their landing tinmes. Statistics are computed by time
intervals ranging from one to six per hour. A report is then
produced for the requested time period which tabulates by
time interval, the arrival counts, the numbers landed and
averages and peaks for both the arrival delays and the stack
sizes., The report can be produced for the current day only.

Chapters 7 and 9 covered the formulation and processing
of the AIRS request for retrieval of arrival flight data
associated with airport delay prediction requests. The
arrival delay processing follows the retrieval of flights,
sorted by arrival time and temporarily stored on a scratch
file on the disc. Two other forms of data are required and
are prepared in conjunction with this flight data: the
estimated number per hour of arriving general aviation
flights (i.e. the fictitious flights computed from the GA
factor; see 11.1) and the hourly estimates of landing
capacity (see 11.1). Given this data, the program then
checks the airport's control file (see chapter 5.3) to
determine the time interval for the statistics, the
requirement for applying the GA factored flights and the
period of application of the GA factor. This control file
is shared with the AFCP and the Quota Flow Procedures (see
chapters 10.3 and 11.2). If no special requirements
(control file) exist for the airport, the default controls
are employed (currently one interval per hour and GA factor
used all day). The computation of arrival delays can now
proceed.

In computing the landing slots, the program uniformly
divides the 60 minutes per hour by the estmated landing
capacity for the hour (i.e. each landing slot is given a
specific time uniformly distributed through the hour). Only
one aircraft may use a landing slot; thus if two arrive
during an available slot, one will use it, the other will
take the next slot, thus being air delayed. The program
sequences through the arrival flights, serially reading thenm

page 10-3

from the scratch file, and as required, mixes in the
fictitious general aviation flights (using specific times of
arrival as computed from the numbers of GA flights per hour
in the =same way as the 1landing slots). During each
statistical interval the counts, averages and peaks are
recorded and retained in core in an array. At the end of
the flight processing the data array is output to a disc
file combining it with other similar data (to be discussed
in section 10,3). The data on this file is then output to
the teletype by a formatting program and optionally can be
plotted along with other data on a display terminal
(currently the Conograph-10 unit). Table 10-2 is a sample of
the delay prediction report.

page 10-4

TABLE 10-2 - DELAY PREDICTION REPORT

REQUEST=TEST BOS FROM 1400 TO 0400

B2S 6/28 1811

BDS LANDING CAPACITIES:

0700 TO 2000 35
2000 TO 2100 15
2100 TO 2200 20
2200 TO 0200 30
0200 TO 0700 35

GENERAL AVIATION FACTOR= 34 %

ORIGINAL TRAFFIC

TIME ARR LAND AVHLD AVDEL PKHLD PKDEL
1400 29 32 1 b 5 8
1500 28 25 2 1 3 L
1600 28 28 2 2 b 6
1700 28 31 1 2 L 6
1800 27 27 0 1 2 3
1900 29 28 1 1 3 b
2000 39 15 19 L 25 70
2100 39 20 39 78 Ly 87
2200 35 30 48 93 50 98
2300 31 30 50 99 53 105
0000 34 30 53 101 56 108
0100 23 30 50 95 57 102
0200 15 35 33 66 L7 79
0300 20 35 18 4o 29 I8
0400

page 10-5

There is one additional feature incorporated into delay
predictions. The controllers often have knowledge of the
stack size at some time. This information, if cranked into
the prcgram, could improve the subsequent prediction
accuracy. Specifically, the user optionally enters a stack
size and its time of occurrence in the original "“TEST"
request. The program processess the flights .in the normal
manner until the time equal to that of the entered stack
size, It then compares the holding queue with the given
stack size. If they differ, the queue is adjusted to match
the given size by landing or returning ¢to airbormne status
the proper number of earlier flights. An equivalent number
of landing slots for the affected aircraft is consumed or
made available as appropriate, The program then continues
computing the rest of the statistics in the normal manner.,

page 10-6

10.3 AIRPORT FLOW CONTROL PROCEDURES

The ability to predict airport arrival delay conditions
leads to possible actions to prevent or at least minimize
excessive airborne delays and saturated airspace problenms.
Some protlems are severe enough to affect many adjacent
ARTCC's and require application of flow control procedures
for improvement, In assisting the controllers in these
procedures, AIRS computes ARTCC departure clearance
allocations for AFCP, the original ground delay control
method (Refs. 4, 5 and 8). It can also compute adjacent
ARTCC release quotas for the newer Quota Flow Control
Procedures (Ref. 6) This section discusses AIRS processing
required to support both procedures applying to the current
day only. The processing for the latter procedure employed
an approach which capitalized upon the existing AIRS/AFCP
program and was designed to expedite support for this newer
flow control procedure. The section will discuss in detail
the AFCP processing and then will discuss the minor progran
additions to the AFCP processing supporting the Quota Flow
approach,

The AFCP processing begins 1like the arrival delay
prediction processing, the only differences being that the
request is for AFCP and that in addition to the airport's
control file being input from the disc, a zone file, if any,
is also read from the central data base., These files vwere
summarized in Chapter 5.3. The zone file is restricted in
its use to either the AFCP or the Quota Flow Control
Procedures at any one tinme, This 1is because the zone
structures for AFCP differ in their purpose and use from the
Quota flow structures and because in expediting support for
Quota Flow, a dual purpose 2zone file was of least
importance.,

As in the arrival delay prediction section, statistics
are computed for the original set of arrivals. However, the
output of the statistics to the teletype is suppressed
following its storage on a disc file, Instead, the AFCP
program examines the peak values of predicted air delay and
stack size throughout the current day (a full 24-hour period
starting at 0300 Eastern local time) and compares the peaks
to the threshold conditions for imposition of AFCP, If a
threshold, either maximum air delay or wmaximum stack size,
has been exceeded the program undertakes detailed processing
of ground delay assignments and the associated flow control
data. If no AFCP thresholds are exceeded, the program
outputs a corresponding message to the teletype and returns
to the normal AIRS request entry mode for further
instruction.

page 10-7

Following the computer's determination that AFCP is
required, the program reads through the flights on the
scratch file (same file used in computing the arrival delay
statistics) and analyzes the status of each flight. The
status includes whether it is currently airborne, what ARTCC
and zone it originates from if any, whether it has already
completed its flight, whether it is already AFCP controlled
and if so, whether it is too late to alter the assigned
ground delay if needed. This status information will be
used later in deciding the controllability of each flight in
assigning flow ccntrol ground delays. This status is also
written into each flight record on the scratch file.

Next, the program computes the theoretical maximum rate
of arrivals which will not exceed the control thresholds and
compiles the associated discrete arrival times into a list
(in core) with the corresponding landing times. Maximum
arrival rates usually involve a requirement to maintain a
backlog of waiting flights., The method of computing this
maximum arrival rate considers both the stack size and air
delay limitations and will be discussed in the next
paragraph. But first we need an explanation of the use of
this list. Given that the original traffic demand for an
impacted airport exceeds the landing capacity, it follows
that a number of aircraft will have arrival times different
(earlier) than their landing times, hence air delays. One
can make up a list of corresponding arrival and 1landing
times for these flights similar to the theoretical maximum
rate of arrival list discussed above. 1In one list we have
the predicted (uncontrolled) traffic delays by f£flight; in
the other we have the maximum flight delays tolerable within
flow control restrictions. Looking at correspponding
landing times in each list, one can ask if the associated
arrival time for the actual flight is worse (earlier), than
the theoretical (controlled) arrival time. If so, then the
procedures dictate that the flight be assigned a ground
delay such that it arrive no earlier than the theoretical
arrival time. This comparison and ground delay assessment
is the heart of the program's administration of these
procedures.

The method of computing the maximum arrival rate is
based upcn four control parameters: the maximum delay, the
desired delay, the maximum stack and the minimum stack
desired (the method may be viewed more clearly if one
considers the first two parameters as equal and the last two
equal; they are often set equal by the users). The arrival
slot computed for a given landing slot is determined by the
following procedure. The first step is to make the arrival
slot equal to the landing time minus the desired delay. By
examining the arrival times and landing times for the entire

page 10-8

day, the stack size at any given time can be computed. If
this computed stack size is greater than the maximum stack
value, the associated arrival slots are moved to a later
time until the stack size equals the wmaximum stack
threshold. If the computed stack is less than the minimum
stack desired, the arrival slots are shifted in the opposite
direction, to an earlier time, until the stack is equal to
the minimum size. This step is dependent upon not exceeding
the maximum delay, however. If this maximum delay is
encountered, the arrival slot is set equal to it and is not
shifted any earlier, The produced set of maximum delay
arrival times corresponding to all landing times may be in
fact, a mix of rates which alternately follows each of the
four control parameters. Any one or combination of these
four control parameters may be the predominant factor in
determining the arrival rates by proper choice of values.

In assigning the landing slots for each flight, the
same consideration of fictitious general aviation consumed
slots 1is employed as in the arrival delay prediction
processing. To summarize, the process involves a serial
reading of the flights (in time of arrival order) from the
scratch file. The next available landing slot is assigned
each flight (the GA fictitious flights being included in the
applicable distribution). If a flight's original arrival
time is later than or equal to the maximum delay arrival
time, no controls are needed and it is written out on a
separate section of the scratch file showing that it arrives
at the originally scheduled time. If the £flight arrives
earlier than the maximum delay arrival time and if it has a
controllable status, the flight is flagged as controlled and
an approrriate ground delayed departure time is computed and
recorded on this separate section of the scratch file. When
all the flights have been processed the program examines the
newly written flights on the scratch file and computes the
controlled arrival delay statistics 1in exactly the sanme
manner as the original traffic statistics, The controlled
traffic statistics are then output to the same disc file as
the other statistics.

The program now outputs the recommendation for AFCP and
the time it should be initiated (the original arrival tine
for the first controlled flight) and the time it should be
terminated (the original arrival time for the 1last
controlled flight). The peak delays and the maximum stack
sizes are also output for three specific times; the peak
delay and maximum stack for the entire day, the values at
the time of control initiation and the values at the
termination of the control period. The following example
illustrates what the AFCP recommendation looks like:

page 10-9

JFK 1/5 1553

UNCONTROLLED PEAK DELAY 97 MIN AT 1812, PEAK HOLD 49 AT 2059
RECOMMEND CONTROLS BE INITIATED:

INTTIATE 1748 PKHOLD 28 DELAY 69 MIN (PK)

TERMINATE 2205 PKHOLD 31 DELAY 67 MIN (PK)

The program then asks what the user wants to do next;
does he want the statistical reports typed, does he want
them rlotted, does he want to print out the flow control
allocaticns or does he want to issue the flow control
allocaticns? The statistics are typed or plotted as in the
arrival delay prediction case with the added choice of both
original and controlled traffic conditions. The printing of
the allocations involves further processing. The newly
written flights on the scratch file are again read serially.
Each flight is slotted by controlled time of arrival (or
original time of arrival if not controlled) and by zone (and
any grouping within the =zone) into an allocation array.
Upon completion of reading the flights, the allocation data
is typed out. The issuing of allocations is similar to
printing them but it performs one more operation. It writes
the flight status and the delayed departure times of every
flight processed onto the master schedule file of the
central data base. This data 1is thus available for
recomputations of AFCP at a later time if revised 1landing
capacity estimates or changes in the traffic demand take
place.

This recomputation of AFCP is triggered by including
the key word "CONT", meaning continue, in the AIRS AFCP
request. The processing is the same as before except that
the controllability of some £flights is altered by the
earlier AFCP's. 1Indeed, a flight which would have been
completed if it had not been delayed may be still on the
ground avwaiting the delayed departure time. If the need for
AFCP's has diminished, the flight may be allowed to depart
immediately, cancelling the remaining ground delay. The
determination of such control adjustments is accomplished
by flight status assessment discussed earlier and by a
routine which closely monitors the flight's operational
envelope (i.e. scheduled departure, controlled departure,
scheduled arrival, controlled arrival and 1landing), to
assure that flights before, after and/or during the required
AFCP period be assessed the minimum amount of control delay
consistent with the change in conditions from the earlier
issuance of allocations.

The AFCP processing will automatically compute the need
and duration of the control period as discussed above. It

page 10-10

can also compute the control requirements when given an
overriding initiate and/or terminate time at the option of
the users. It will use the given override time(s) and
compute the other end of the implementation period as
applicable, and will produce the associated control
allocaticn,

As in the case of arrival delay predictions, a stack
size and time of occurrence may be entered with the AFCP

request. In the same manner as before, the computed
airborne queue is adjusted to match the given stack size at
the stated tinme. The stack adjustment affects the

availability of landing slots, which in turn affects the
subsequent control delays.

The first part of this section has described the AFCP
processing., The remaining part will present the processing
changes implemented to provide Quota Flow Control Procedures
assistance. The principal difference between Quota Flow and
AFCP is that Quota Flow does not impose arrival delays by
ground departure controls but leaves the choice of air or
ground delay to the adjacent tier centers (the ARTCC's
surrounding the impacted airport's center) and the pilots.
The contrcl mode reqgulates the numbers of flights cleared
during each interval of time for entry into the impacted
center through quotas for the tier centers (and the impacted
center). The procedures require that the traffic be viewed
as seen by the tier centers (and the impacted <center) in
order to administer the flow controls. For this reason the
program was modified to establish zones adjusted by boundary
times which compensate for the flight time from the gate
arrival (as recorded in the centralized data base) back to
the tier center's boundary. The organization of the 2zones
is extremely important to the quota flow operation since
AIRS does not have the built-in knowledge of which aircraft
pass through the tier centers., By carefully organizing into
a zone all the origins whose traffic usually passes through
a specific tier center, the program can compute the
appropriate quotas for the center. Using this =zoning
information and control criteria establishing a maximum
stack size for the impacted center, the program can compute
the required delays exactly as it does for AFCP, but instead
of producing the allocation report, the program is modified
to produce the quota report. This quota report is simply a
count by zone groupings, of controlled aircraft attributed
to each tier center. The count represents the release rates
to produce the controlled flow. In order to indicate how
many aircraft might be delayed at any time in each tier
center, the report also includes the number of aircraft held
during each control interval. This is also simply computed
by obtaining the difference between the cumulative flow of

page 10-11

original traffic and the cumulative flow of controlled
traffic. Table 10-3 illustrates +this Quota Flow Control
Report.

