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Airport Capacity: Representation,
Estimation, Optimization

Eugene P. Gilbo

Abstract—A major goal of air traffic management is to strate-
gically control the flow of traffic so that the demand at an
airport meets but does not exceed the operational capacity.
This paper considers the major aspects of airport operational
capacities relevant to the strategic management of air traffic.
A representation of airport capacity that properly reflects an
airport’s operational limits is discussed. A method is presented
for estimating practical airport capacities under various oper-
ational conditions. A technique is proposed for optimizing the
available airport capacity to best satisfy the expected traffic
demand. The optimization is achieved by considering arrival
and departure operations as interdependent processes and by
strategically allocating the airport capacity between arrivals and
departures. The underlying mathematical model is presented, as
well as numerical examples illustrating the benefits when solving
airport congestion problems.

1. INTRODUCTION

HE restricted capacities of the National Airspace System

(NAS) and growing amounts of air traffic increase the
potential for congestion both in the air and on the ground,
which in turn may substantially increase delays. Problems
arise whenever demand exceeds the available capacity at some
element in the NAS. In these situations, the role of air traffic
management becomes especially significant.

The most important and restrictive NAS component is
the airport. The Federal Aviation Administration (FAA) has
identified certain major airports as pacing airports, so called
because the traffic throughput at these airports paces the flow
of traffic through the NAS as a whole. A pacing airport is
identified by two characteristics: it has a high volume of
traffic and the traffic volume frequently exceeds the operational
capacity of the airport.

The FAA’s Traffic Management Branch closely monitors
traffic at the pacing airports and implements strategic programs
to manage situations where the demand significantly exceeds
the capacity. A strategic program is typically a ground delay
program, where Controlled Departure Times (CDT’s) are
assigned to flights departing in the next two to four hours. The
CDT’s are computed to achieve a prescribed arrival acceptance
rate, which reflects the arrival capacity of the overloaded
airport.

The accurate and reliable prediction of airport capacity and
demand is crucial to the effectiveness of the strategic traffic
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management programs. There are existing methods and tools
for predicting air traffic demand [15]. However, the problem
of predicting airport capacity is less well resolved.

The determination of an airport capacity is complex. Airport
capacity depends on many factors, such as meteorological
conditions, ranway configurations, arrival/departure ratio, and
fleet (aircraft type) mix. Furthermore, the practical capacity for
the purposes of strategic traffic management may be affected
by airspace factors (e.g., arrival fix loading, sector loading) as
well as human factors (e.g., controller workload).

The vast majority of publications on analysis and optimiza-
tion of air traffic flow management treats the airport capacities
as given, constant parameters (see [1], [2], [17], [18], and
[21]). Usually, the airport capacity is defined by two constants:
one for arrival capacity and another for departure capacity. The
constants can vary for different weather conditions and runway
configurations, but they remain constant throughout the time
those conditions exist.

The engineered performance standards (EPS) developed by
the FAA give more realistic information on airport capacities.
The EPS values vary not only by runway configuration and
weather, but also by arrival/departure ratio. Three operating
conditions are generally given: departure priority (75% or
more departures), equal priority (50% arrivals and 50% depar-
tures), and arrival priority (75% or more arrivals). For some
airports the EPS show only one pair of arrival and departure
capacity values for each runway configuration. However, even
in the best cases, the EPS data do not cover the entire range
of arrival/departure ratios.

The most complete information on airport capacities under
various arrival/departure ratios can be represented by a func-
tional relationship between arrival and departure capacities.
The character of the relationship was studied extensively (see
[3], [10], [11], [13], [14], [16], and [19]).

In one of these studies [19], the analytical model called
the FAA Airfield Capacity Model, was developed. This model
is capable of determining the relationship between arrival
and departure capacities. The MITRE Corporation appears
to be the first to apply this relationship in the NASPAC
(National Airspace System Performance Analysis Capability)
simulation model, where arrival and departure slots can be
assigned in response to peak demands {5]. In this paper, a
similar representation of airport capacity is used to estimate
the capacity and to formulate a new approach to the operational
optimization of airport capacity.

The work presented here is being conducted under the
FAA’s Advanced Traffic Management System (ATMS) pro-
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gram. The major directions of the program have been described
in [15]. This paper discusses the estimation and utilization of
practical airport capacity as applicable within the scope of
the ATMS and as relevant to the strategic management of air
traffic.

Section II is devoted to representation and estimation of
airport capacity. An empirical approach to estimating airport
capacity is taken to obtain practically realizable values that
reflect major restrictions to airport traffic throughput for the
entire range of arrival/departure ratios.

Section III describes a method for optimization of airport
capacity using the derived estimates. The optimization is
achieved by dynamic allocation of the capacity over time be-
tween arrivals and departures. In general, the optimal solution
provides time-varying capacity profiles which most effectively
solve a predicted congestion problem by reflecting the dynam-
ics of the traffic demand and the operational conditions at the
airport. This approach better utilizes the available resources at
the airport to increase the throughput of traffic.

