STATE OF CALIFORNIA « DEPARTMENT OF TRANSPORTATION

TECHNICAL REPORT DOCUMENTATION PAGE
TR-0003 (REV 04/2024)

1. REPORT NUMBER 2. GOVERNMENT ASSOCIATION NUMBER 3. RECIPIENT'S CATALOG NUMBER
CA25-4417
4. TITLE AND SUBTITLE 5. REPORT DATE

New Near-Fault Adjustment Factors for Caltrans Seismic Design Criteria (SDC) December 2025

6. PERFORMING ORGANIZATION CODE

7. AUTHOR 8. PERFORMING ORGANIZATION REPORT NO.
Silvia Mazzoni, Ersa Zengin, Mahdi Bahrampouri, Yousef Bozorgnia GIRS-2025-04
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NUMBER

Natural Hazards Risk and Resiliency Research Center (NHR3),
Department of Civil and Environmental Engineering

University of California, Los Angeles 11. CONTRACT OR GRANT NUMBER
404 Westwood Plaza, Los Angeles, CA 90095
65A0774 TO 010

12. SPONSORING AGENCY AND ADDRESS 13. TYPE OF REPORT AND PERIOD COVERED
California Department of Transportation Final Report
1120 N St., Sacramento, CA 95814 4/02/2024 - 2/28/2025

14. SPONSORING AGENCY CODE

15. SUPPLEMENTARY NOTES

16. ABSTRACT

This report covers analyses of Caltrans’ near-fault adjustment factors as recommended in the Caltrans Seismic Design Criteria. The report has
two large chapters. Chapter 1 builds on prior the University of California Los Angeles studies that performed probabilistic seismic hazard
analyses at numerous California sites across a range of return periods and multiple site classes. Using that dataset, the chapter develops
simplified, distance- and period-dependent models that quantify directivity amplification of elastic response spectra statewide. Because many
bridges are expected to respond inelastically during major earthquakes, the models are further adapted to capture period elongation consistent
with typical bridge ductility demands. In Chapter 2, the impacts of the near-fault directivity factors proposed in Chapter 1 were evaluated on the
seismic performance of two Caltrans ordinary long-span bridge configurations: a single-column bent and a two-column bent. Using nonlinear
time history analysis (NTHA), three-dimensional bridge models were evaluated under 20 bidirectional near-fault ground motions, scaled to three
different target spectra. Analyses were performed for return periods of 1000 and 2475 years at two sites, Los Angeles and Oakland, and
included an investigation of the influence of ground-motion directionality on bridge responses. Finally, the results obtained from elastic and
inelastic analyses of single-degree-of-freedom systems, and NTHA were compared.

17. KEY WORDS 18. DISTRIBUTION STATEMENT
Near-fault fault adjustment factors, ground motion directionality, No Restrictions

probabilistic seismic hazard analysis, nonlinear time history analysis,
inelastic response spectra

19. SECURITY CLASSIFICATION (of this report) 20. NUMBER OF PAGES 21. COST OF REPORT CHARGED
Unclassified 132

Reproduction of completed page authorized.

. Americans with Disabilities Act (ADA) Notice: This document is available in alternative accessible formats. For more information, please contact the Forms
ADA Notice Management Unit at (279) 234-2284, TTY 711, in writing at Forms Management Unit, 1120 N Street, MS-89, Sacramento, CA 95814, or by email at Forms.
Management.Unit@dot.ca.gov.



DISCLAIMER STATEMENT

This document is disseminated in the interest of information exchange. The contents of
this report reflect the views of the authors who are responsible for the facts and
accuracy of the data presented herein. The contents do not necessarily reflect the
official views or policies of the State of California or the Federal Highway Administration.
This publication does not constitute a standard, specification or regulation. This report
does not constitute an endorsement by the Department of any product described herein.

For individuals with sensory disabilities, this document is available in alternate formats.
For information, call (916) 654-8899, TTY 711, or write to California Department of
Transportation, Division of Research, Innovation and System Information, MS-83, P.O.
Box 942873, Sacramento, CA 94273-0001.



Cal Poly

Caltech

sCIEC

AN NSF+USGS CENTER

UC Irvine

UCLA

UC Santa
Barbara

USC

New Near-Fault Adjustment Factors for
Caltrans Seismic Design Criteria (SDC)

Silvia Mazzoni, Esra Zengin,
Mahdi Bahrampouri, Yousef Bozorgnia

Natural Hazards Risk and Resiliency Research Center (NHR3),
Department of Civil and Environmental Engineering
University of California, Los Angeles

A report on research supported by
State of California, Department of Transportation (Caltrans)

Report GIRS-2025-04

DOI: 10.34948/N3S88X

University of California, Los Angeles (headquarters)

Natural Hazards Risk & Resiliency Research Center

The B. John Garrick Institute for the Risk Sciences



New Near-Fault Adjustment Factors for
Caltrans Seismic Design Criteria (SDC)

Silvia Mazzoni, Esra Zengin,
Mahdi Bahrampouri, Yousef Bozorgnia
Natural Hazards Risk and Resiliency Research Center (NHR3),
Civil and Environmental Engineering Department
University of California, Los Angeles

A report on research conducted with support from
State of California, Department of Transportation (Caltrans)

Report GIRS-2025-04
DOI: 10.34948/N35S88X

Natural Hazards Risk and Resiliency Research Center
B. John Garrick Institute for the Risk Sciences
University of California, Los Angeles (Headquarters)