One further note on processing: the quota flow report,
because of the zoned traffic distributions, is of value to
the contrcllers even when flow controls are not needed. For
this reason the quota flow processing automatically
continues through the gquota report section, instead of
returning to the AIRS request entry mode as AFCP does if
controls are not recommended.

page 10-12

- QUOTA FLOW CONTROL REPORT

10-3

TABLE

re
Le

GE
re

5¢
Le

Y4
L2
62

- @ N ™ -t ¢ - ®© e

el B ¢ [4

[N -] o~ - -

34

- M

N - - ™M ™ o

»N w» MY e

T w . W B W NI D

[24

- o NS o~ ™ O w wy W

- 8 >0 =s -— M) <+ ™ s

- &

[24

- Oh oW b A

- @ -« -

o™N ¢ - 0 N ™
- @ o @ ®» ™ @ 9 D ™M [B o

— [N [I]

1
14 e

A¥NYD 40D
4 #cee

A¥MYD J0
€ e

A¥MYD S0
2t #ctz

ANY¥YY 40
¢ oete

ANYMYD 40
0 [21]

ANYYD 4O
¢ e

S3AKIL AONE

IIOL dWZHL dWZ¥d INZHL NZ¥d QIZHL QIZdd G0ZHL €0Z¥d NYZ¥d AYI3Q 3WIL

9

Sy
09

mO0T4 YiOND 1

gaLe Ol
egce Ol
ggce Ol
pgec oL

$831L1I0vdYD

3NCZ

gece
geze
Qagc
eeid

ONIONYT QD

page 10-13

1C0.4 LISTINGS

As described in section 9,3, the £flights retrieved in
response to a demand request (formulated either by a user or
by RIRS) are stored on a scratch file, separated into
arrivals and departures and grouped by hour (unless the user
specifically said not to store thenm). Any number of
detailed listings of these flights can be requested. This
listing request can (optionally) choose the time period, the
information to list, and the order of the flights.

Time Period
If no time period is given, all the stored flights are
listed; if times are given they must fall within the time
range of the stored flights. The flights are listed the
way they are stored - by hour., No further subdivision is
done, so the times must be either on the hour or at the
start or end of the data period (if they are not, they
are automatically rounded off as appropriate).

Sort
If no sort is given, estimated time of arrival (for
arrivals) and estimated time of departure (for
departures) are put into the sorting specification lists,

Information
The information to list can be specified (im an INFO
request) either in the 1listing request or separately.
Column headings, codes identifying the desired data, and
format descriptions for typing the data are set up
(separately for arrivals and departures) and remain in
effect for all listings until explicitly changed. The
standard information listed if none is specified 1is:
flight jdentification, origin, estimated time of
departure, destination, and estimated time of arrival.

The arrivals are reported first, then the departures,
For each, the appropriate column headings (stored when the
user made an INFO request, or standard headings if he
didn't) are typed out. Then each hour is reported on as
followus:

- The number of flights and the GA estimate, if any, are
typed out (the same values that appeared in the demand
table - see 10.1).

- The hour's flights are read in from the scratch file and
sorted as specified. Up to ten subsorts can be handled
(if two flights match on one item being sorted by, they

are compared on the next item). The sort algorithm used
is a Shell sort, a very fast method.
- The flights are then listed in this sorted order. The

code numbers identifying the data to 1list are used to
branch to appropriate data preparation activities (if the
user didn't specify the information to list, standard code

page 10-14

numbers are filled in) which extract or compute the
desired information from the flight record. The data |is
then typed in the appropriate format, using the
specification stored when the user made an INFO request,
or the standard one if he didn't.

If there were more flights retrieved for an hour than
could be remembered (at most 100 arrivals and 100 departures
per hour can be stored), that hour's traffic cannot be
listed. '

A sample listing is shown in table 10-4,

page 10-15

TABLE 19-4 - SAMPLE LISTING

REQUEST=LIST 2100-2200 , INFO IDENT QRIG DEST TYPE ;

=SORT IDENT

LISTING FROM REQUEST:
JFK JUN. 18 FROM 1800 T

ARRIVALS

IDENT ORIG DEST TYPE
2100 6

AADD00G LAX JFK J747

AADNOLY SF9 JFK J747

AZND608 FC? JFK J747

BA0G509 LHR JEK J747

LYOO0015 LHR JFK J747

TA0O0800 SFN JFK J747
2200

DEPARTURES

IDENT JRIG DEST TYPE
2100 7

AADO186 JFK BNS JD1¢

AADD665 JFK SJu J747

DL01023 JFK ATL J010

DL01069 JFK MIA Jbl1o

PANO110 JFK FCO J747

PA0D295 JFK SJu J747

TWOOOL JFK SF9 J747
2200

page 10-16

2300 J747

JDl16

10.5 PLOTIS

AIRS offers the user a choice of plots to aid him in
accessing the data produced by demand, delay prediction,
AFCP or Quota Flow requests. The plots are designed for
output on a Conograph-10 display device. The processing
requirements for plots are divided into two categories, the
processing involved in compiling the data and the processing
required to format the data suitable for plotting. The data
compilation processing depends upon the specific plots
requested. If a plot is requested following a demand
request for arrivals at an airport for a given time period,
the processing first checks to see if the airport's landing
capacities are available and can be plotted together with
the demand data. It makes 1little sense to plot landing
capacities with the demand data unless the plot concerns the
total arrival traffic for a single airport even if there are
known capacities for the airport. However, if the demand
data is partial, the user is informed that the landing
capacities contrast in that they are for all traffic. AIRS
allows the plotting of capacities and the demand data to
continue for this partial traffic case at the option of the
user (assuming that capacities are known to AIRS). If
landing capacities are unavailable or do not make sense to
use, the plot will only contain the demand curve.

After checking for the 1landing capacities the data
processing continues by one of two collection methods
depending upon the interval of time selected by the user for
data resclution. If the user selects an hourly bar graph,
the hourly demand counts are already computed in an array in
core. The processing simply transfers the data into the
plotting array. Also available are the GA factor traffic
estimates. These too are transferred if the plot requires
them (i.e. if it makes sense to include them, as in the
landing capacity situation). The data collection is now
complete and the format processing can begin., If, however,
the user has selected a ten minute resolution for data
presentation (6 bars per hour; may be as detailed as eight
per hour), the data collection must involve reading the
flights serially from the scratch (disc) file as is done for
computing the arrival delay predictions (see Chapter 10.2).
The process basically counts the number of flights per
interval and forms an array of the results (e.g. a
histogram). Before proceeding to the formatting processing
the GA factored traffic must be uniformly distributed
through the applicable intervals as required. There is one
potential limitation in plotting data intervals 1less than
one hour. Because of a core restriction in retrieving
flight data (see 9.3), AIRS currently does not retain
individual flight data on more than 100 arrivals per hour

page 10-17

(and also 1C0 departures per hour). The counts are
accurate, but the scratch file 1is incomplete. The plot
processing recognizes this and will only plot in hourly data
intervals when this limit has been exceeded in retrieving
the flight data.

The format processing involves scaling of the data into
cartesian coordinates, axis sizing, graph labeling, titling
and the transformation of the data into .bar and/or line
graphs. The transformed data is then output to the display
device and produces the desired plot of the data versus
time. Figure 10-1 shows a sample plot of arrival traffic at
a major airport.

page 10-18

SAMPLE ARRIVAL TRAFFIC PLOT

FIGURE 10-1

v M =

z1
St
81
12
144
Le
[]
e
9¢
6t
Ty

-
[
I~

056 sege

ALIDVEYD ONIONY= ~===~~--

#OL0 RNASZ B0

ANYH30=SuvE

A

Lot b beec b b e e b Db b

AT

(LW9) 3WIL

BOGT 0040 00ST POGT SOLT 6950 8040
e 511 ¥3d
— ¢ 1AVaDuLY
p= 1
— 9 81
= 3v3S
— 6
(S—
— 21
— 1
— 91
b= 12
— 52
= LSVEONLY
— tz 40
— 38WNN
— o¢ =
— ¢
— 9¢
— 6¢
— 2v

0ere OL 0@r1 WOM4 SOB LS3L :1S3N03IY ¥ISN AE JILYHINZD

:3WIL 183N03Y

ANVYW3Q TVNIWd3L SHIV

page 10-19

The above example covered the demand capacity type of
plots. The arrival delay prediction statistics (data
produced as described in Chapters 10.2 and 19.3) can also be
plotted. The data compilation for the plot is simply a
transfer of the appropriate data from the statistical data
file produced by delay prediction and flow control requests.
The controller is allowed to select up to four curves per
plot, chosen from the statistics recorded for the original
and the controlled (if any) traffic and including the
landing capacity. The wuser can also control the 1line
modulaticn for each curve (i.e. solid, dashed, dotted,
etc.). The format processing is as described above and the
curves are plotted against time. Pigure 10-2 shows a plot
of the predicted peak arrival delays during a period of
reduced landing capacity at a high density airport.

page 10-20

ARRIVAL DELAY PREDICTION PLOT

MINUTES

-

FIGURE 10-2

,
4 ', =29GN7 \/\ ~0doy0

(iWD) 3WIL

-.ﬁogwaﬂ-.“.q- %.Mn m-qm “. [4 ﬂJua “.du "-ﬂﬂ H.Ma ﬂuﬂu H.ﬂt “- 9

TT]TT
-

— 2¢ e 1

«
@

Ilﬁ

s

E L

=0 — SI 38
— , 81

= ! Py 2

=\ ol

g i .

~=3 ! — 9¢

e — —

= =2

= 9y

=1 i = LAvNONIY
= | it 24 40
=1 i = ¥3OWNN
=] " 09

] 99

= — 2¢
3 8¢

— b
= fiers

o
[}

QHOM0OT40: LSAND3Y ¥3ISN A8 QILVHIANID

L161 :3WIL 1S3N03N Vivg SyIv

page 10-21

-

11. AIRPORT DATA
11.1 ENTERING AND RETRIEVING AIRPORT DATA

Three kinds of airport data discussed in chapters 3 and
5.2 are the subject of this section. The data is that which
is entered and updated by the staff of the SCC and consists
of: 1. airport general aviation (GA) factors, 2. airport
landing capacity estimates, and 3, airport departure delay
estimates. These data are retained in the AIRS central data
base distributed among two files, the airport data file and,
as needed, the flight schedule file. The form and scope of
data varies for the three kinds because of their nature and
use within AIRS. In general, this data applies to the
current day since the primary users of AIRS are the staff of
the SCC and the problems they deal with originate and
terminate within their current operational day. However, to
reduce the amount of data required to be manually entered
into AIRS each morning, a set of normal (or typical) data
can be entered once (or as needed) for each airport. This
normal data is automatically inserted (during the AIRS daily
reset operation discussed later) as the current day airport
data each morning (or first daily use). The users need only
enter the abnormal data as required when an airport varies
from the norm, This considerably reduces the volume of
manual data entry. In order to handle both the current
{(today) data and the normal data, which frequently differ,
AIRS treats each as a separate set of airport information.
The airport departure delay data is the exception; the
current day information is the only data entered and used.
One further note is that the reference to operational day
means from 0300 to 0390 EST or EDT. This 24-hour period is
used in AIRS to begin and end computational processes at
clearly cff-peak hours.

GENERAL AVIATION FACTORS

Entering and retrieving general aviation factors is the
simplest of the three. The GA factor is derived fron
historic data on the ratio of scheduled air carrier traffic
to general aviation traffic at an airport. It is expressed
in percent GA of air carrier. The factors were derived for
whole days, and since little variation occurs day to day at
the major airports of interest, only one factor was required
for each airport. Thus, single GA factors for normal and
today only data are retained in AIRS, The entry of a GA
factor involves obtaining the value from the user's request
(Chapter 8) and storing it in the airport data file in the
appropriate airport data block (one is created if none
exists for that airport). Retrieval is simply the reverse;
its use (as in Chapter 10.1) involves reading the value in

page 11-1

from the airport data file, After GA factors have been"
entered they may be reviewed by the user at any time through
a request for this action. Airport data requests permit the
user to look at the GA factors (or the landing capacities or
the departure delays) for the airport or airports desired.
It is also possible for the user to request this information
for all the airports in a single request by not specifying
any airport at all.

Before going on to the next kind of data, it is
appropriate to discuss the entry interface between normal
and today values. AIRS is designed to mrinimize the burden
to the users for airport data entry as illustrated by the
normal and today only classification and storage of data.
AIRS goes one step further by automatically setting the
today data equal to the normal data, if separate today data
was not entered earlier in the day. In this way, the normal
data entry also updates the today values, saving the user
the extra entry work.

LANDING CAPACITIES

Entry of airport landing capacities is slightly more
complicated than GA factors because in place of a single
value, landing capacity estimates have a set of hourly
values ccvering a twenty-four hour period. The interval of
the estimates should be as small as is practical because it
tends to improve the arrival delay prediction accuracy of
ATRS. the practical interval, from the ATC operational
view, was set at an hour and was so designed into AIRS.
Entry of capacity data .is therefore by hour and AIRS
provides an assortment of input forms to facilitate entry
(see Ref. 7). The data is stored in the airport data file
in two sets of 24 elements - one for normal and one for
today data. Retrieval and review of the values for an
airport involves simple access of the block of data
associated with the airport. Typical use of landing
capacities can be seen 1in chapters 10.2 and 10.3, In
general, landing capacities vary because of severe weather
and wind conditions; otherwise they normally will remain at
a predictable level all day long, any day. Except for noise
abatement or operating hour restrictions, the normal
capacity is usually constant. It is during problem periods
of the current day that the estimates vary from hour to
hour. AIRS retention of a 24-hour set of airport arrival
capacity data (for the normal and the today categories) thus
provides sufficient resolution and scope for predicting
airport arrival delays.

page 11-2

DEPARTURE DELAYS

The third kind of data, airport departure delays, is
the most complex of the three. Departure delay data entry
was intended as a crude substitution, avoiding the
programming of a complex departure delay prediction
capability similar to the arrival delay prediction
processing (Chapter 10.2) . The selected approach is crude
because it delays all the flights by the same amount during
the hour. There is also no regard for changing departure
order when delayed flights overlap the following hour's
departures. The principal objective was to propagate major
airport departure delay effects to the associated
destinaticn airports. This approach explicitly applied to
current day delays which occur in the ATC system and their
effect on future arrivals. With regard to design value,
this departure delay data, and the need to factor it into
the AIRS traffic predictions has never been used
operationally. Its use and this approach should be
questioned by any follow on systen. There are no normal
values for this kind of data. The data 1is processed
similarly to the today values of landing capacities, That
is, it is specified in hourly intervals covering a 24-hour
period and the data is retained in the associated airport
data block in the airport data file. The complexity is due
to the additional processing which accompanies the entry of
airport departure delay values. A design decision was made
that AIRS would be more efficient in the wuse of departure
delay information if thé delay effects were recorded
directly on the affected flights as a special set of time
and date data. Thus the flight schedule file needs updating
as well as the airport data file, This decision traded the
one time update of departure delayed flights, for the
repeated checking and updating of flights each time they are
retrieved. The process of updating the schedule file
involves the computation of the delayed departure and
associated arrival time for each affected flight.
Therefore, AIRS makes an internal request for the departure
flights from the delayed airport (see Chapter 7). After
assembling the £flights for the period having departure
delays, the special set of delayed times is added to each
flight, along with a special date flag indicating the
presence of this special set of data (meaning it is to be
used in place of the original schedule times) on that date.
The flights are then written on the schedule file with the
original and the special data.

page 11-3

DAILY RESET

This brings us to the daily reset operation. If,
during a day, today values for GA, landing capacity
estimates and/or departure delays were entered into the AIRS
data base, the values will be in the data base the next day.
These values (the next operational day) must be reset to the
normal values consistent with the new day. The process for
doing this is straightforward., When RIRS is run, it checks
a date and time on the beginning of the airport data file to
see if it is within the current operational day. If it is
not, it checks two flags in the file which indicate that on
a previous day some airport data was entered. One flag
indicates whether the airport data file must be reset, the
other indicates whether the schedule file wmust be reset.
These flags are automatically set any time airport data is
entered. When required, AIRS resets all the today values in
the airport data file to normal values for GA and landing
capacities and removes all departure delays. Similarly in
the schedule file, AIRS resets the date flag to show that no
departure delay data exists for the previously affected
flights., After reseting both files as required, the current
date and time are written on the airport data file, This
inhibits any further attempts to reset until the next day
when the recorded date and time is not within the current
operational day.