Numerical examples which illustrate the benefits of the
described approach are presented in Section IV.

II. REPRESENTATION AND ESTIMATION OF AIRPORT CAPACITY

A. Background

The intensive analytical studies on airport operational ca-
pacities began in the late 1950’s. Since then, a large number
of publications have addressed various aspects of the studies
(see [3], [4], [9]-[11], [13], [14], [19], and [21]).

Airport capacity is defined as the maximum number of
operations (arrivals and departures) that can be performed
during a fixed time interval (e.g., 15 minutes or one hour)
at a given airport under given conditions such as runway
configuration, and weather conditions. It is calculated as the
reciprocal of the mean permissible inter-operation time.

The existing analytical methods (see [10], [11], [16], and
[19]) provide the estimation of the mean inter-operation times
by taking into account the uncertainty in the time of aircraft
appearance at particular points at different stages of arrival
and departure, stochastic variability in speed, differences in
runway occupancy times, as well as the uncertainty in aircraft
fleet mix.

By -making assumptions about the distribution functions
of the random variables, one can estimate minimum inter-
operation times, which provide a given probability of not
violating safe separation distance requirements. The minimum
inter-operation times are in turn used to calculate the airport
capacities. The numerical results substantially depend on the
a priori suppositions about probability distributions and their
parameters. The reliability of the capacity estimates depends
on the reliability of the a priori information (which is often
not very good). A way to get more reliable, realistic estimates
is to combine analytical and empirical methods. Empirical
data, such as historical counts of arrivals and departures at
the airport, makes it possible to correct the analytical models
and their parameters.

It has been established that arrival and departure capacities
are connected with each other through a convex, nonlin-
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Fig. 1.  Airport arrival/departure capacity curve (general view).

ear functional relationship ([16], [19]). The existence of the
relationship reflects the fact that the arrival and departure
capacities are interdependent. A specific relationship between
the arrival capacity ¢, and departure capacity cq = ¢(c,) de-
pends on various factors such as runway configuration, weather
conditions, aircraft fleet mix, runway operating strategy, and
characteristics of the air traffic control system.

Geometrically, the relationship can be shown on an arrival
capacity/departure capacity plane by a capacity curve, illus-
trated in Fig. 1, which represents a set of capacity values that
reflect the operational capabilities of the airport under certain
conditions. To make the relationship specific for an airport
requires a complex approach that includes a combination of
mathematical modeling using empirical data, and validation of
the results using the expertise of practicing traffic managers
and controllers.

B. Estimation Method

Assuming the validity of a general convex shape of the
capacity curve, an empirical method has been developed to
estimate the curve by using real observed data on the number
of arrivals and departures at the airport during a fixed time
interval over a long period of time. Below, without loss of
generality, the number of arrivals and departures per 15-minute
intervals (i.e., 15-minute capacities) are considered.

The method is based on the assumption that during a period
of time considered, the observed peak arrival and departure
counts reflect the airport performance at or near capacity level.
Therefore, the curves enveloping the peak data are considered
as the airport capacity estimates.

The empirical method is applied to only the pacing airports,
which are known to experience severe congestions and sub-
stantial delays during peak hours. The existence of significant
delays can be considered as an indication that the airports
operate close to or at their operational limits. Therefore for
these airports, it is reasonable to assume that the historical
peak data reflects the maximum operational capabilities and,
hence, can be useful for capacity estimation.

The observed data can be organized according to the oper-
ational conditions at the airport to provide capacity curves
for specific sets of conditions. To date, the observed data
has been analyzed for runway configurations and weather.
Each major airport has a set of runway configurations that are
used with sufficient frequency that empirical data is available
to estimate capacity curves for these runway configurations.
Weather conditions are clustered into four operational weather
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Fig. 2. Historical airport performance data and capacity curves.

categories that reflect conventional limitations on visibility
and ceiling: VFR (Visual Flight Rules), MVFR (Marginal
VFR), IFR (Instrument Flight Rules), and LIFR (Low IFR).
Capacity curves can be estimated for these four different
weather categories.

The essence of the method is presented below. Consider
the arrival/departure plane shown in Fig. 2. The set of points
corresponds to all observed arrivals and departures during 15-
minute intervals over a long period of time (e.g., one month
or more). The coordinates of each point show the number
of arrivals and departures performed at the airport during the
same 15-minute interval. The capacity curve is estimated by
stretching a piecewise-linear convex curve ver the set of points.

Basing capacity estimates on extreme values makes them
sensitive to possible outliers in the observed data [12). Outliers
can be of two kinds. They can be caused by errors in the
historical data collection process, or they can reflect real
but rare events when an airport operates beyond its normal
operational limits for a short period of time. In neither case
should the outliers be included in the capacity estimation
procedure.

The robustness (i.e., nonsensitivity to outliers) of the ca-
pacity estimates can be achieved by rejecting some extreme
observations [12]. Rejection criteria are selected that reflect
confidence levels for the resulting capacity estimates. This
approach is illustrated in Fig. 2.