The daily reset also does the resetting of the
schedule file the day following AFCP procedure
implementation. When AFCP ground delays are issued (AIRS
updates the schedule file accordingly), the delay data is
stored on each flight record as a special set of data
similar to departure delays. This data must be reset the
next day and is done at the same time the above resets are
accomplished.

page 11-4

11,2 ENTERING AND RETRIEVING FLOW CONTROL DATA

The processing requirements for entering flow control
data into the AIRS centralized data base are quite simple.
The process involves a dialog between the user and the
computer. To initiate the dialog the AFCP, Quota Flow or
arrival delay prediction request must include a key word
indicating that editing of the control data is desired.
After the flight data retrieval but prior to the data
procesing, the user is asked what he desires to edit for
that airport. He may enter or alter the control parameters
and/or the zone structure files (discussed in Chapter 5.3).
The program allows the user to select just the areas to be
edited; it does not sequence through the full set of
editable items. For example, he is given a choice of any
one of several areas he may edit or he may go on with the
request fprocessing. Choosing an area, he is asked to enter

the desired value(s) of the parameter(s). Then he 1is
returned to the choice question. Some choices produce a
subset of dialog until the editing is conmpleted. Zone

structuring is of this kind; the program will inquire if you
are editing the old zone file or replacing it with a new
zone structure, It then conducts a dialog for the entry of
the zone: the control status for the zone, the individual
places and groups of places in the zone with associated
boundary time estimates. One can recycle within the Zone
editing dialog, entering and replacing other zomes for the
airport. Listings and printouts of the control values and
zone structures can be obtained during the editing phase to
aid the user in determining the flow control conditions for
the airport.

Entering and retrieving this data is handled by
reading the controcl and zone files (Lf any) into core,
allowing the desired editing and then writing the altered
files back on the disc as desired. The copy in core is
retained after completion of the editing to be used in the
subsequent flight processing for the original AIRS request.
If the files do not exist for the airport at the time of
edit, the program begins with a default set of cntrol
parameters (and no zone structure). It will create the
control file when the editing is finished and the user
chooses to establish it as a permanent file for the airport.
Contrasting with this, if the user edits =zones for an
airport, the zone file is automatically created and retained
for that airport (i.e. the user has no choice of suppressing
permanent retention of zones).

page 11-5

12, ARO OPERATIONS

There were two major design considerations in the
inmplementation of the ARO operations. One was to retain the
same entry format (Chapter 4.1) as the predecessor system;
the other was to expand the updating operations to apply, as
desired, to any airport in the AIRS data base. ARO
operations can be divided into two categories, entry of new
reservations and cancellation of existing reservations. The
ARO of the SCC currently provides airport reservation
management for &4 high density airports during peak traffic
hours. The scheduled and general aviation traffic
information they handle is the input data to AIRS. In
addition, the airlines and the airline scheduling groups
provide limited quantities of flight update information for
a broad range of airports. This data is entered into AIRS
when available.

The entry of data is performed in real time, soon after
it is received in the ARO. As mentioned in Chapter 4.2,
entry of these flight updates can use both keyboard and
paper tape modes at the convenience of the users. AIRS
treats the two entry modes differently, however, The
keyboard mode operates interactively and will ask for
clarification as needed to complete an entry; the paper tape
model will reject without further processing any entry which
is unclear. The users have favored the paper tape entry
mode because it frees them from waiting for AIRS to process
an entry before they can enter the next. The keyboard mode
is used most frequently for correcting entries. The paper
tape is easily prepared off-line (not connected to the
computer) at the user's convenicence and when entered into
the computer, its rate of entry is automatically controlled
by the ccmputer, requiring no user supervision.

The kinds of requests entered into the computer during
ARO operations were discussed in Chapter 8.4, Basically, a
reservaticn or cancellation request must contain adequate
information to complete the operation or an error will be
noted. The form of these entries, as previously mentioned,
was inherited from the predecessor. 1A key result of this
inheritance is a constraint on the date for which a flight
can be entered. Because the format did not provide for a
month identifier, but only the day of a month, AIRS treats
the day as falling within the range starting with the past
day up tc three weeks in the future. This range provides
for data entry which might be 1left over from Yyesterday,
while older entries are rejected because they seem too far
in the future. But it does not allow ARO to enter longer
range (over 3 weeks) data for future schedules. This is not
an important restriction since the bulk of the ARO data

page 12-1

falls within the allowable time period.

The format of ARO entries also provided for optional
entry of aircraft type (equipment) with each reservation.
The omission of aircraft types in the AIRS flight schedule
file was not consistent with the existing (at the time of
ARO implementation) AIRS method for retrieval of flights by
type. In order to remain within the AIRS type structure, an
ARO reservation entry without specificied type |is
automatically classified as type "“NONE", A Dbeneficial
spin-off from this design decision, since AR0 rarely enters
a type specification, was that retrieval of Jjust the
ARO-entered flight data is easily accomplished by specifying
type "NONEY in the retrieval request,

Another AIRS incompatibility occurred with entry of
unknown airports (i.e. unknown to AIRS are airports not
serviced by the airlines)., Since AIRS was primarily
structured around airport categorized data and retrieval
methods, it was impossible, without major AIRS changes, to
accommodate unknown airports., A decision wvas made to
provide AIRS with the knowledge of 21 artificial airport
codes (mnemonically similar to the ARTCC codes), one for
each ARTCC, The artificial airports can be used in place of
the unknown airports in the ARO reservation entries and
should be associated with the same ARTCC for flow control
reasons. The small number of unknown airports (since AIRS
knows over 12(0) makes it easy for the user to replace the
unknown airports by the appropriate artificial airport
codes.

In general, the design approach for implementing ARO
operations into AIRS has received the most exhaustive
scrutiny of any added feature. First and foremost, updating
the central data base as a frequent real-time operation
substantially increases the problems of assuring file
integrity despite computer hardware and software failures or
communication noise and disconnects. A considerable amount
of extra processing and careful ordering was applied to
provide fail-safe operation (discussed in detail in Chapter
13.6). The second area of scrutiny concerns the speed and
efficiency of updates. In the first AIRS version with ARO
implemented, a space saving approach had been followed in
the reuse of flight record disc storage space. New entries
could be written upon previously cancelled entries. But
this approach required resorting of the associated
cross-reference files, a very time-consuming operation.
After accumulation of several weeks of operational
experience, it became obvious that improved response tinme
was needed to handle the daily updates more rapidly. At the
cost of more rapidly growing files, the elimination of

page 12-2

reusing the flight record space made it possible to remove
the re-scrting processing from the cross-reference files,
Specifically, the new flight's cross-reference pointer would
always be arpended (since the flight is appended) and thus
maintain the sorted order. A considerable improvement in
response times resulted. Many less significant improvenments
were pursued to reduce the cost of entry operations, the
major contributor to operating cost, In the following
discussion of reservation entry another design change will
be discussed which also resulted 1in substantial response
time improvement and the associated cost savings.

RESERVATION ENTRY

The information supplied in a reservation request 1is
listed in Chapter 8.4. At this point, in accordance with a
previous user instruction, AIRS either skips to the date
entry preparation (discussed in the next paragraph) or
conducts a redundancy check to see if the reservation might
already be entered from a previous request. If checking is
required, the correct date (AIRS appends the appropriate
month) and the time of operation is then used to formulate
and process an internal AIRS request (Chapter 7) which
checks for redundant entries, This internal request
produces a list of flights previcusly entered for the
airports and time period (for improved checking the entire
hour of departure is requested). A gquick check of the 1list

is performed to avoid an erroneous duplication attempt. In
interactive mode, the user has the option of entering the
flight anyway. Multiple users handle ARO entries and

receipt of multiple data could result in duplicate entry
attempts. This necessitated redundancy checking to maintain
file integrity. This checking is costly in both dollars and
response time., Recently, the procedures were changed to
improve manual redundancy checking. Associated with this
change, AIRS was modified to make its internal redundancy
checking optional when inputting reservations wusing the
paper tape mode. Use of this option (not to check the data
base before entry) has significantly improved the ARO
operation in AIRS with the associated savings in time and
money.

Before the flight is entered on the schedule file, AIRS
computes the day flags and effective date range, encodes the
airports and aircraft type and packs the data in the form
for writing on the schedule file. AIRS also performs a
check of the departure airport to see if there has been a
departure delay entered for the hour of this flight's
departure. If there is a delay, it 1s entered into the
flight as described in Chapter 11.1. The flight is then
appended to the schedule file and the pointer (location of
the flight on the schedule file) 1is added to the

page 12-3

13.2 TRUNCATION

The monitor maintains a table on the disk for each file
on the disk telling where to find its parts (a file needn't
be contiguous). If you create a file, its table is also
created, and if you append to a file, its table is expanded
to encompass the new data. The monitor does not write out
the new table when you write on the file (if you appended
one word at a time, this would in effect double the
writing), but waits until you close the file, If the systenm
crashes after you have created a file, but before you have
closed it, the table will not have been written. Although
you have written data, there 1is no knowledge of its
existence, so the file is lost. Similarly, if the systenm
crashes after you have appended to an existing file, but
before you have closed it, the appended data is
inaccessible, so the file is in effect truncated. There is
no problem if the program is interrupted by other than a
crash (for example, the user may interrupt it), since in
this case the monitor closes the file.

If truncation (or file loss) occurs, there is no way to
recover the missing data. It is therefore necessary to take
steps to prevent such damage. The precautions used for the
files appended to by AIRS are described below.

USAGE RECORD

Secticn 15.4 described the usage record, on which AIRS
records the requests it receives, problems it encounters,
and other information. This file is appended to throughout
the AIRS session. In order to minimize 1loss of these
records after crashes, the file is periodically closed and
reopened. At worst, the last few items written will be
lost, but this is not critical.

SCHEDULE, ETC.

When an ARO entry (reservation or cancellation) is nmade,
some or all of the five files discussed in 5.1 are appended
to.

Schedule file: A new flight is added to the end of the
schedule file.

Cross-reference files (terminal and center): If there is no
room to add a pointer for the new flight, the
cross-reference may have to be moved. If there is no
free space to move it to, it is appended to the end of
the file,

Free-space file: New free areas are added to the end of the
file unless a free area has been used up and can be
overwritten,

page 13-2

Truncation of any of this appended data would be very
serious, and in fact intolerable, requiring (in some cases)
backing up the files to the previous night., For example, if
a newly moved cross-reference block were lost, there would
be no way to access the flights for that airport. The old
cross-reference would no longer exist, and the pointer £for
that airport would point to the nonexistent block past the
end of the file. Any attempt to use this pointer would
yield garbage results. The schedule and free-space files
have similar problenms.

But how can we prevent truncation? There would be no
truncation if there were no appending. So we elinminate
appending. This is done by keeping the files extended with
dummy zercs and keeping track of the logical end of the file
(the end of the real data). Now when we append to the data,
we are nct appending to the file, just modifying the zeros.
Figure 5-1 showed this expansion room on the end of these
files, and also showed where we keep track of the "end" of
each file. The schedule has on its start the number of
flights, and each free-space file has on it the number of
items it contains, and the the address of the "end" of the
associated cross-reference file. The files are created with
some expansion space, then checked each night (see 13.7) by
comparing the stored 1length with +the file length, and
extended if the remaining space falls below some threshold,

ATRPORT DATA FILE

When a data block is created for an airport, it is
appended to the end of the airport data file, and the
airport's pointer (on the beginning of the file) is set to
point to it. If the new block is 1lost, the pointer will
point past the end of the file, causing garbage to be
retrieved. Worse yet, the next data block appended will go
in the same place, so two airports may point to the same
data, messing each other up.

Truncation of this file is very unlikely. Entry of data
for new airports is very rare, and the operation so short,
that a crash during the entry will probably never happen. A
crash during an ARO entry, on the other hand, is very likely
(and has happened), since hundreds of entries are made each
day. We have not, in fact, taken any precautions with the

airport data file, It could be handled by the method
described above - keeping the file extended and keeping
track of its "end" - and perhaps AIRS should be modified to
do so.

page 13-3

13.3 CHECKSUM ERRORS

In order to guard against errors in accessing the disk,
the system (time-sharing monitor) computes a value called a
checksum from data in a file and stores it separately fron
the file, in the index it uses to access the file, Whenever
it accesses a file, it computes the checksum for the
accessed data and compares it against the checksum stored
for that data. A mismatch is a signal that something is
wrong - perhaps the disk hardware accessed the wrong place,
or the file has somehow been clobbered, When you update a
file, the checksum may be affected. However, the systen
does not write the updated checksum each time it needs
modification (this might double the amount of writing), but
rather waits until you close the file. Thus if a file is
written on but not closed, it may have updated data but the
0ld checksum, which is inconsistent with the new data. If a
program which is writing on a file is interrupted before it
closes the file, whether or not there is a bad checksun
depends on the type of interruption. If the interruption is

due to a system crash, there will be a problen. Hovwever,
after any other interruption (such as the user interrupting
the run, the phone connection shutting off, etc.) the

system closes the file, so there is no problem.

The ARO spends enough time updating the data base, and
crashes occur often enough, that this type of error is a
real problem for AIRS., If a checksum error in the data base
is not dealt with, it causes trouble in two ways. First of
all, AIRS will fail when trying to access the data in
question. Secondly, the backup copy of the file (see 13.1)

will be bad. The system program which saves files on
magnetic tape stops if it encounters an error, so the backup
copy of the file 1is truncated! ATRS and the nightly

fail-safe procedure contain provisions to correct the first
problem and prevent the second.