Curve 1 represents a nonrobust estimate that envelopes
all observed data and includes absolute maximum values of
observed numbers of arrivals and departures. Point A with 27
arrivals and 14 departures per 15 minutes is likely to be an
outlier. Curve 1, which includes Point A, seems unrealistic.

Curve 2 in Fig. 2 represents a robust estimate derived
from the algorithm that rejects some extreme observations;
the rejected data are located outside the area bounded by the
curve and the axes of coordinates.

The variety of rejection criteria determines the variety of
estimation algorithms. The criteria can be based on various
principles: the proximity of extreme observations to the nearest
observations, the ranks of extreme values (the rejection criteria
are based on order statistics), the frequency of occurrences of
extreme observations. The latter is considered here. According
to this criterion, the extreme observations that occurred less
then a certain number of times during the period of time
of interest are to be rejected. The criterion can provide the
estimates that are practically insensitive to outliers. If, for
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Fig. 3.

Histogram of airport arrival/departure operations.

example, the probability for outliers of the same value to occur
more than once is negligible small, then the capacity curve
which courses through the extremes that occur more than one
time is almost unlikely to include outliers.

In the example shown in Fig. 2, outlier A occurred only one
time. Therefore, Curve 2 that courses through the data points,
which occur at least twice, does not include the outlier.

Fig. 3 illustrates the statistical image of the capacity curve
estimates based on the above criterion of rejecting the extreme
observations.

The bars in Fig. 3 show frequencies of observed numbers of
arrivals and departures during 15-minute intervals throughout
the period of time considered. The frequency is determined as
the number of occurrences of the same pair of values (arrivals
and departures per 15 minutes) divided by the total number of
observations. Capacity curve estimates are shown as sample
two-dimensional percentiles that course through the extreme
observations that occur with the frequency not less than an
assigned level. This level reflects the amount of confidence
in the capacity estimates and can be heuristically determined.
The percentage of total observations enveloped by a curve
determines the corresponding percentile represented by the
capacity curve.

In Fig. 3, Curve 1 courses the extreme points that occur
at least one time; the capacity curve represents the 100th
percentile and is not robust. Curve 2 courses through the
extreme points that occur not less than two times; the extreme
points, which occur only once, have been rejected making the
curve robust, insensitive to single outliers. Curve 3 is obtained
by the algorithm that rejects the extreme observations that
occur less than three times. Curve 3 is more robust than Curve
2.

Using the observed data for 15-minute intervals provides
15-minute capacity estimates that determine the upper limits
for the number of arrival and departure operations that can
be performed at the airport during a 15-minute interval. The
same performance level may not be sustainable for several
consecutive 15-minute intervals. The ability to sustain the
extreme peak number of operations during a long period of
time can significantly depend on the human factor. Empirical
data shows that the peak arrivals and departures during 30-
minute intervals are usually less than the doubled 15-minute
peaks, and 60-minute peaks are less than the doubled 30-
minute peaks.
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This effect can also be caused by the characteristics of
traffic demands when examining longer time intervals. As
the time interval becomes longer, it is less likely that the
available demand stresses the airport to its operational limits.
This could explain some of the drop off in the empirically
derived capacities.

Nevertheless, it is useful to estimate 30-minute, 45-minute,
and 60-minute capacities in addition to the 15-minute capac-
ities. The same estimation technique is used. The 15-minute
observed values, represented as a time series for a long period
of time, are recalculated to 30-minute, 45-minute, and 60-
minute intervals by summing the 15-minute data within sliding
time windows with the width of 2, 3, and 4 consecutive 15-
minute intervals, respectively. The resulting capacity curves
show an expected quantitative change in the airport capacity
when the duration of peak demands increases from one 15-
minute interval to two, three, and four consecutive intervals.

C. Some Preliminary Results and Remarks

The preliminary estimates of the capacity curves for major
airports based on empirical data from 1989 to 1991 are
represented in the Unisys interim memorandums [6]-[8].

As the empirical capacity estimates are the results of sta-
tistical procedures, several important questions need to be
addressed. Among them are the amount of data needed to
ensure the statistical significance of the characterization, the
accuracy of the observed data, the stability of the estimates,
and the sensitivity of the estimates. Proper consideration of
these questions is beyond the scope of this paper. Nevertheless,
several comments can be made at this time.

Preliminary analysis has been performed on capacity curves
estimated for all pacing airports using tens of thousands of
historical observations during the period from 1989 to 1992.
This analysis shows good stability of the estimates when
comparing curves estimated for each month during the overall
period.

The estimated capacity curves were compared with EPS.
Although the EPS values do not cover the whole range of
arrival/departure ratios and hence, do not form a curve, the rate
of proximity of the EPS to the curve can be very informative.

An example of the comparison is shown in Fig. 4, where the
estimated curves for runway configuration #1 at San Francisco
International Airport (SFO) are presented. The runway config-
uration includes four runways with two parallel runways (28L
and 28R) devoted to arrivals and two parallel runways (01L
and OIR) devoted to departures. Both sets of parallel runways
cross at approximately midfield. The historical data used for
the estimates includes the observations of actual numbers
of arrivals and departures for 15-minute intervals during
the eight months of August 1990 to March 1991, totaling
6688 pairs of observations. There are three curves shown for
different percentages of rejected observations (only extreme
observations were rejected): 99.5%, 95%, and 90% curves
with 0.5%, 5%, and 10% rejected observations, respectively.
The triangle in Fig. 4 shows EPS values for the same runway
configuration—52 arrivals and 53 departures per hour. The
triangle lies close to the 95% curve.
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Fig. 4. Estimated capacity curves for SFO, runway configuration #1, VFR.

Similar comparisons performed for other pacing airports
have shown that the EPS values are located below capacity
curves that envelop 100% of observed performance data, and
are typically close to the 90%-95% curves. The correlation
with the EPS values supports the supposition that the estimated
capacity curves represent operations at or near the practical
capacities of the airports.

Further analysis of airport capacity will include the com-
parison of the empirical capacity curves with those obtained
from MITRE’s FAA Airfield Capacity Model.

It should be stressed that neither empirical nor analyti-
cal models can be expected to provide capacity curves that
are completely acceptable for field use by practicing traffic
managers. The estimates provided by any method must be
subject to expert evaluation and correction by traffic managers
and controllers using their experience and knowledge of the
specific conditions at the airports. Only after such corrections
can the capacity values be applied for solving real air traffic
management problems.

II. OPTIMIZATION OF AIRPORT CAPACITY

A. Formulation of the Problem

Once the capacity curves have been estimated, traffic man-
agers have detailed information about airport operational limits
for the complete spectrum of arrival/departure ratios for given
operational conditions. How should this information be used?
Ideally, a manager would select capacity values from the
given range to best satisfy the traffic demand. However, it is
extremely difficult to find the best solution during a period of
severe congestion as the demand profile may vary substantially
during that time.

A method for optimization of airport capacity is presented
here. The optimization of airport capacity is taken to mean
the best allocation of airport capacities between arrivals and
departures that optimally satisfy the predicted traffic demand
over a period of time under given operational conditions at
the airport.
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The method is based on a mathematical model of inter-
dependent arrival and departure processes at the airport. The
airport arrival and departure capacities are also interdependent;
their relationship is determined by a capacity curve. The model
treats the airport capacities as the decision variables that are
to be determined in accordance with an optimization criterion.

The choice of optimization criterion is an important step
in formulating the problem. The effectiveness of arrival and
departure operations at the airport can be measured by the total
delay time of the flights being served (i.e., the total waiting
time in the arrival and departure queues) or by the total number
of flights in the queue over the time period of interest. These
two measures both reflect the physical essence of the problem
and are strongly correlated; larger queues cause longer delays.
Which of the measures to use in the optimization criterion
depends on factors such as the type of input data available
and the simplicity of obtaining the optimal solutions.

In this paper, the total number of flights in the queues has
been chosen for the optimization criteria. The major reason is
that we consider strategic, not tactical, problems and hence, use
the aggregated input data such as total demands for each 15-
minute interval (not flight-by-flight data). The total demands
can be easily used to calculate the length of the queues, but
not the delay time for each individual flight in the queues.
In addition, the use of total number in the queues provides
less complex algorithms for obtaining optimal solutions. The
optimal solution determines the arrival and departure capacity
values for each 15-minute time slot to minimize total arrival
and departure queues (or functions of the queues). The values
can then be used in a flight-by-flight model that determines
a schedule for each flight that minimizes the total time in
the queues. The optimal capacity values provide the most
favorable conditions for obtaining the lowest delays.

The following basic notations are used to formulate the
problem:

~
]

a time interval of interest consisting of N time slots
of length A (e.g., A = 15 min); T = NA

{1, 2, .., N} = a set of time slots

demand for arrivals at the ith time slot

demand for departures at the ith time slot

arrival queue by the beginning of the ith time slot: i
=12, .., N+l

= departure queue by the beginning of the ith time
slot: i=1,2, .., N+l
{¢(1)(U),¢(2)(u),<--,¢(’)(u)} = a set of capacity
curves that represent all runway configurations of the
airport under all weather conditions

an arrival/departure capacity curve, which
determines the airport capacity at the ith time slot:
#i(u)ed, i€l

airport arrival capagity at the ith time slot, i€ ]
airport departure capacity at the ith time slot, i€ .

X omae -

o
1]

u; =

In what follows, X; and Y; are state variables, and u;
and v; are decision variables, i € I. A decision vector
u* = (u1,u2, ..., uN, V1, V2, . . ., vy ) is then introduced.