The random access software used to access the data base
automatically transfers control to an AIRS error location
when it encounters a file error. If a checksum error occurs
on a main data-base file (the schedule, the
cross-references, the free-space file, the airport data
file), it is fixed as follows. Since we know the data is
correct, but has an incompatible checksum, we want to force
the system to compute and store the new checksun. To do
this, we simply rewrite the troublesome data (although an
error occurred, the data was read in). Although we haven't
changed the contents of the file, ve have writtem on it, so
the system recomputes the checksum, After fixing the error,
AIRS checks the whole file, in case other parts need fixing.
It then quits, telling the user to rerun AIRS, If a
checksum error occurs on a scratch file, it needn't be
fixed. AIRS deletes the file, quits and tells the user to

page 13-4

rerun AIRS. When it 1is restarted, fresh copies of the
scratch files are created (this is the procedure of 13.4),

To aveoid truncation of files on the backup tape, the six
main data files are read through just before the backup tape
is made each night. If checksum errors are encountered,
they are fixed as in ATRS. Thus the backup copies will be
complete,

page 13-5

13.4 FILE ERRORS

As described in 13.3, control is transferred to a special
error location in AIRS if a file error is encountered. If
the error is on a scratch file, AIRS simply deletes all
scratch files and quits., When it is restarted, it creates
fresh scratch files, so the problem is gone. To prevent bad
scratch files left over from crashes from causing trouble,
AIRS routinely deletes and recreates the scratch files when
it starts up. If any error other than checksunm (13.3) is
encountered on a non-scratch file, AIRS hopes that it's
spurious. It can't handle the error, so it simply quits,
If the error was spurious, it should not reappear when AIRS
is rerun. If there is a real error, it will simply remain
until TSC can do something about it.

page 13-6

13.5 DATA CHECKING

AIRS originally worked under the assumption that its data
files were good, blindly using whatever pointers it found
there to tell it where to locate or write data. If for some
reason the data bLase was damaged, AIRS might not only
produce bad reports, but might propagate the damage by using
a bad pointer to write data in the wrong place, destroying
other data. This actually happened soon after the ARO
started using AIRS., A bug in the random access software
made it write data in the wrong place, and the damage
propagated as described. The extent of the damage made it
impossible to figure out what damage happened first, hence
to figure out what the cause of the problem was. It was not
until we managed to catch the damage at an early stage that
we were able to diagnose it. To prevent such a situation
from happening again, checks were added to AIRS to detect
bad data, record any damage found on the usage record for
analysis, and refuse to continue operating with the bad
data.

There are three benefits gained from having these checks in

AIRS.

1. Bad data is not used to perform requests, so the user |is
not given garbage results.

2. Trouble is detected earlier, so the data base can be
backed up sooner and less wasted work is done.

3. The cause of the problem is easier to determine, since
the evidence is not allowed to wipe itself out.

The checks in AIRS, however, are not sufficient, Since
AIRS only tests the data it is trying to use, a damaged area
may not be discovered for several days. There may be no way
to know when the damage occurred, hence no way to determine
how far to back up the files. If they are backed up several
days, all modifications made during those days are lost. To
avoid this problem, checking programs are .run each night
when the files are saved (see 13.7), performing
reasonableness checks similar to those in RAIRS.

NIGHTLY CHECKS

The following checks are made each night. Any discrepancies
found are reported.

The schedule file is spot checked (one item in each
flight is examined); this would turn up any large-scale
damage to the schedules.

The lists of pointer ranges on the cross-reference files
are checked; each pointer must be positive, and the
rointers in each list must be in increasing order.

page 13-7

The free-space files and cross-reference files are
checked for consistency. No area on the cross-reference
file should be listed as both free (on the free-space file)
and used (on the index on the start of the cross-reference
file) .

0f course, these tests are not comprehensive. More
exhaustive tests (such as checking that each f£flight is
correctly cross-referenced) would be too time-consuming.
The tests we have implemented are sufficient to catch damage
like any we have experienced.

ATIRS CHECKS

The following checks are made in AIRS. If a test fails,
AIRS quits, 1If the error was spurious, hopefully everything
will be OK when AIRS is rerun. In any case, since the
action is aborted, no further damage will be done,

Flight Retrieval

The pointer ranges being used to retrieve flights
(chapter 9.1) wmust make sense. Fach pointer must be
positive and not greater than the number of f£flight
schedules, and the first pointer of a pair must not be
greater than the second.

Flight Entry

When a new flight is added to the schedules, its pointer
is added to the cross-references. The pointer nmust be
greater than the last one already on the cross-references
(since the flight is appended).

If there is no room to add a pointer to a cross-reference
list, the list is moved to a bigger space, as found from the
list on the free-space file (chapter 5.1), On these
occasions, the following precautions are taken.

1. The address to write on must be legitimate (positive, and
at most equal to the end of the file) and the number of
words to copy must look reasonable.

2, To provide a double-check that areas listed on the
free-space file really are free, AIRS fills free areas
with -1 before listing them. Before copying onto a free
area, it reads what's there to be sure it is -1,

3. While copying the cross-reference, AIRS checks it to be
sure it looks reasonable. The pointers must be positive,
not ridiculously large, and in increasing order.

4. After the cross-reference is copied, but before the
airport's pointer is changed to indicate the new copy,
the newly-written information is reread and checked as in

page 13-8

3 above. Thus if something goes wrong during the
writing, the original cross-reference is still the one in
use.

This appears to add a 1lot of extra work to ARO entry
processing - extra writing (to fill free areas with -1), and
extra reading (to check free areas for -1, then check waht
was written). However, cross-references have to be moved in
only a fraction of all flight entries. Considering the
amount of change being made to the files at these times, it
is well worth the extra work on these occasions to ensure
file integrity.

Errors relating to free space (as detected by tests 1 and
2 above) are self-healing. AIRS removes free areas from the
free-space file before attempting to make use of then,
rather than after using them. thus it will not try again to
use the bad area (it no longer thinks it's free), and nmay
work the next time it is run.

The checks in AIRS, like those run at night, are far from
comprehensive, Much data is not checked for reasonableness,
and other items written are not rechecked as in 4 above. We
did not want to add too much overhead of rereading and
checking to AIRS, but just put in tests where necessary to
catch the kind of damage that had been encountered.

page 13-9

13.6 PROGRAM INTERRUPTION

Sections 13.2 and 13.3 covered two types of file damage
that could result if the computer crashed while AIRS was
modifying its data base. It was pointed out that neither
kind of damage would occur if AIRS was interrupted by any
means other than a crash, since in all other cases the files
are closed, and those types of damage result from the files
not being closed. Some possible causes of progran
interruption are: AIRS quits after detecting file damage
(see 13.3, 13.4, 13,5); the telephone connection is broken;
ths user stops the program, perhaps because he has
accidentally requested data he doesn't want, and doesn't
want to wait for the answer, If AIRS is interrupted while
in the midst of an operation which involves several related
data base modifications, a data inconsistency could result,
due to some of the changes being done but not the rest.
These inconsistencies vary in seriousness. Some have been
taken care of in AIRS, others have not. In some cases,
inconsistency can be prevented by writing items in a
particular order, such that the files are never left
vulnerable. In other cases no order can ensure data
integrity, so special procedures must be adopted, For
example, recovery data can be recorded before making the
dangerous series of modifications such that if the operation
is not finished, this can be recognized, and it can be
completed later. 1In deciding what series of writes are
vulnerable, we have been extremely cautious, always assuming
the worst. No matter how unlikely an interruption is
between two writes (for example, two consecutive words being
writen one after another), we have considered it possible.
The rest of this section will describe some of these
vulnerable situations and what is done about then.

In some cases, simple care in the order in which things are
done can prevent any inconsistencies from arising.

1. Daily resetting

Section 11,1 described the daily resetting of the
previous day's temporary data, if any. Stored on the
airport data file are the date and time the reset was last
performed and flags telling what data needs resetting (the
airport data file, the schedules, or none). When a
modification is made to the data base that will require
resetting the next day (entering landing capacities, general
aviation factors, or departure delays or implementing AFCP
controls), the flag indicating the need for a reset is set
before the modification is performed. Thus even 1if the
modification is not finished, the reset will be done. When
the daily reset is performed, the flags are not reset or the
date/time recorded until the reset is completed. Thus if it

page 13-10

is not completed, it will be redone when AIRS is rerun.

2. Pointers and Counts

A new data item should be written before any associated
pointers or counters are updated to include it. Otherwise a
nonexistent item might be pointed at. For example: A new
flight entry is appended to the schedule before the number
of flights is updated; A new pointer range is appended to a
cross-reference list before the count of the number of words
on the list is updated; A new data block is written on the
airport data file before the airport is given a pointer to
it. With the correct order of operations, the worst that
can happen here if an activity is interrupted is that it
simply may not have been performed, That is, the new iten
is not available.

3. Free-space files

The free-space files keep track of reusable areas on the
cross-reference files by listing the address of each free
area and the number of words in it. There are two possible
types of inconsistency that can exist between a free-space
file and its associated cross-reference file - holes and
overlaps. By a hole we mean an area on the cross-reference
that is really free, but isn't listed as such. This is not
serious; all that happens is that some space is wasted. By
an overlap, we mean an area that is not free, but is 1listed
as free - i.e. a "free" area overlaps a used area. This is
serious. Earlier versions of AIRS would write on the "free"
area, clobbering good pointers. Section 13.5 described the
double-checking that prevents this from happening. Free
areas are filled with -1, and will not be used unless they
are. Moreover a "free" area that doesn't 1look free is
removed from the list, so it won't cause trouble again.
Overlaps should still be avoided, however, AIRS only
removes from the list the part of an area it is trying to
use, so if a large overlap exists, it may take many
time-consuming failures before the mess is cleaned up. We
thus trade off overlaps in favor of holes. The order of
operations in free-space manipulations is always chosen such
than an interruption will at worst result in a hole, never
an overlap.

In other cases, careful ordering of operations is not
sufficient to prevent inconsistencies if the program is
interrupted.

1. AFCP and Departure delays

The iwmplementation of AFCP (10.3) and the entering of
departure delays (11.1) both result in writing delayed times
into large numbers of flights in the schedule file, If this

page 13-11

is interrupted, some flights will have the delays and others
won't., The data will be inconsistent, and the user may not
be aware of it. If he asks what departure delays exist
(11.1), for example, he will be told either the old or new
delay (depending on whether we update the schedules or the
airport data file first), although some flights have one and
some have the other. &Even if nothing is done to correct
this inccnsistency, it will automatically be fixed the next
day when the daily reset removes all delays. Repeating the
aborted request, allowing it to run to completion, would
also remove the damage., We could have made AIRS fix up the
inconsistency automatically by having it record (on some
special area of the schedule file, perhaps) what it was
about to do before doing it. Then when it next tried to use
the schedules, it could recognize that the operation had not
been completed and either undo or finish it before making
use of the schedules. We have mnot bothered to implement
such a recovery scheme because neither the AFCP nor delay
feature of BRIRS has proved wuseful, In general, though,
recovery should be provided for such situations.

2. ARO entries - flight reservations and cancellations

We saw in chapter 12 that making a reservation entails
creating a new entry on the schedule file and adding it to
the associated cross-references, while cancelling a flight
can entail either simply modifying an existing flight entry
or both modifying an entry and creating a new one as in the
case of a reservation. We will see in this section what
inconsistencies could arise if the program were interrupted
{no matter what order related changes are made in) and what
has been done to prevent them. Such interruptions are not
unlikely, since ARO uses the system so heavily, so they must
be prevented from doing harm.

Reservation: If the flight is added to the schedule
before it is cross-referenced, then an interruption could
result in the flight being on the schedule but only being
accessible by one of its airports (or perhaps by airport but
not be center). If it's not in the cross-reference for its
airport, it could erroneously show up in a request for
traffic which excludes its airport (when the cross-reference
is conplemented, see 9.1). For example, if a flight
departing Chicago did not get added to the cross-reference
for Chicago departures, then it would show up in a request
for arrivals at New York from all places except Chicago.
If, on the other hand, the flight is cross-referenced before
being entered into the schedules, similar problems could
result. The cross-reference for its airport(s) and
center(s) could point to an unfilled spot on the schedule
file. The next reservation entered would take that place,
so the cross-reference would point to a flight it shouldn®t.

page 13-12

For example, if the interrupted entry were for a Chicago
departure and the next completed entry were for a New York
departure, the New York flight would show up in the answer
to Chicage departure requests. Thus we see that both orders
are unacceptable. The solution makes use of the "purge
flag" in each flight entry (described in 12, for
cancellations), which if turned on, prevents the flight from
being used in the answer to any request. Reservations are
nade as follows: the flight is entered into the schedules,
but with its purge flag turned on; it is then
cross-referenced; and finally the purge flag is turned off.
It thus becomes retrievable only when it 1is properly
cross-referenced.

Cancellation: We saw in 12 that there are three different
cases in cancelling flights. Cancelling a single-day flight
entry simply involves turning on its purge flag. There 1is
nothing here to be interrupted, since the whole operation is
a single write of a single word. Cancelling a flight on the
first or last date of its date range requires modifying its
effective or discontinued date and removing any delay data
if necessary. This involves rewriting several words of the
flight entry. An interruption (very unlikely, of course)
could leave the entry partly rewritten and possibly
inconsistent with itself. To prevent this, we write the
modified entry along with the address in the file where it
belongs in a special "recovery data" area on the start of
the schedule file, Only then is the modified entry written
on top of the original one, after which the recovery data is
removed. Every time AIRS opens the schedule file, it checks
the recovery area. If it finds that recovery is needed, it
writes the specified flight entry at the specified address,
then removes the recovery data. The cancellation is thus
completed before AIRS will use the schedules. The last case
is the cancellation of a flight for a date in the middle of
its effective date range. This involves splitting the entry
in two, modifying the old one to be effective only until the
cancellation date, and creating a new entry effective for
the rest of the period. This is a combination of the
processing required for reservations and the above case of
cancellations, and the safety techniques used for both are
required. That is, we must modify the old entry, using
recovery data to ensure its consistency, and create and
cross-reference the new entry, using the purge flag to make
sure it is not retrievable wuntil it is cross-referenced.
However, this is not sufficient. If the o0ld entry 1is
modified but the new one not completed, then the flight will
have been cancelled for all dates from the desired date on,
since the modified entry only goes up to the date being
cancelled, If the new entry is made but the old one not
modified, the flight will still exist (in the old entry) for

page 13-13

the date being cancelled, and will appear twice for all
dates frcm the cancellation date onward. It 1is thus
necessary to ensure that either both operations (modifying
the 0ld entry and creating the new) happen or neither
happens. The method used is as follows. The new entry is
created as for reservations, but its purge flag is left on.
Up to this point, if AIRS is interrupted, nothing has been
changed. Next the recovery data 1is written as before -
containing the modified entry and its address - with one
addition, the address of the new entry which needs its purge
flag turned off. The modified entry is then written and the
new one made available, after which the recovery information
is removed. When AIRS finds recovery necessary (as above)
it performs both of the required operations.

page 13-14

13,7 NIGHTLY FAIL-SAFE PROCEDURE

It was explained in 13.1 that a batch Jjob is run each
night to make a backup copy on tape of all our files. Other
parts of the chapter introduced programs that are run at
night to fix or check the AIRS data base. This section
simply summarizes the nightly procedure.
1. Asks the operator to mount the tape.