Consider the problem of managing arrival and departure
traffic at an airport during a time interval 7. The traffic demand
is given by a sequence of arrival and departure demands,

a; and d;, respectively, for each time slot of the interval
(i = 1,2,..,N). According to weather forecasts and other
operational conditions for the time interval, a set of runway
configurations is assigned. A sequence of capacity curves
#:(u)(@ = 1,2,...,N) is also given. The problem is to find
the sequence of arrival and departure capacities (u; and v; )
that best satisfy the traffic demand.

The general problem of optimization of airport capacity
during the time interval T is formulated as follows.

. N
min
u ZFi(Xi+1,Yi+1) 1
i=1
subject to
Xiy1= ma.x(O,X,- +a; — u,-), 1€1 (2)
Yiy1 =max(0,Y; +d; —v;), iel 3)

X1 =Xo 2 0;Y1 =Y, > 0, (given initial conditions) (4)

0 < < ¢'i('u'i)) ¢l(u) € (I)’ tel (5)

0<u;<B;, i€l (6)
where F;(X,Y),i € I represent given, nondecreasing scalar
loss functions that determine the optimality criterion, and B;
represents given maximum values of the arrival capacities that
can be utilized during each time slot i € I; X;, Y;, u;, and
v; are integers.

The essence of the problem is well reflected in the following
type of loss functions:

Fi(X,Y) = nlaX* + (1 - a))Y*¥ k> 0,ie 1. (7)

The corresponding optimization problem is

N
Y wleXb (- a)YE ] 12620 ®
i=1

subject to (2)—(6).

This is a problem of minimizing a weighted sum of the
kth power of arrival and departure queues for all slots of
the time interval T; for instance, k = 1 corresponds to
minimizing a sum of weighted queues, and k = 2 corresponds
to minimizing a sum of weighted squares of queues. The power
k can be used as a parameter in the optimization problem.
The weight coefficients ; and o; are related to each time
slot. a; determines the priority rate for arrivals at the ith slot,
the corresponding priority rate for departures is (1 - ). v

u*
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determines the relative cost of the ith slot. The coefficients ~;
can be normalized so that

¥ 2 0. )

N
Z’)’i =1,

i=1

The coefficients -y; can also reflect the confidence in pre-
dicting the traffic (arrival and departure demand) and the
meteorological conditions. In general, distant time slots (i.e.,
those far into the future) have a less reliable forecast; hence,
smaller values of -y; can be assigned for those slots.

Equations (2) and (3) represent the airport as a multi-stage
control system with initial conditions (4). Inequalities (5) and
(6) describe the airport capacity constraints for each time slot.

Equations (2) and (3) describe the dynamics of arrival and
departure queues at the airport during the time interval of
interest. The number of flights delayed at the beginning of
the next time slot depends on the number of delayed flights
from the previous time slot and the difference between demand
-and capacity for the current time slot. If capacities u; and/or
v; are greater than or equal to the number of aircraft waiting
for service at the ith slot, then there is no queue left by the
beginning of the next (i + 1)th slot (X;4; and/or Y;;; are
equal to 0). Otherwise there is a queue (X;4; and/or Y;,; are
greater than 0). Equations (2)—(4) guarantee nonnegativity of
state variables.

The expressions (1)—(6) constitute a classical optimal con-
trol problem. Consider the optimization criterion with the
linear loss function

. N
Y oK + (1= 0)¥ial 1220 (10)
=1

that corresponds to (8) with k = 1. This minimizes a weighted
sum of arrival and departure queues at all slots of the time
interval T.

If there is interest only in the results of traffic management
at the end of the time interval 7', the loss function in (10) is
applied to the Nth time slot only, and the criterion becomes

“:*"(axz\,+1 +(1-a)Yyq1), 12a>0. (1)

Here, a weighted sum of the arrival and departure queues
at the end of the time interval considered is minimized. The
weight coefficient o determines the rate of priority for the
arrival process at an airport. With « = 1 only the arrival
queue is minimized, and consideration of the departure queue
is dropped. o = 0 corresponds to minimizing the departure
queue only.

The expressions (2)~(6) with criterion (11)-formulate an

optimal terminal control problem.

B. Linear Programming Model

The optimization problem (10) or (11) subject to (2)—(6)
can be reformulated as a linear programming (LP) problem by
slightly modifying (2) and (3) and by using a specific property
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Fig. 5. The area restricted by the capacity curve: 0 < v < ¢(u).

of the nonlinear functions ¢;(u), namely their convexity and
piece-wise linearity.

Let us write the magnitude of the queues and the constraints
providing the nonnegativity of the state variables separately
using equations (2) and (3). Then instead of equations (2) and
(3), the following system of linear equations and inequalities
can be written:

Xinn=Xi+a;—u;, 1€l (12)
Yohu=Y+di—v, i€l (13)
X;>0, i=1,2,.,N+1 (14)
Y;>0, i=1,2 . N+1. (15)

Fig. 5 shows an example of the area (the shaded area) that
corresponds to one of the constraints (5).

The shaded area can be represented by a system of linear
inequalities. Hence, all the constraints (5) can be replaced by
a system of linear inequalities. The number of inequalities for
each constraint is determined by the number of vertices of the
corresponding capacity curve.

Let B; and D; denote the maximum values of arrival and
departure capacities, respectively, determined by the capacity
curve v = ¢;(u), ¢ € I (see B and D in Fig. 5). Let n; denote
the number of linear sloping sections of the capacity curve
v = ¢;(u), i € I (excluding the sections parallel to axes v and
«). Then constraints (5) and (6) can be replaced by

0<w <D icl (16)
v +g5ui <bjs, j=1,..,n; i€l (17)
0<w; <Bijiel (18)

where g;; and bj; are the constants that characterize the jth
linear section of the ith capacity curve ¢;(u).
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Now the optimization problem (10) subject to (2) - (6) can
be easily reduced to a linear programming scheme. After a se-
ries of transformations in (12), (13), and (10), and considering
(16) - (18), we obtain the following LP problem:

N N
NS dlapui+ (1—ap)ul, 120,20 (19)
L
subject to
Su,-Ui<0, i€l (20)
p=1
doup-Vi<o, iel (21)
p=1
Ui=X1+Zap, 1€l 22)
p=1
Vi=Yi+) dp, i€l (23)
p=1
X1=X%>0, 1=Y>0 (24)
vi+gjius < by, j=1,...,n; i€l (25)
0<v<D;, el (26)
0<wu; <B;, i€l (27)

The criterion (19) maximizes a weighted sum of arrival and
departure capacities during the entire time interval considered.
The weight coefficients depend on +; (the relative cost of
slots) and «; (priority rates for arrivals at each slot). Having
satisfied criterion (19) we automatically satisfy criterion (10)
to minimize a weighted sum of arrival and departure queues
for all slots of the time interval T. The values of U; and V;
in (20)~(23) are cumulative arrival and departure demands by
the end of the ith time slot, respectively. Inequalities (25)-(27)
restrict the area for decision variables below the capacity curve
(including the curve).

In the case of equal relative values for all time slots and
constant priorities for arrivals and departures during the whole
time interval (the coefficients 7; and «; are constant: v; =
and a; = a1 € I), the objective function (19) is transformed
to

TABLE I
PREDICTED DEMAND
DEMAND

TIME arrival departure
12:00-12:15 a; =13 dy =35
12:15-12:30 ag = 32 dg =2
12:30-12:45 az = 24 d3 = 28
12:25-13:00 as = 10 dy = 20
Total demand 79 85

N
XS N —i+ Djowi + (1—a)], 1>a>0 (28)

u*
i=1

which corresponds to

min

*

N
SNlaXin+(1-a)iu], 1220 (29

=1

The LP version of the optimal terminal control problem
(11) subject to (2)—(6) is

max
u*

2

subject to (20)—(27).

Therefore, to minimize a weighted sum of arrival and
departure queues by the end of the time interval of interest
one should maximize a weighted sum of the cumulative arrival
and departure capacities with the same weights as in (11).

N
(au; + (1=a)vi), 1>a>0 (30)
=1

IV. EXAMPLES

Let us consider an airport that, according to the forecast, is
going to experience a severe congestion problem during one
hour (e.g., from 12:00 to 13:00). The predicted arrival and
departure demands for this hour exceed the available capacity
and some of the flights have to be delayed. The problem is to
find the optimal allocation of airport capacity between arrivals
and departures during the hour to best satisfy the predicted
demand.

Table I shows predicted demands for each 15-minute slot of
the hour. Fig. 6 represents the airport arrival/departure capacity
curve that corresponds to the operational conditions at the
airport predicted for the hour (weather conditions and runway
configuration).

The four dots in Fig. 6 correspond to the demands taken
from Table I. The position of the dots beyond the area,
restricted by the curve, shows the magnitude of the congestion
problem.

To illustrate the scale of the curve, the coordinates of
the vertices of the curve (15; 30), (21; 21), and (25; 12)
are shown in Fig. 6. According to the curve, the maximum
arrival capacity is equal to 25 flights per 15 minutes, and
the maximum departure capacity is 30 flights per 15 minutes.
Maximum total capacity (arrival plus departure) is 45 flights
per 15 minutes. For equal arrival/departure mix operations, the
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TABLE II
OPTIMAL ALLOCATION OF ARRIVAL AND DEPARTURE CAPACITIES
a=0.5 a=(.7
TIME CAPACITY QUEUE CAPACITY QUEUE
arrival departure arrival departure arrival departure arrival departure
12:00-12:15 |u; = 13 v = 30 0 5 u; =13 v = 30 0 5
12:15-12:30 |ugp = 25 v =7 7 0 ug = 25 v =7 7 0
12:30-12:45 {u3 =17 vz = 27 14 1 uz = 21 vz = 21 10 7
12:45-13:00 |ugq =21 vy = 21 3 0 ug = 22 vg = 22 0 5
TOTAL 76 85 24 6 79 80 17 17
404 dep/15min
° v + v <37
30- (15; 30)
.
201 N (21; 21) v1+ve +v3 <65
(25; 12)
109
v+ v+ v3+vs <85
.
T T T T
10 20 30 40 arr/15min
0 < u; <25, 1 =1,2,3,4

Fig. 6. Airport axﬁvai/depanure capacity curve.

airport capacity is 21 flights per 15 minutes for both arrivals
and departures.