2. Protects the schedule file to prevent modification of the
data tase during checking and saving (see chapter 14).

3. Checks the six main data base files, fixing any checksun
errors encountered (see 13.3). This prevents truncation
of the files on the backup copy.

4, Checks the lengths of the schedules, cross-references,
and free-space files, and extends them if the allocated
.Sspace is getting used up (see 13.2).

5. Checks the contents of the schedules, cross-references,
and free-space files as described in 13.5.

6. Copies all files onto tape.

7. Removes protection from the schedules, so the data base
can be modified by AIRS.

8. Asks the operator to dismount the tape.

9. Resubmits this job for the next night.

page 13-15

14, MULTIPLE USER MANAGEMENT

This chapter discusses the conflicts that can arise when
more than one user is running AIRS or using the AIRS data
base and how these conflicts are handled. Priority of one
user over another is also discussed.

There are three possible combinations of simultaneous
users:

1. More than one user could be running AIRS, The ARO and
the CFCF each have a computer terminal, and are
frequently logged in at the same time, Moreover, each

could be 1logged in on more than one terminal (if
available)., At the same time, TSC could be using AIRS.
2. Someone could be using AIRS while the data base checking
and backup programs {(chapter 13) are running.
3. AIRS could be in use while a new data base (incorporating
the next month's data) is being prepared (chapter 18).

ATIRS/AIRS

With two AIRS jobs running at once, we must be concerned
with conflicts in their use of both the central data base
and files created by AIRS. AIRS routinely creates several
files while it runs: the usage record (15.4), containing a
record of the AIRS session, is written on throughout the
session and remains until it is typed out and deleted by
TSC; several scratch files, created when AIRS starts, are
used to hold intermediate data during processing, and
deleted when AIRS quits. Obviously, if two AIRS's are
trying to record their progress or store their temporary
data (frcm different requests!) in the same place, there
will be trouble. Thus whenever AIRS runs it must create and
use files which are separate from those currently in use by
any simultaneously running AIRS., This can be done if the
file names, rather than being fixed (programmed into AIRS),
can be assigned by AIRS to be unique at the time it conputes
them., The monitor assigns each user a "job number" when he
logs in. Although job numbers are reused when the user logs
otf, they are unique at any given time, AIRS thus assigns
names to its scratch and usage files which contain the job
number (of the job running ATRS), and thus do not conflict
with other users.

Considering the variety of AIRS activities and the
different uses they make of the central data base (sone
write, some only read), we should expect conflicts in
simultaneous access to the data base. Some activities will
not conflict because they use different files. For example,
if one wvuser is retrieving an airport's traffic demand
(reading the cross-reference and schedule files) while
another is wupdating landing capacities (writing on the

page 14-1

airport data file), there can be no problem. For activities
which use the same file, three combinations can occur: both
are just reading, both are writing, or one is reading and
cne is writing.

1. read/read
Any number of users can read a file simultaneously. This
is not a conflict situation.

2. writeyurite

The mcnitor does not allow two users to have the sanme
file open for writing at the same time. An attempt to open
a file for writing which is already open for writing by
another job will cause an error, As in 13.3, AIRS «can
recognize the error condition and retain control. It can't
do its job until it gains access to the file, so it must
wait its turn. It goes to ‘'"sleep"™ (having the monitor
reactivate it after a specified interval, such as a second)
then tries again. This cycle (trying and sleeping)
continues until AIRS succeeds in opening the file. Sleeping
is valuable because just +trying over and over wastes
computer time, which not only costs money, but means less
time available for the competing job to finish its activity
and release the file. There is one other problem that must
be dealt with when more than one user wants to write on more
than one file - the problem of "deadly embrace". We will
explain this by an example, Assume that two users want to
write on the same two files, F and G, and that user#1 opens
F first while user#2 opens G first. User#1 is now unable to
open G, since user#2 has it, so he waits. Similarly, user#2

waits for F to become free. They will wait forever (or
until the computer shuts down) since each is waiting for the
other's file and cannot proceed until he gets it., Deadly

embrace can be avoided by establishing a standard order for
opening files. Thus if all programs open F before G, the
deadly embrace above cannot occur. This is the solution
used in AIRS. To summarize: The central data base files
needed for an AIRS activity are opened in a standard order.
If a file cannot be opened for writing because it is busy,
all files opened so far are released and the program tries
again after a short sleep. Thus the activity waits its
turn, This conflict management is invisible to the user,
This write/write lockout means that having two Jjobs
processing ARO tapes at once is no faster than running one,
since they cannot both make entries at once.

3. read/vrite

Any number of users can read a file while one is writing
on it. This can cause a data conflict. That is, if one 1is
reading the same data the other is updating, the reader
might get inconsistent data - some from before and some from

page 14-2

after the modifications. There is no simple, practical way
to prevent such conflict in the current time-sharing
environment. Simultaneous access, hence conflict, could be
completely prevented by always opening the files for writing
(even though the activity only reads). This would be an
extreme measure, however, since it would prevent any AIKS
activities (even two retrievals) from proceeding in
parallel. Y more reasonable scheme might involve
communication between separately running AIRS's, When an
activity started, it would record which (potentially
conflicting) activities it wanted locked out, An activity
would not begin if another one was currently requesting it
not to,

It turns out that in AIRS this sort of conflict 1is very
unlikely. Activities that make large changes, such as
entering departure delays into the flight schedules, are
rarely used. Frequent writing activities, such as entering
flight schedules, make very local, very fast changes (except
when moving cross-reference blocks around, which is
relatively rare), so they are not likely to interfere with
anything. Moreover, since the CFCF and the ARO are the only
AIRS users, and use different AIRS features, they are not
likely to be doing two conflicting things (such as entering
landing rates for the same airport) at once, If AIRS wWere a
system with many isolated users, this data conflict problen
might be very serious and would have to be dealt with.

AIRS/FAIL-SAFE

Section 13,7 summarized the batch job. which runs each
night to check and maintain the 1integrity of the central
data base. The necessity of preventing file modification
during this procedure was pointed out. It is not sufficient
to just schedule the job for a time when AIRS is not usually
used, since in extenuating circumstances - such as the
computer being down - the Jjob can be automatically
rescheduled for an arbitrary time. If the files could be
held open for writing throughout the checking, AIRS would be
prevented from modifying them (by the write/write conflict
handling described above). However, the checking procedure
consists of a sequence of separate programs, and there is no
way to hcld files open between programs. The solution makes
use of file protection (see 17.2). The batch job starts by
protecting the files against writing. If an AIRS wuser is
currently writing on the files, the protection change fails
and the job tries again later. Otherwise, it proceeds with
its tasks, removing the protection when it is done., (Some of
its tasks, as in 13.2 and 13.3, may require writing on the
files. This is possible because the job runs under a
different account number than AIRS does, and the files can
be selectively protected against different accounts). If

page 14-3

AIRS tries to write on a file while it 1is protected, an
error occurs, which is recognized as in the write/write
conflict above, AIRS refuses to perform the requested
activity (it could be a long wait!) and so informs the user.

ATRS/DATA PREPARATION

Fach month a new data base 1is prepared, combining the
next month's data with still current schedules from the
current data base (see chapter 18). Trom the point when the
desired schedules are extracted from the current data base
until the new data base supersedes the 0ld one (during which
time cross-references, etc. are formed), modifications to
the o0ld schedules must be prevented, since they would not
appear in the newly-formed schedules. This is accomplished
by protecting the schedule file, exactly as described above
for AIRS/Fail-safe conflict,

PRIORITY

AIRS was designed as a tool for the Central Flow Control
Faciility, with the ARO data modifications enhancing its
accuracy. If CFCF needs information, it should not have to
compete with ARO for the computer's resources. There is no
direct way, however, to give CFCF priority over ARO.
Instead, vhen they really need fast response (for example,
when doing quota flow), CFCF can include a key word in
certain requests which causes AIRS to open the schedule file
for writing instead of just for reading, hence 1locking out
ARO until the CFCF activity finishes. Different sleep times
(between attempts to open a busy file) are used for
different activities to give CFCF a better chance at locking
the file (short sleep times) and keep ARO out of the way
longer (long sleep times).

page 14-4

15. RECORDS AND MESSAGES

AIRS has several features to facilitate the transmission
of information between TSC and SCC. Communication from TSC
to SCC includes a brief "message-of-the-day" typed out to
users when they run AIRS, longer messages available to AIRS
users upon request, and format descriptions of ARO requests
available upon request. Communication from SCC to TSC
includes the sending of arbitrary messages and the automatic
recording of the use of AIRS.

15.7 MESSAGE-OF-THE-DAY

When you log in to most time-sharing systems (including
First Data), a short message is typed out containing
pertinent information about the system. For example, it may
tell you that the system will be down for maintenance, give
you a phone number to call for help, refer you to
documentation of a new feature, etc. AIRS has a similar
capability. When a user runs AIRS, the first thing it does
is type out the contents of the AIRS nmessage file
(AIRS.MSG) . Since the message is read from a file, not
programmed into AIRS,.it can be changed (or deleted) at will
by simply editing (or deleting) the file. This message is
used to tell the user the effective dates of available data,
to announce a new feature, etc, It is only used for short
messages, since it is typed each time AIRS is run. Users
should not be burdened by unnecessarily 1lengthy typeouts,
especially of information they have already received or that
is irrelevant to them. If longer messages must be sent, they
are sent via the MAIL feature (see next section).

15.2 MAIL

TSC may need to send SCC 1longer messages than can be
handled by the above message feature. These may include
descriptions of new features (which may run to several pages
in length), further explanations of current features,
further discussion of a point briefly stated in the short
message, etc,

Messages are typed by TSC into a file called ‘'MAIL',
When AIRS starts up, it notifies the user if there is MAIL.
To obtain a typeout of a long message from TSC, the user
makes the request 'MAIL' to AIRS [REQUEST=MAIL]. When AIRS
receives a request for 'MAIL', it reads this file and copies
it onto the user's terminal. If there is no MAIL, it does
nothing.,

page 15-1

15.3 HELP

Need: Most users of a complex system such as AIRS will not
know (or need to know) all its ins and outs. Those who use
it infregquently or who make a kind of request they have
never made before, are likely to make mistakes. AIRS error
diagnostics cannot always be good enough to really explain
what the problem is, and some requests may seem to work all
right but not be doing what the user thinks they are doing.
Although the user guide contains a complete description, it
is not always convenient to look up what you want. It is
desirable for RIRS itself to be able to help a user by
answering his questions, explaining requests, etc. This need
is partially met by AIRS as follows.

AIRS feature: When in the ARO section of AIRS, a wuser can
make the request 'HELP'. AIRS then asks what kind of request
he wants help with. If the desired help is not available,
ATIRS says so; otherwise AIRS types out the desired
information. For example, the answer 'RA' types out a
description of the RA request,

Implementation: Request descriptions are typed into files
having first name the name of the request it describes, and
second name the standard name 'HLP'. When the ARO secton is
asked for help on a particular type of request, it looks for
a file with that first name and last name 'HLP', If it finds
one, it types out its contents.

Limitations and Extensions: As of now, the HELP request can
only be made to the ARO portion of AIRS. This is because ARO
requests, having fixed formats, are easy to describe
concisely. It would be desirable to make the HELP feature
universally available in AIRS. For example, if you asked
AIRS for help with 'DATES', it could describe the legal ways
to specify a date, the types of requests that can contain
dates, the fact that only one date can appear in a request,
and so on.

15.4 USAGE RECORDS

In order to be responsive to SCC needs, it is imperative
that TSC know how AIRS is used: how often requests are made,
what features are used, what mistakes are made, how good the
response time is, etc., The easiest, most comprehensive way
to get this information is to have AIRS record it. Then
users needn't keep such records themselves, .

ATIRS records information about its use on a file. TIt
writes out every request it receives, the time at which it
receives it, and the computer time used to execute it. It

page 15-2

flags errors and records any file damage it may encounter.
The name of this usage record file contains the job number
of the Jjcb running AIRS to ensure that records for
simultaneous users don't interfere with each other.

15.5 COMMENTS

We encourage comments from SCC for two reasons:

1. To improve the AIRS system: If AIRS isn*t working
properly, we need to know the problem so we can fix it;
If SCC finds something confusing, we would 1like to
clarify or modify it; If they want a new feature, we can
consider providing it.

2. To analyze the usefulness of AIRS and help in planning
future systems, it helps to know why a request is nmade.
Is it part of a training session? Is it needed to help
deal with an immediate ATC problem? Is it for use in
anticipating traffic loads for a holiday weekend?

Since it is not always possible to get in immediate touch

with TSC when a problem occurs, it is useful to be able to
transmit a message via AIRS, while it is fresh in the user's
mind. .
One type of AIRS "request" is the comment. When AIRS asks
for a request, the user can type any text he desires, just
by preceding it by a 'C'. This text is communicated to TSC
through the usage record. The comment is simply recorded on
the usage record, just like any other request. (See section
15.4). No other processing is done to it,

The akove features are embedded in AIRS in keeping with
our goal of making AIRS as self-contained as possible,
insulating the user from the time-sharing monitor. Users
should not have to know anything about the system except how
to run AIRS; AIRS should meet all their data needs.

For example: If AIRS didn't have the MAIL feature, the
only way to transmit long writeups (without resorting to the
post office) would be to have the user type out the file
containing the information. This would require him to be
familiar with the monitor 'TYPE' command and to be aware
that he must be outside AIRS (at monitor level) to do it.

page 15-3

16. DAYS, DATES, AND TIMES

This chapter discusses the handling of days, dates, and
times in AIRS. In order to get a feel for the features
provided, we will compare ATIRS with the pilot system which
preceded it (Ref.2).

In the pilot system, only the days of the week, not the
dates, of flights vere stored, Reports were thus for
"typical" day traffic. Experience with the system showed,
however, that schedules vary enough that information for
specific dates was desirable. This data was available; the
source of schedule data (Reuben Donnelley OAG tape) gives
the effective and discontinued dates of each flight as well
as the days of the week on which it flies. AIRS thus stores
this information, and accesses schedules by particular
dates. In the pilot system, since dates could not be
specified, only one month's "typical" traffic could be
available at once, so a sharp break occurred between months
- e.g., on the last day of a month you could not 1look ahead
even a day. In AIRS, the new nonth's data can be nade
accessible as soon as it becomes available, while the
current month's data is still in use.

In order to select flights, the pilot system had to know
the day and time period desired. Both of these had to be
supplied by the user in each request for data. ATRS must
know even more - the desired date as well as day and time -
but it is not reasonable to require the user to supply it
all. Certainly he should not have to give both a day and a
date, since they are redundant, and the system should be
able to make reasonable assumptions for unspecified data.
If neither a day nor date is given, the current day is
assumed; if one is given, the other is deduced (to go from
days to dates, AIRS assumes that the next occurrence of that
day was meant); if no times are given, a time period based
on the current time is assumed (if the request 1is for the
current day). In practice, it turns out that usually the
times are given, but the date is omitted (most requests are
for the current day).

The pilot system only allowed requests covering a single
day, so wraparound time periods (passing midnight) could not
be given, but had to be brokemn into two requests, This
could be inconvenient, since a single local day (of interest
to the ccntrollers) covers two GMT days (all times and dates
in the computer systems are in Greenwich Mean Time), so
wraparounds would frequently be desired, AIRS allows
wraparound time periods, though it does not allow more than
a 24-hour period to be given. It breaks up the time into
two time ranges, deducing the day/date for the second part
from the given (or defaulted) day/date for the first.,

page 16-1

In order to provide the features just described -~
day/date/time defaults and wraparound time periods - AIRS
needs the following.

1. Wraparcund time period - Assuming the day and date of the
start of the time period are known, AIRS must be able to
get the day and date of the end of the time period. Thus
it must be able to increment a date.

2, Date given, day not given - AIRS must be able to fiqure
out what day of the week a given date falls on.

3. Day given, date not given - ATRS assumes the next
occurrence of that day is meant. Thus it must get . the
current date and day, then increment the current date by
the amount needed to get from the current day to the
desired day.

4. Neither day nor date given - AIRS must know the current
date and day, which it uses as default values. " Actually,
it need only know the current date, since the day can be
deduced from it as in 2.

5. No times (or only one time) given - AIRS must knov the
current tinme.

This boils down to three basic abilities: knowing the
current date and time, incrementing dates, and converting
from dates to days.

Current date and time:
These can be obtained from the nmcnitor (time-sharing

System) . Unfortunately, the monitor works in local time -
Eastern time, since it's located in Massachusetts - while
the flow controllers (hence AIRS) work in GMT. Thus AIRS

must convert from local to GMT. This requires knowing the
time difference, which is either four hours (during daylight
time) or five hours (during standard time)., ©Each time AIRS
is run, it decides which time difference is applicable by
getting the current date, deducing the current day, and
deciding how they relate to the last Sunday in April and
October. This time difference is then applied each tinme
AIRS needs to get the current time. Note that the date
night also have to be incremented.

Incrementing dates:

All that's needed here is a table telling the number of
days in each month, 1It's easy to decide whether it's a leap
year, hence the number of days in February. A side effect
of having such a table is the ability to recognize and
reject illegal dates. This table is actually combined with
the one described below,

Converting Dates to Days -

This could be done by storing an initial . date and its
corresponding day, then computing all others in terms of it.

page 16-2

By calculating the number of years, leap years, months, and
days between the base date and the date of interest, the
corresponding day could be determined. AIRS doesn't need
nuch range of knowledge, since its data spans at most two
nonths including the present. It thus keeps a table for the
past six and next six months, giving the first day in each
month. Then the day on which a date falls (within that
12-month period) can easily by determined from the first day
in the mcnth of interest. This table is kept on a file
(described in 5.4) containing the month and year about
which the data is centered, then for each month, the number
of days in it, its first day, and the year in which the
values hold. The file was originally typed in, but is
automatically kept up-to-date by AIRS. When AIRS starts up,
it reads the table, and if it isn't current (centered around
the current month/year), wupdates it to +the present and
writes out the new copy.

A side effect of date-day conversion is that if both a
date and day are typed, they can be chacked for consistency.

The need for the abilities Jjust discussed was derived
from their use in traffic load, or demand, requests, of
course they are used throughout AIRS, in many aspects of its
processing, A few more examples would be:

The current -time and date are used each time AIRS
starts up to decide whether it needs to reset temporary data
- i.e. whether it is being run for the first time that day.
See 11.1,

A reservation request gives a date but not the day.
The day of the week must be determined in order to create
the flight entry,

The dates in the schedules refer to departures. Thus
when arrivals are being retrieved or canceled, they must be
tested or canceled for flight on either the specified date
or the previous date, depending on the individual flight -
whether it arrives on the same day it departs.

We have said that all dates, days, and times in the data
kase are in GMT, and that AIRS and its users communicate in
GMT. The OAG tape, however, from which the schedule file is
produced (see chapter 18), gives the days and dates in local
(for each flight) time, though it states the departure and
arrival times in both local time and GMT. Thus we must
convert the dates and days to GMT in preparing the AIRS data
base, deciding for each flight whether the GMT day is the
same as, before, or after the local day. The tape provides
no explicit information on the time difference (whether
ahead or behind GMT) or hemisphere, so the answer must be
deduced from the relationship of the GMT and local tinmes.

page 16-3

For examrple, consider a flight whose departure time is 2200
in local time and 0300 in GMT. We know that all places in
the world are within twelve hours of GMT, either ahead or
behind. Thus this flight's origin must be 5 hours behind
GMT, since it <can't be 19 hours ahead, hence its GMT
departure days are one day later than the local ones listed.

page 16-4

17. AIRS PROGRAM ENVIRONMENT

Back in chapter 1, an introductory statement was made
that AIRS was scoped to perform within a time-shared
computer's resources. More precisely, the AIRS software has
been significantly influenced by the hardware and software
environment of the First Data Corporation's PDP-10 computer
system. The AIRS development has capitalized upon the
beneficial resources of the First Data Corporation service
and to a lesser extent, suffered from resource limitatioas
of their computer environment. This chapter addresses the
major environmental factors in the AIRS development.

As discussed in Chapter 2, the scope of the automation
required sufficient core memory to accommodate a complex
program and its associated data arrays. In terms of the
PDP-10's 36-bit word structure, up to 35,000 words of core
memory per user was available. Although more core could be
effectively utilized, this amount was deemed adequate to
support BRAIRS. The following section, 17.1, covers the
design effects of the 35,000 word core memory sizing and the
supplementary use of disc storage.

The time-shared- PDP-10 system is endowed with an
extraordinary set of machine instructions and monitor
features which give application programs considerable
control over the efficiency and scope of program execution
and applicable system resources, The software benefits are
described in the 17.2 section of this chapter, as they apply
to AIRS utility operations and as they vitally mapage the
system resources. Also discussed are the special systen
software packages which control the random accessing of disc
files and the operations of the Conograph-19 graphical
display terminal,

The remaining factor in addition to the hardware and
the operating system is the programming language (s) used in
the application. As stated in Chapter 2, FORTRAN was
selected as the principal high level language for AIRS, Its
selection was greatly influenced by the established wide
support of this language by most of the time-sharing
services. This permitted "the broadest consideration of
conputer sources for the AIRS developnment. The FORTRAN
language supported on many time-shared computers included:
interactive input and output during program execution, which
is essential for real-time operations, flexible input/output
formatting ability for effective user interface control, and
a comprehensive repertoire of logic, arithmetic and control
operations for ease in programming. It was recognized at
the time of language selection that no single language could
completely and efficiently fulfill the AIRS programming

page 17-1

requirements. FORTRAN best fit the anticipated needs and
could easily interface with assembly level programs in areas
where it failed to provide adequate efficiency.

17.1 CORE MEMORY VERSUS DISC STORAGE

The First Data Corporation PDP-10 system has
considerably more core memory than the 35,000 word portion
available to each user. The restriction is impposed for
practical reasons to provide reasonable service when several
users are on the system. If more core were made available
to each user, more time would be required swapping user
rrograns in and out during their share of each second of
computer operation. This time is overhead, non-productive
to the user and deqrading to the general performance of the
system, The 35,000 word core limit was the maximum offered
for this type of service. Restricting AIRS to this size
necessitated using supplementary disc storage, the inclusion
of special space saving provisions and the overlaying of
active parts of the program upomn inactive parts during
various automation operatioas.

The use of supplementary disc storage is a common
method for expanding the size of programs and/or data which
can be processed within a fixed amount of computer memory.
Overlaying, or the use of disc storage to expand program
size, is discussed in 17,2, This section addresses data
expansions involving core and disc trade-offs. Data
retained in core during processing is normally structured
into blocks referred to as arrays. Since available core has
a limit, data arrays must be limited in their share of core,
By storing these arrays in part or as a whole on a disc
storage device and by bringing into core just a portion of
data as needed, it is possible to accommodate much larger
data arrays than the core alone could handle. The price of
this expanded data handling ability is increased processing
time, because it substitutes the slower disc access of data
for the thousands of times faster core memory access. This
expanded data approach may not be applicable for all data
processing requirements. For example, if the processing
requires frequent hopping around the data array, the
associated volume of disc accessing might be impractically
slow. 1In effect, each piece of data used would require a
new disc access if outside the portion of the array in core.

There are two types of data expansion situations
involving core versus disc storage. One type is. data which
has a known size, the other has a variable or unknown size,
When the size of the data block is known, it is readily
evaluated with regard to fitting in core. If it does, one

page 17-2

must further consider the relative value of whether it
should be in core in part or whole, An example of this
value judgment is seen in the AIRS dictionary (see Chapter
8.1 . It was originally retained in core during the early
version of the prototype systenm. With the addition of
expanded AIRS features, the need developed to use this core
for cther more frequently used data arrays. The dictionary,
which is used only during a small fraction of an AIRS
operation, was relegated to disc storage. A minor addition
of a routine to access the dictionary on the disc was then
substituted for the original dictionary array in memory. If
however, the known data block is too big for retention in
core, the trade-off is that of determining how much of it to
buffer in core, This trade-off can be very complex, It is
possible to retain in core specific elements of data £fron
every line (set of elements) of data in an array. For
example, today's or the nominal landing capacities (Chapter
11.1) for an airport may be brought intc core while the
remaining airport data is not., If the processing requires
only these specified elements of data and their number is a
practical size, the pertinent data may be readily
accommodated in memory. But if the data involves all the
elements in each 1line of data (e.g. a complete £flight
schedule), the data will require buffering (i.e.
transferring a segment of this data in or out of core to
disc storage). The solution necessitates the inclusion of
array swapping processes and disc accessing to control and
maintain the program's own buffering operations. In this
situation the storage sizZze of the peripheral devices is
important. No data block in the AIRS prototype approaches
the capacity of a disc storage device. In essence, this
program controlled buffering can handle all of AIRS large
data blocks whether the size is known or unknown.

In this same manner, the second type of data
expansion, the unknown data size, can be treated, However,
one further consideration for unknown data blocks might be
knowledge of typical data block size, Although the upper
size of a block of data may be unknown, it may be known that
the typical data block falls within a size which can fit in
core. If this is the case, allocating this typical size
amount of core for the data swapping will improve processing
response times in dgeneral, since no disc accessing will be
required when processing the typical data blocks. ATIRS
employs this last technique 3in data arrays used in the
analysis of requests (Chapter 8.3).

An alternative in dealing with unknown size data blocks
is to limit the data to a maximum allowable size. For
example, if it is only remotely possible that a block of
data reach a very 1large size, the program could be

page 17-3

restricted in processing the data up to a practical size.
If the limit is exceeded, it does not perform the process at
all (i.e. it might simply return an error message stating
that the operation can not be performed). For example, the
current method used in ‘'controlling 1listings of detailed
flight data employs this techniques. A 1limit was set of
100 arrival flights and 100 departure flights which could be
listed per data hour in response to a 1list operation
(Chapter 10.4). This 1limit was imposed to avoid the
programming complexity of buffering this data during
assembly and sorting processes. When the program employs
this 1limit, it does not process the listable data for the
offending hour but it ‘does continue to process all other
hours which do not violate the 100 flight maximum. The 100
flight limit was determined to be sufficient to accommodate
all but the rarest of listing requests, which output data
collectively for a group of airports. This restriction wvas
a minor sacrifice for the considerable savings in increased
program complexity associated with buffering provisions.

As discussed above, there are a multitude of trade-offs
in the design of AIRS which depended directly on the 35,000
word sizing. The mix of using memory and disc storage is
the primary approach for handling data of essentially
unlimited scope. The price is slower processing because of
the proliferation of disc accessing. To reduce this
proliferaticn of disc accessing, additional means were
employed to fit more data into core memory by capitalizing
on packing and coding techniques. Packing and coding were
adequately discussed in earlier chapters. Currently AIRS
has up tc 13,000 words of data in core at any one time, Oon
the average this data is packed far greater than two pieces
of data per word. If it were only 2:1 the unpacked version
would require 26,000 words of core memory and would be an
untenable situaticn because it leaves insufficient core for
the program which manipulates this data.

In general, the restriction of AIRS to 35,000 words of
nemory has necessitated special treatment of data and
extreme concern for efficient use of core. Designing the
progranm and its data to operate in this restrictive
environment was the only practical approach for the timely
development of a flexible and broad scoped prototype
automaticn system using a commercial time-sharing computer.

page 17-4

17.2 MCNITOR AND SPECIAL SYSTEM SOFTWARE

The scope of operation and efficiency of AIRS dravs
heavily upon the software support provided by the monitor
and system software of the First Data Corporation's PDP-10.
This software is enhanced by the addition of RARX, a random
access disc servicing package (developed by the Bedford
Group) and CONOPACK II, the Conograph-10 display terminal
servicing package (developed by Conograph Products Division,
Hughes Aircraft Corporation). Before discussing these
special packages, three system support areas will be
outlined: 1) overlaying, 2) system data and 3) file support.

As mentioned in_ the previous section, the use of
supplementary disc storage is a common way of expanding the
size of programs which can be processed within a fixed
amount of memory. The PDP-10 provides such expansion
capabilities through its chain 1loader. The loader
structures the oversized program in accordance with the
programmer's directions into a resident portion (i.e. always
in core memory during program running) and overlays (i.e. an
overlay is a portion of the program which can be dynamically
brought into core from disc storage as needed to carry out
its processing function). The resident program controls the
overlaying, transferring control and data to each overlay.
It also cntains data and routines needed in more than one
overlay. This common data provides communication between
overlays. The first version of AIRS fit within the 35,000
word core; the current version of AIRS requires six
overlays. Figure 17-1 presents the overlay structure of
AIRS in terms of the major activity of each part and the
user's interface., The partitioning into the six overlays
was designed to minimize the frequency of overlaying during
any automation operation.