In this case, the time interval of interest T consists of 4 time
slots (N = 4). The decision vector ©* contains 8 coordinates:
4 arrival (uy,u2,u3,us), and 4 departure (vy,vg, v3,v4), ca-
pacities. Consider criterion (29) to minimize a weighted sum
of arrival and departure queues during the entire time interval
T. Suppose that there is no queue at the beginning of the time
interval, i.e., X; = Y; = 0 in (4) or (24).

In this case, the corresponding LP problem (28) subject to
(20) - (27) is formulated as

4
";‘i"z (A-i+1)(ou+(1-a)u), 1>a>0
=1
(1)
subject to
uy +ug <45

u1 + u2 + us < 69

uy +uz +uz+ug <79

vi + 1.5u; <525, i=1,2,3,4

v; + 2.25u; < 68.25, 1=1,2,3,4.

The optimal capacity values for two levels of priorities for
arrivals (a = 0.5 and 0.7) are presented in Table II. The table
also shows arrival and departure queues at the end of each
time slot.

Ug = 25

The optimal capacity values vary from one slot to another
in response to the dynamics of demand. Table II shows that,
in response to increasing the arrival priority rate from 0.5
to 0.7, the arrival and departure capacities are reallocated in
two time slots (from 12:30 to 13:00) to decrease the sum
of arrival queues from 24 to 17 and increase the sum of
departure queues from 6 to 17. The dynamics of the slot-by-
slot queue evolution becomes more favorable to arrivals and
less favorable to departures. At the end of the time interval
T in the case of a = 0.5, there is no departure quene and
three flights left in the arrival queue. For o = 0.7, there is
no arrival queue and five flights left in the departure queue.
In other words, in the case of a = 0.5, the optimal strategy
provides a complete solution of the departure problem, and in
the case of o = 0.7, the optimal strategy provides a complete
solution of the arrival problem.

The number of flights delayed under different strategies of
airport capacity allocation was calculated. For example, in the
case of & = 0.5, 14 arrivals and six departures were delayed;
in the case of @ = 0.7, 10 arrivals and 12 departures were
delayed. Increasing the arrival priority, the number of delayed
arrivals decreases significantly. It can be expected that the
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TABLE III
QUEUES FOR OPTIMAL CONSTANT AND VARYING CAPACITIES
a=0.5 a=0.7
TIME QUEUE QUEUE QUEUE QUEUE )
for optimal constant capacities for optimal varying capacities for optimal constant capacities for optimal varying capacities
arrival departure arrival departure arrival departure arrival departure
12:00-12:15 0 14 0 5 0 16 0 5
12:15-12:30 11 0 7 0 10 0 7 0
12:30-12:45 14 7 14 1 12 9 10 7
12:45-13:00 3 6 3 0 0 10 0 5
Total 28 27 24 6 22 35 17 17

total time the flights spend in the arrival queue decreases also.
A rough calculation of the number of 15 minute time slots
the delayed flights were shifted shows that the total number
decreases from 24 to 17 slots. At the same time the number
of delayed departure flights increases from 6 to 12 flights, and
the total time in queue increased from 6 to 17 slots.

Changing parameter «, a traffic manager would be able to
generate other strategies for airport capacity allocation and
choose any of the alternatives based on other reasons beyond
the mathematical formalism.

To estimate the benefits that optimal dynamic (slot-by-
slot) capacity allocation provides, the optimal constant ca-
pacities (which do not vary during the time interval) and
the corresponding queues were determined. The optimization
was performed for the same demand and the same criterion
(minimum of weighted sum of arrival and departure queues)
as above.

The optimization problem is formulated as follows:

. N
min
s 3 eXi+(1-a)in), 1>a>0

(32)
i=1
subject to
Xiy1 =max(0,X; +a; —u), i=12,..,N
Y41 =max(0,Y; +d;, —v), i=1,2,..,N
X1=X>0;, 1=Y%>0
0<u<25
0<v<30
v+ 1.5u <525

v+ 2.25u < 68.25

where u and v are constant arrival and departure capacities,
respectively; the values of demands a; and d; are shown in
Table I. In this example, N = 4.

The optimal constant capacities have been determined for
different values of arrival priority a. Table III shows the arrival
and departure queues at the end of each time slot as calculated
for constant and optimally varying capacities, respectively, for
a = 0.5 and 0.7.

The optimal constant capacities for o = 0.5 are identical for
arrivals and departures and equal to 21 flights per 15 minutes.
By the end of a one-hour interval (by 13:00), the constant
capacities produce a total queue of nine flights (three arrival
and six departure flights). The varying capacities produce a
total queue of three flights, which is substantially less.