The monitor provides AIRS with a variety of system data
during the course of each run. The data falls into two
categories, program job information and status information.
The first category involves conveying to the AIRS program
the user's job number and the program name. The job number
is used in creating (i.e. naming) non-conflicting scratch
and data files in the multi-user environment (see Chapter
14) . The program name is required for control of the proper
overlay file. - AIRS, designed to evolve during its
operational lifetime, requires a backup in the event of new
version failure and exists in two forms available to the
users. The neuwest version is named AIRS, the predecessor is
renamed BACK. Requestng its program name from the monitor
eliminates the need for re-programming the BACK version
where it would be running the AIRS (instead of BACK)
overlays. Both BACK and ARIRS use the same data base.

page 17-5

HELD IN CORE IN CORE ONLY
WHEN IN USE

REMOTE
COMPUTER
COMMUNICAT ION
TERMINAL (S)

s — ——_——_——_—_——_—— — —]
Start Up
= = Initialization oy — — o]
wh
Ll
= .| General Request gt 3
Processor A
a2 o
sl ﬂ
- =
=l o
e =} et
o o i w o
@ = G - Plot Processor —_—— 4w =
=1 - L=} 1= [=1 Q@ -
n| O & oo n
o = 1= Eh 0
=] =g D Ean ot
2| o[I&8° SEE 3
[¥) 1 w . bl o o
s g 2 2 - - :\R()pl)ata Entry s — — g 4
E . o g rocessor = a forr |
5] - O R A
L) o B (= o
b o =
o [}
5 Arrival Delay .
© Prediction And &
= Flow Control e — — a
Processor o
<]
Statistics And
< = Flow Control I
Output Processor
b - — Exit
Legend:

—— (ontrol Path

—— - 1/0 Data Path

FIGURE 17-1 AIRS OVERLAY STRUCTURE

page 17-6

The second category, status information, pertains to
time and date data. When a user makes a request to AIRS,
the program uses the current time and date infcrmation in
recording the usage and, as necessary, in processing the
request. The system makes this data available on call from
AIRS. 1In addition, it can provide the computer processing
time on call. AIRS uses this information is recording the
computer time (i.e. the user's share of the computer) and
the elapsed time (i.e. the user's wait time from request to
response) with each request or major operation (see Chapter
15.4) . Although not specifically status information but
more status changing, AIRS also uses a sleep request to the
monitor. The monitor activates AIRS after inhibiting all
opeations for the requested seeping period. This enables
AIRS to take turns using common data files by waiting
briefly ketween attempts to use them (see Chapter 14), +thus
assuring the opportunity for other users to access then.

The last area of system support cncerns the PDP-10 file
structure and support software which has been very important
to the management of the AIRS data base. 1In general, files
are named and can be created, deleted, updated and accessed

through user programs. Files may also be renamed by a
program or protected against undesired reading or writng
access. This latitude in file management has significantly

benefitted AIRS and its supporting programs, the nightly
(Chapter 13) and monthly (Chapter 18) processing activities.
For example, usage of AIRS would not be practical without
the creation, use and deletion of scratch files to
accommodate the large data processes. If the scratch files
could not be deleted by the program, their proliferation
would soon exhaust disc storage space and prevent further
processing. Another example involves the monthly updating
programs, which run with a minimum of human intervention
because of file management control within the progranms,
Files are created under temporary names, predecessor files
deleted, and the newly created files renamed, replacing the
deleted files during various upgrading stages.

Accessing the files, as well as writing on then,
requires surporting software to provide the bookkeeping for
the device (disc addressing), physical location of the data,
checksum error checking and the read, write mode switches.
AIRS uses a proprietary software package, RAX, to access and
update its disc files. RAX permits files to be accessed in
two modes: 1) read only, 2) read and/or update (write). The
monitor permits simultaneous access of the files by any
nuonber of users with the condition that only one may be
updating the file. 1In addition, under the update mode, RAX
provides either deferred or immediate write options., Sone
explanation is required to clarify the significance of this

page 17-7

option. RAX is a random access file management system which
works within the physical and monitor constraints of the
First Data computer system (monitor). From the user's point
of view, random access is in terms of randomly addressable
words in a file (i.e. a file is viewed as a one dimensional
array of 36-bit words). To the monitor, a disc file is one
or more blocks, each 128 words in length, RAX maintains a
128-word file buffer invisible to the user (programmer), no
matter how many words are being read or written. RAX 1is
efficient enough to know when the current buffer contains
the word or words of interest and avoids any unnecessary
disc accessing or updating. However, 1in cases where an
update of one or more -words must be immediately written on
the file for fail-safe reasons (see Chapter 13.6), RAX
provides the immediate write option. In this wmode the
128-word buffer is written on the file each time an update
is processed instead of the deferred write which waits until
the writing f£fills the 128-word buffer (or writing is
required in another 128-word block) before physically
outputting the data to the disc file. ATIRS thus controls
the efficiency and fail-safe management of its file updating
to best fulfill the needs for file integrity and systen
response. RAX also provides error recovery capabilities
through file error trapping. When an input error is
detected by the monitor, RAX transfers control to the user's
program for dispositon of the error condition (for example,
see Chapter 13.3).

The final special software support concerns the
operation and control of the Conograph-10 display terminal

used for AIRS graphical outputs. The terminal, being a
graphical display device, requires special software when
drawing plots and pictorial displays for AIRS, The

proprietary Conopack-II software package is the primary
interface with the terminal for producing such displays.
This package provides byte manipulation, special control
stream formulation and input/output buffering for display
operations.

page 17-8

18. MONTHLY TCATA BASE FORMATION

Chapter 1 mentioned that AIRS is more than the progranm
which the SCC staff operates, You've seen the nightly
programs required to maintain file integrity and provide
fail-safe operaticns (Chapter 13). The remaining group of
progranms to be discussed performs the monthly wupdate
operations. These programs are currently run by the TSC
staff on a convenient day between the receipt of the
R.H.Dcnnelley data tape (about 15 days prior to the
effective month) and the first day of the month covered by
the tape. The entire monthly update can be accomplished
within a four hour period during a normal working day. TSC
often does the monthly updating during off-peak hours (after
the normal working hours) where processing times are closer
to two hours and the interference with SCC operation is
reduced,

The monthly update operations can be divided into six
distinct phases., The phases are themselves composed of
several steps (normally separate programs) which process the
required portion of the data. Figure 18-1 outlines these
six phases., This chapter will describe the processing steps
in each phase in sufficient detail to understand the basic
processing for monthly updating. No attempt is made in the
document to examine all of the design details of these
support programs. To aid in visuvalizing the scope of data
processing and file development, Fiqgure 18-2 gives a
schematic overview of the file formation sequence, the parts
of which will be discussed in the subsequent paragraph.

page 18-1

PHASE . OPERATION

1 Prepare New Schedules
And Definition Files

'

II Prepare Relevant
01d Schedules

- l

111 Combine 01d And
New Schedules

;

Prepare Cross-Reference
v And Free-Space Files And
Update Airport Data File

l

Hand Over New

v Data Base To The

Systems Command Center
For AIRS Operation

'

Vi Clean Up
Intermediate Files

FIGURE 18-1 MAJOR MONTHLY UPDATE OPERATIONS

page 18-2

RAW
DATA SOURCE

R.H.
Donnelley
Data. Tape
(OAG)

Tape Input Program

MONTHLY
SUPPORT FILES

AIRS
DATA BASE FILE

Airpert Codes

Aircraft Types

Airline Codes

Current
AIRS
Schedule File

System
Support
Personnel
(T8C)

FIGURE 18-2

System File Editor

Airline Groups

Aircraft Type
Groups

Areas
(Place Groups)

Center
Definitions
(ARTCC Airports)

Monthly Update Processing

Group Definition
(Tables) File

Translation
(Dictionary) File

Airport Data
File

Schedule File

Terminal
Cross-Reference
File

Terminal
Free-Space
Bile

Center
Cross-Reference
File

Center
Free-Space
File

page 18-3

MONTHLY FILE FORMATION OVERVIEW

PHASE I

This phase requires the bulk of human interface in
preparing the new schedule file and the definition files.
After the data tape is received at the computer
installation, the first step of phase T is to read through
the data tape checking block sizes. A PDP-107 system progranm
is used for this purpose bhecause it efficiently verifies the
quality and integrity of the data tape and tape reading
device. This step 1is required because there have been
frequent bad data tapes and/or malfunctioning tape readers.
The earlier such problems are detected the sconer they can
be rectified, either by request for a new tape or
maintenance of tape reading hardware.

The processing then proceeds to step 2, reading in the
flight records (approximately 60,72 for screening and
processing. Step 2 performs many operations in reading the
flight records, it:1) converts the record from IBM format
(EBCDIC) to PDP-1C format (ASCII), 2) rejects helicopter
flights, 3) rejects foreign airport tc foreign airport
flights, 4) fills in start and end dates (effective period)
for flights not having supplied start/end dates - default
period supplied by operator, 5) converts departure day flags
from local to GMT days (see chapter 16) and produces the
arrival day flags (in GMT), 6) writes the accepted flight
record on a temporary schedule file, 7) appends any new
airports, airlines, or aircraft types to the existing
cumulative files of these codes, 8) reports these new code
additions, 9) saves status information after every 1090
flights have been written on the temporary new schedule file
to facilitate restart if computer malfunctions, 19)
generates file of statistics with regard to approxinmate
numbers cf airborne flights, 11) adjusts arrival times by
ten minutes earlier, and 12) reports the number of rejected
flights (by category) and the number of flights (about
29,C00) in the new month's schedule.

Step 3 involves the use of a PDP-17 system file editor.
The suppcrt operator must edit the four group and definition
files shcwn on Figure 18-2 to incorporate any additions of
airports, airlines or aircraft types into the appropriate
groups or definitions. For example, a new domestic airport
code must be added into the set of airports defined as being
within the associated ARTCC. This is mandatory to assure
accurate center (ARTCC) cross-reference,

Step 4 produces the translation (dictionary) and the

group definitions files for AIRS usage (chapter 5.4), The
files are assembled from the updated support files (those
produced in steps 2 and 3). In entering each code into the

page 18-4

dictionary, appropriate categories and values are included
as shown in table 8-1. Group definitions are set up as
described in 5.4, Values are assigned to airports, centers,
and aircraft types consecutively as they are read in, Since
step 2 orly appends to the support files, the assigned
values are compatible with the current data base. These two
finished (updated) files are immediately available,
superseding the old in AIRS usage since they are compatible,

The fifth step begins the automatic sequence of
programs which carry the monthly updating through phase IV
without human (operator) intervention, If an error or
failure occurs during this automatic sequence, the process
may be continued from the 1last completed phase after
corrective action (if required) is effected.

Step 5 performs the final encoding and packing
operations on the flight schedules. It reads in the first
temporary version of the flight records, uses the dictionary
codes where applicable (replacing airport and aircraft type
names by their code values) and forms the packed £flight
record which is written on a temporary new schedule file.

Step 6 is simply -the process of sorting the temporary
new schedule file into arrival airport order, subsorted by
departure airport. This step concludes the phase T
processing,

PHASE II

The second phase of monthly wupdating involves
recovering the current month's schedules from the old
(current) RIRS schedule file. This phase is divided into
two steps., The first step starts by protecting the current
schedule file (see Chapter 14) against change during the
remaining file update activity. The file is then read,
flight by flight. Each flight is checked for effective date
range and for being cancelled (purge flag on, Chapter 12),
If the flight is more than 15 days old (15 day data
retention is required for ARO records), it is rejected along
with the purged flights. Those flights not rejected are
written cn a temporary old schedule file.

Step two of this phase is like step 6 of phase I, The

temporary old schedule file is sorted by arrival airport and
subsorted by departure airport.

page 18-5

PHASE III

This phase 1s a one step operation, merging the
temporary old and new schedule files into a single, sorted
(raintaining arrival and departure sorts) file which is
given a temporary nanme, This file will become the new
schedule file after the subsequent phases of processing are
completed. The file is extended im length to accommodate
growth (Chapter 13.2).

PHASE IV

Phase 4 has four steps in it. It handles the
development of the cross-reference and tree-space files and
the updating of the airport data file, In the first step,
the terminal cross-reference file is forned by reading the
new schedule file and grouping pointers for all arrivals by
airport and for departures by airport. Step 2 does the same
pointer grouping except that it is by arrival center (ARTCC)
and by departure center., This requires use of the center
definition file, since centers are not included in the
flight schedules. The terminal/center correspondence
derived from the center definition file is also used to
update the centers on the airport data file (5.4). Step 3
sets up new, empty free space files for the terminal
cross-reference and the center cross-reference files These
free files simply contain the pointers to the ends of their
respective cross-reference files. The last step of this
phase is to extend these files to allow for safe growth (see
Chapter 13.2). This is the 1last phase and step of the
automatic update sequence.

FHASE V

This phase involves a simple set of file renaming
operations, perfcrmed at the operator's command. The
renaming is antomatic (under program control) and

establishes the conditional schedule file and its associated
cross-reference and free files as the new AIRS data base,
while saving the superseded files under. temporary names as
backup files. -

PHASE VI

The last phase in monthly data updating is the clean-up
operation, This housekeeping activity deletes all
intermediates temporary files which were deliberately left
until ncw in order that restarts or recovery could be
effected if any portion of the update sequence went astray.

page 18-6

TRUNCATICN

Although not associated with the wmonthly update, a
procedure has been employed by TSC to aid in speeding AIRS
response. The procedure employs the appropriate monthly
update programs in truncating the data clder than 15 days,
at a time wheh truncation will remove the entire previous
month's R.H.Donnelley data. The process takes on the order
of one hour and simply involves starting the monthly update
process at phase II step 1. When the phase III, merging
activity is initiated it simply finds no nev schedule data
and passes the old, now truncated and re-sorted, data om to
the cross-reference and subsequent processing. The results
is better AIRS response times for one week to ten days
while ATRS has this smaller schedule file (half the normal
size).

page 18-7

19. RECCMMENDPED IMPROVEMENTS AND EXPANSIONS

Eighteen months of operational experience has been
accrued on the AIRS prototype automation systen. During
this time, AIRS has evolved from an information retrieval
system to a system which predicts airport arrival delays and
provides traffic quotas for conducting nationwide flow
control operations. Its data base evolved from the accuracy
of monthly updates to the accuracy of real-time daily
updates (when both the need and the data availability

permit). This evolution reflects almost continuous
improvement and expansion toward making AIRS more productive
and useful to the System Command Center. Expansion ideas,

generated during these eighteen months, far exceeded the
available of time to evaluate, design and implement all of
the imprcvements, In addition, studying the detailed
operation of BAIFS has resulted in the formulation of
alternate methods of treating and processing some of the
ATIRS activities., The alternatives are directed toward
improving the efficiency and response time by tuning AIRS to
operate more harmcniously within the characteristics of the

host computer. Many of these improvements have been made;
many have sufficient potential to warrent future
consideration, This chapter strives to identify and

characterize the nature and the payoff of the major
expansion ideas and the suggested areas of improvement.

The order of presentation of these recommendations

conveys no meaning of relative importance. Each
recommendation must stand on its own merit in the 1light of
current user's needs, implementation difficulty and

available resources. 1In general, any change cr addition
should strive to minimize response time; this characteristic

of AIRS operations can not be overstressed, Poor response
time will distract from AIRS operational value in the SCC on
the time-shared computer, In a time-sharing computer

environment, the elasped time between request and answer can
often degrade to more than fifty times that of a dedicated
computer. Especially worthwhile is the benefit of design
complexity for the sake of reducing disc accessing. This
added complexity is almost always justified in AIRS, as it
is in most information based systems, because AIRS is
input/output bound (i.e. 1limited not by the computer
processing speed but by the effective peripheral storage and
retrieval speed),

page 19-1

IMPROVED ACCESSING SPEED.

AIRS is required - to maintain two months data for
continuity of operations between months and for preservation

of records for RRO entries the previous fifteen days. This
results in accessing schedule file data covering the two
month period whenever an AIRS retrieval is required. The

most practical approach conceived to date for reducing ths
access is to add a date flag to the cross-reference pointer
ranges (packed in the pointer word to avoid expanding
storage and core requirements). The date flag (a single
bit) will indicate if all the flights pointed to by the
range have discontinue dates earlier than yesterday. Thus
when cross-references are used by AIRS, about half of the
accessing of the schedule file can be avoided during the
majority of each month (i.e. up to the last week, when next
month's data is present), by testing this flag for date
applicability. Maintaining these cross-reference flags can
be easily accomplished by an added nightly program which
scans the cross-reference files and checks them against the
records which became a part of the older group since the
previous night. The affected pointer flags are then set,
This reccmmended improvement should reduce the response time
for a normal traffic request approximately 30 to 45 percent.

WHEELS DCWN TIMES

Currently AIRS incorporates a ten minute earlier
adjustment in arrival times during the monthly entry of

flights from the R.H.Donnelley OAG tape. This adjustment
produces an approximation of wheels down time and produces
better flow contrcl arrival loading results. However, for

secondary AIRS applications, such as the checking of airport
reservation quotas, the hourly counts produced by AIRS are
inaccurate with regard to gate time counts, AIRS can be
modified to compute the wheels down times from the gate
arrival times when retrieving the flights, thus eliminating
the recording of the wheels down times on the schedule file
in place of gate arrival times. MAirport reservation counts
could then be accurately produced by specifying (by key
word) that gate time of arrival be used.

ARO ENTRY RECOGNITION

ARO entries during the day are regularly retrieved by
requesting for the airport of interest all flights with
aircraft type "NONE", This works only if ARO does not enter
the aircraft type. Future needs may require both the entry
of aircraft type and the continued retrieval of just the ARO
entries. It is possible to do both by adding a special flag
to each ARO entry. AIRS can then be expanded to recognize a

page 19-2

keyword in a request which screens the flights for the ARO
flag.

ARRIVAL DELAY AND FLOW CONTROL REQUEST ®XPANSION

AIRS only computes arrival delay predictions and flow
control data for the current day and for all arrival
traffic. The need has arisen on occasion for the
application of these AIRS computations for other +than the
current day or for traffic loads excluding some flights
(such as occurs during an airline strike). The appropriate
AIRS routines can be modified to recognize the non-current
day status of the request, use qualifying traffic conditions
entered with the request and produce the desired outputs.
To simplify AIRS modifications, the today values of landing
capacities (for the airport of interest) would be used no
matter which date was requestead. These capacities are
readily changed by the user to suit the situation and can be
reset after the non-current day outputs are produced.

PRIORITY AMONG AIRS USERS

A priority scheme for controlling the use of central
data base files between sinultaneous AIRS users can be
implemented through the use of PDP-1) feature making a
portion of AIRS common to all copies of AIRS running at any
one time. Flags and priority data can be stored in this
common memory area and periodic testing of this data by each
copy of AIRS could control and interrupt lower priority
operations. For fail-safe purposes, the approach involves a
concept cf challenge and response, where the highest 1level
priority operation must periodically answer the challenges
of lower priority operations (other users) in order to
continue its priority use of the central data base. This
prevents the situation where lower priority activities might
be permanently locked out if the high priority activity were
interrupted and conld not release its clain,

CLASS CODE USE IN REQUESTS

AIRS records with each flight record its ARO class code
(e.g. AQ, AT, GA). Although the class code can be specified
for listing (by INFO requests), AIRS currently does not
allow requests for traffic counts using these class codes to
specify such retrieval. The only difficulty in adding class
code recognition is the conflicting meanings to AIRS of

these twc letter codes with airline codes. A simple
solution might be to require a 1longer code specification
wvord (e.g. add a period to the code, AQ. or AT.). The user

can then retrieve specified classes of flights such as air
carrier, air taxi and general aviation.

page 19-3

EXPANDED HELP

ARO users can request AIRS to help in identifying the
acceptable forms of flight entries. This kind of tutoring
assistance can be expanded throughout AIRS. The refinement
is minor, but it is voluminous since it requires many parts
of the User's Guide (Ref. 7) to be incorporated into a file
where it can then be accessed and output as needed. The
AIRS modification is minor, involving the establishment of
an expanded "HELPY" request. The key word "HELP" is followed
by one or more identifiers such as "PUNC"™ for punctuation
usage help and "ENTER" for help in understanding modes of
entering airport data,

COMMAND FILE

The SCC staff makes a standard set of requests to AIRS
each morning and sometimes mid-afternoon too. The requests
number about twenty and require the user to enter each in
turn., The proposed approach permits the user to enter these
requests into AIRS once, under a unique file nane
identifier. The user can then request by a keyword and the
file name identifier, that this command file of requests be
executed. AIRS will then automatically take each request in
turn from the file, execute it and output the results to the
user's terminal device,

LISTING SUBSETS

The user currently can list a specified hour or hours
of data following AIRS demand type requests, Further
specification in "LIST" requests is not permitted (e.g. if a
demand request asked for all arrivals at JFK, the W"LIST®
request could not ask for listing just the MIA portion of
the arrivals or just the J747 equipment). In general, the
AIRS request analysis routines (Chapter 8) could be expanded
along with the retrieval routines (Chapter 9), to operate on
the scratch file flights and to further filter those flights
to be listed by using added specifications in the “LIST®
request.

LISTING ALL FLIGHTS

AIRS is currently limited to listing up to 100 arrival
(and 100 departure) flights for each hour because of an
internal memory array restriction. Removing this limit will
allow combined airport traffic to be listed for all hours no
natter how many flights are involved, The approach involves
the use of disc file swapping to supplement the core memory
array. The change is complex because the sorting of these
lists, partly in core and partly on disc, requires careful

page 19-4

treatment to maintain.efficiency and good cesponse time,
LCNGER DICTIONARY WORDS

Although RARO operations permit words longer than 5
characters to be recognized, the other operations of AIRS do
not. 'The meain reason is that the RIRS dictionary is wunable
to handle longer words. This constrains the AIRS requests
to 5 character words with associated difficulty of working
with less meaningful mnemonics when shortened words must he
used. Increasing the dictionary word size to 1° characters
doubles the permissible word size and the dictionary size.
Since the dictionary is on a disc file, this size increase
has little effect on storage, but it does require that the
routines for parsing and word recognition be modified to
input the 1longer words and more extensively, that all
outputs including these words must be reformatted to handle
them as well,.

MULTIPLE WORD DEFINITIONS

The dictionary presently rejects any multiple
definiticns of words (Chapter 8.1). It is often possible to
unambiguously determine the meaning of a meltiply defined
word when the context of its use is examined. AIRS can be
upgraded to recognize such context meaning and thus pernit
the multigple word definitions. The modifications would
expand the word recognition and syntax analysis sections of
AIRS (Chapters 8.2 and 8.3).

ARO UPGRADING

The current ARO operations can be upgraded in many

areas, The first would involve adding entry and
cancellation modes which update in terms of flight schedules
as opposed to single day flights. Thus a whole nmonth's

reservations for a daily flight could be entered in a single
request and be processed in the same time as a one day
flight entry. This upgrading involves a new entry format
which recognizes effective data ranges and days of the week
flags. The second area concerns the omission of infornation
in reservation entries. For example, if one of the airports
is unknown, AIRS will currently reject the reservation. If
the data is valuable to the data base even when missing such
information, AIRS should permit its entry, For AIRS to
tolerate incomplete flight schedules, areas that use fliuht
data must accommodate missing data without erroneovs
results. The third ARO upgrade involves giving AIRS tho»
capability of recognizing airports not included in the OAg
data tape. There are two approaches for doing this: onae
extends the encoding range to accommodate the greater number

page 19-5

References

"Technical Program Plan For Headquarters Air Traffic
Service Automation", Office of Systems Engineering
Management, FAA, Rug. 1971,

"Toward Developing An Improved Central Flow Management
System", Richard Hakkarinen, Office of Management
Systems, FRa, Oct., 1971.

"A Survey to Determine Flight Plan Data and Flight,
Scheduling Accuracy", John R. Coonan, Transportation
Systems Center, DOT, Jan. 1972, DOT-TSC-FAA-T72-10.

"Evaluation of the FAA Advanced Flow Ccntrol Procedures",
J. P. Bellantoni, J. R. Coonan, M, F. Medeiros,
Transportation Systems Center, DOT, Jan. 1972,
DPOT-TSC-FRA-72-8,

"Advanced Flow'Control Procedures (AFCPS)", ORDER,
FAA/DCT, Dec. 19, 1968, 7230.932.

"Flow Control Procedures®, ORDER, FAA/DOT, WNov,. 21, 1972,
721%.74. .

"pirport Information Retrieval System (AIRS), User's
Guide, Preliminary Version", Manuel Medeiros, Julie
Sussman, Transportation Systems Center, DOT, Oct. 1972,
(Unpuklished).

v"pAdvanced Flow Control Software Documentation", Technical
Report, Vols. 1-6, The Mitre Corp., dates Jan, 1970-Aug.
1977, MTR-4109.

"LISP 1.5 Programmer's Manual", M.I.T. Press, 1966.

page R-1

g

Bl

LI

APPENDIX A

DESTRED FEATURES AND SELECTION CRITERIA FOR TIME-SHARING COMPUTER

Requirements for time-sharing computer service to meet needs
of Air Traffic Flow Control Experiments under FA-206
(TSC/FPAA Project).

Operating hours 7:00 a.m.-Midnight, 7 days/week.

Interactive FORTRAN (i.e. interactive during object
program execution).

Random access capability for data file management under
FORTRAN program control.

Private disc pack storage which can be mounted upon
caoamnand from terminal (user).

lLarge interactive usable core area (after subtracting
system utility needs) of at least 34,000 words of 36 bits
each (or equivalent bytes, etc.).

Demonstrated capability to interface and fully operate
over teletype 110 Baud lines in graphic mode on one or
more of the following storage tube terminals: Tektronix
T4002, Adage, ARDS 100B, Computek Series Uu00, Conographic
conographs/10, or equivalent storage tube display
terminal.

Both 9 and 7 track tape drives for data input and output
and associated data storage.

Accessability of the same account (including all prograas
and data files) from local call in Washington, D.C. and
Boston, Mass.,

Highly desired is the capability to back up main computer
with another computer in event of malfunction, with the
associated swapping of accounts and files and
continuation of service with minimum interruption,

page A-1

Apr.

May.

Jun.

Jul.

Aug.

1972

1972

1972

1972

1972

Combined monthly update programs to generate new
data base with less operator supervision,
Decision made to procure a display device for
AIRS graphical output experimentation,

Added General Aviation factors to provide
approximations of non-scheduled (non-R. H,
Donnelley data) air traffic loads in AIRS
airport demand reports.

AFCP design specification changed to include the
recommended improvements of TSC report on AFCP,
(Ref. 4).

Began AIRS file structure change to accommodate
the AFCP data requirements in the central data
bank.

Completion of AIRS file modifications for
compatibility with AFCP needs.

Completed AFCP design decisions,

Completed draft AFCP Input/Output design report.
Began AIRS/AFCP program development.

Added airport departure delay adjustment
capability to improve accuracy of data during
periods of severe departure delays.

Contract awarded for purchase of Conographic-190
display device.

Added airport landing capacities to AIRS
capabilities and data bank.

ATIRS/AFCP automation operational June 29, 1972;
conducted initial training at the ScCC.

Conducted several training sessions on
AIRS/AFCP.,

Implemented 'TEST' option which provides airport
arrival delay and stack size (holding in air)
predictions.

Added feature for stack status input with AIRS
requests (for AFCP or TEST delay predictions) to
adjust computed predicted stack size to know
size at given time.

Significantly improved the speed and efficiency
of a major monthly update program.

Concentrated development on ARQO (real-time
update) expansion to AIRS.

Implemented the AIRS/ARO operation in the SCC's

Airport Reservation Office,
Conducted training on AIRS/ARO at the ScCC.

page B-2

Sep.

Oct.

Nov,

Dec .

Jdan,

Feb.

1972

1972

1973

1973

'

Began documentation efforts to prepare a
preliminary version of the "AIRS User's Guide."

Completed and distributed the preliminary "AIRS
User's Guide."

File damage detection routines were added to
AIRS to record and suppress propagation of
damage to other files and focus early attention
on correcting file,

Cesigned and implemented nightly file checkout
programs to screen the AIRS data bank for . any
detectable damage.

Began AIRS display development on leased ARDS
display devices,

ARO paper tape entry of real-time updates was
addead,

Documentation of the AIRS program initiated.

ARO updates were speeded by a factor of three by
analyzing and trading off a less important
operation, reducing the processing and disc I/0
operations.

Rutomatic file repair and recovery capability
was added to AIRS to restore integrity of data
files which suffered the most common form of
damage, checksum errors.

ATRS display of demand plots implemented on ARDS
at the SCC.

Added feature to recognize the class of service
(general aviation, air carrier and extra
secticns) in detailed report requests.

Added automatic file repair and recovery
capability to the nightly checkout prograas.
Added new surveillance program to nightly
programns which examines both data and progranm
files for system detected damage.

AIRS display of AFCP and delay prediction (TEST)
plots implemented on ARDS at SCC.

Began graphic display development on loaned
Conograph-197 preparatory to purchased unit
delivery.

Preliminary design for converting AIRS/AFCP to
Quota Flow procedure assistance was completed.

Final design for converting AIRS/AFCP to Quota
Flow operation was developed which would be
additive to AIRS (no interference with AFCP
use) .

page B-3

Mar.

Apr.

1973

1973

Quota Flow automation implemented at the SCC.
Training on Quota Flow automation coducted at
SCC.,

Conograph-1) display device delivered to TSC for
AIRS display experimentation.

Initiated procurement of second display unit.
Increased efficiency of certain AIRS operations.

First Conograph-17 AIRS displays completed which
provided various plots of traffic demand, delay
predictions, AFCP and Quota Flow data. :
Modified AIRS/Quota Flow to provide, at the
user's choice, controlled and/or original
traffic reports.

Modified AIRS/Quota Flow to improve man-machine
efficiency through added dialog and progranm
contrcl options (based upon SCC AIRS operational
experience) .

Developed fail-safe nightly recording progranms
for master files to provide a dependable back-up
capability. (First Data fail-safe system did
not assure collective file inteqgrity because
files could have been changed during the
failsafing). -

AIRS enables the CFCF to shut off ARO file
conflicts during priority operations such as
Quota Flow procedure requests.

Added nightly file extension program, a failure
prevention measure which inhibits file
truncation damage.

Implemented a feature to reduce the processing
for requests which do not require detailed
listings of flight data.

Introduced an option to inhibit the normal ARO
flight data duplication checking, producing
considerable cost and time savings.

page B-4

	73-16 pt.1.pdf
	73-16 pt.2