For o = 0.7, the optimal constant arrival and departure
capacities are 22 and19 flights per 15 minutes, respectively.
By the end of the time interval considered, these capacities
produce the total queue of 10 flights (0 arrival and 10 departure
flights). The optimal varying capacities produce only five
flights in queue (0 arrival and five departure flights), which
is again significantly less.

Table IIT also demonstrates that the optimally varying ca-
pacities produce lower queues (in comparison with constant
capacities) at each time slot within the interval.

The following calculation shows how effective the optimiza-
tion procedure is in utilizing the airport operational resources.
The total original demand for the one-hour interval is 164
flights: 79 arrivals and 85 departures (see Table I). In the
case of a = 0.5, the total variable optimal capacity for the
hour is 161 flights: 76 for arrivals and 85 for departures (see
Table II). These capacities are consistent with the demand and
altogether provide three flights delayed (164 - 161 = 3) to
the slots outside of the one-hour interval, three arrivals (79 -
76=3), and no departures (85 - 85 = 0). In the case of o = 0.7,
the total variable capacity for the hour is 159 flights: 79 for
arrivals and 80 for departures. The total number of flights in
the queue by the end of the time interval is 5 (164 - 159 =
5): 0 arrivals delayed (79 -79 = 0), and 5 departures delayed
(85 - 80 = 5).

The situation is quite different when the capacities are
constant within the time interval and are not coordinated with
the dynamics of demand. As was mentioned above, in the
case of a = 0.5, the optimal constant capacities for arrivals
and departures are the same and are equal to 21 flights per 15
minutes. This corresponds to the total hourly capacity of 168
flights: 84 flights per hour for arrivals and 84 flights per hour
for departures. In total, these capacities provide nine flights
delayed in the slots outside of the one-hour interval: three
arrival flights and six departure flights (see Table 3). Though
the total constant hourly capacity (168) is greater than the
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variable one (161), it provides a greater number of delayed
flights at the end of the hour. Moreover, the comparison of total
constant arrival capacity (84) with the total hourly demand
for arrivals (79) shows that demand is less than the capacity,
and we can expect no arrival flights delayed at the end of
the hour. However, in reality there are three arrival flights
delayed. These apparent paradoxes are caused by operating
with the hourly capacities, which are not coordinated with the
nonuniform distribution of demand within the hour. The same
effect also takes place in the case of o = 0.7.

These examples show that the optimal dynamic allocation
of airport capacities between arrivals and departures provides
a rational utilization of the airport capacities consistent with
the dynamics of demand and can be very effective in solving
congestion problems at the airport.

Note that in these examples, the demand profile for arrivals
and departures has been selected to show significant slot-
by-slot variation (peak arrival demands alternating with peak
departure demands). In reaction to the variability, the optimiza-
tion procedure generates capacities that vary from one slot to
another. This made it possible to illustrate the benefits that
can be obtained through the proper dynamic tradeoff between
arrival and departure capacities at the airport. In the case of
a small variability in demand during a period of time, the
optimization procedure might select constant capacities as the
best allocation of airport operational resources for the time
interval.

V. CONCLUSIONS

This paper discusses important aspects of airport capacity
studies concerning representation, estimation, and optimization
within the scope of air traffic management.

Representation of airport capacity through a set of capacity
curves that cover the airport operational limits over the en-
tire range of arrival/departure ratios under various conditions
has incontestable advantages over representation by fixed
constants (one to three constants separately for arrival and de-
parture capacities). However, the benefits of this representation
can only be realized under two conditions: the capacity curves
must be realistic, and the curves must be properly used to solve
major problems of traffic management during congestion.

A method to obtain the realistic estimates of capacity curves
has been presented. Using analytical results on the character
of the functional relationship between arrival and departure
capacities, and using historical data on the actual number of
arrivals and departures at an airport during a long period of
time, the functional relationship can be made specific for each
runway configuration and weather condition. The resulting set
of realistic capacity curves represents detailed information on
the operational limits of the airport.

A method for optimal allocation of airport capacities be-
tween arrivals and departures to best satisfy the traffic demand
has been presented. The mathematical model considers ar-
rivals and departures as interdependent processes, treats the
airport capacities as decision variables, and selects the optimal
capacity values from the area restricted by the capacity curves.

The model can be used as an effective decision support
tool for air traffic managers. The output of the optimization

153

procedure presents an airport capacity profile that suggests
to traffic managers how many arrivals and departures would
best be performed in each time slot. The capacity optimization
model allows a traffic manager to generate effective strategies
for managing arrival and departure flows. Alternative capacity
profiles, and hence, alternative management strategies, can
be obtained by changing the parameters of the model. The
manager may then evaluate the alternatives and choose the
best solution.

The presented approach can be extended to a network with
multi-airport connections. Optimization of capacities for the
set of airports could further improve NAS utilization and
increase NAS throughput.
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