December 2025



CONTENTS

A B LES ettt et ettt ettt ettt e et eeu et euaeauneaaasaeenneanasaeannaannasneauneenatneennttneannetnneansanetneaneenetneeaneanneanaaanns 1
FIGURES ... et ettt ettt ettt ettt et et et et e ea et eaa e eae s ea e e eae s eaeaa e eaasensanatnesensannennsansennsennennsennsennennne I
ACKNOWLEDGIMENTS ..ttt et eie et ettt et et ee et et et e eaeeea e enaeeneeansenetneeansannsaneennsannstnsennsennsennennns X
1. NEW NEAR-FAULT ADJUSTMENT FACTORS FOR CALTRANS SEISMIC DESIGN CRITERIA (SDC)
CONSIDERING ELASTIC AND INELASTIC RESPONSE SPECTRA .....cuiuiiiiiiiiiniiiieieiieciitetairecesresassecesseseess 1
T A B STRACT ettt ettt ete ettt eteeueetaeesaeeunetuaasasenneenssnsesneenssssseussenssssssnsesnsssnsennssssssssensesnsssssensesnsssesensennsen 1
T.2. EXECUTIVE SUMMARY .. ..ttt ettt ettt ettt et e e et e et et et e ea et eanseneseneennsanesensennsaneeensennnn 2
Task 1: Simplified Directivity Model Using the UCLA NHR3 Interactive 2023 Map .........cccceeuvveuiieneennnannns 2
Task 2: Incorporation of InelastiC RESPONSE EffECTS ....cuniu ittt ee et e s e e e ans 3
Summary of PropoSEd MOGEIS ......c..viuiiniiiiiiiiiiii ettt et eaas 4
OVErall CONTIIDUTIONS ...eeeeeee ettt ettt et ettt e et et et e ea st et ean s eae et eansaneeenannsanneenaannsannen 4
T.3. INTRODUCTION .tuuituttnttuetneeunetueetneeuneeneeseeeusesneesnsesnssnsssnsenssenssssssssssnssssssssssnssssssssssnsssnsensesnsssssensennses 5
1.3.1. Task 1: Use of the UCLA NHR3 Interactive 2023 Directivity Hazard Map to Determine Directivity
| =Tt £ T PP PSP PPPPRPPRN 5
1.3.2. Task 2: Consideration Of IN€lastiC RESPONSE.......cuueuiiiiiiiiiieieiieeieeie et ee e eeeeeeeeee it e e eaeeaaenaanns 6
T e P AST PROJECTS o tttnttittinttie ettt etieete et etueetaeeuneaaeetnsauseanesnseuseensssnssusesnsssnsensssnssssesnsesnsesnsensesnsssnsensesnnes 7
1.4.1. Statewide California PSHA-With-DireCtiVity STUY .........ccouviiuiiiniiiiiiiiiiiiiiiiiie et 7
1.4.2. Inelastic-ReSPONSE SPECEIA STUAY .....uiuniiiieiieie ettt ee e e e e et e e eea e e e rsasaeanannanns 9
1.5. CALTRANS SEISMIC DESIGN CRITERIA ..uetuttinetnetunetnetneeteeueetnseuetuessasssseeusssnsssnsensssnssssssnsssnssssssnsssnsssnsens 11
1.5.7. Caltrans BridGE LOCATIONS .......cuueuieiiiiiitie it ee et e et e e e teeteeteanata et stastsasnasnasnstnstnsensanasensnnes 13
1.6. CALIFORNIA STATEWIDE DIRECTIVITY PSHA DATA ..ttt ettt ettt et et et ete et e et eaie et s eneaiseansanneaneesnesnneens 14
1.6.7. DirectivVity-MOdEI COMPAIISON «...cueuieiiitieiee e ee ettt e e e et eeteeeaetetastasaesaasaasnasnstnstaseasaasansnnnn 17
1.6.2. Data SEIECTION & BiNS....cuuiiuiiiiiiiiiiiiiiii ettt et e s ee e e eaaas 18
1.6.3. DEAZEIreGatiON BiNS ........iuuieeieee e eee e e e et et e e e e et et e et sae st saeaaatnstnstnsaasansaasnasnstnstasansansnnsnnen 23
1.7. PROCEDURE TO UPDATE CALTRANS NEAR-FAULT ADJUSTMENT FACTORS. .. ceuttuiiiiiiiiiiieiireneiieensenetienneenneens 32
1.8. DIRECTIVITY-AMPLIFICATION THRESHOLD DISTANCE ... ceuuttittuttneetnetueteeteeuetneeneeneeneeneeneeeneennseneennsenneens 33
1.8.1. Computation of the Directivity-Amplification Threshold DiStance ..........c.cccoveviiiiiiiiniiiniennnennes 33
1.8.2. Directivity Threshold DiStanCe VS PEIIOM ..........eueuieniiiiiiieie et ettt e e e e e e e e e e e e s s e ennas 39
1.9. DIRECTIVITY AMPLIFICATION FACTOR VS DISTANCE ... etuutttuitttueetueetueetneeetueeetneeaneeeeneeeneesnetnnsernnsernnsennns 43
[ R A oo [ ST OP PP PRPPPPRPR: 43
T00. 2. MBAN ...ttt ettt ettt ettt et e e st e e eaaas 47
1.10. MODEL FOR DIRECTIVITY-AMPLIFICATION VS DISTANCE BINNED BY PERIOD AND MAGNITUDE .....cceuueenrenneennennnen. 50
L KO IR 7 Lo o L= PP PP PP PPTPPPPRIR 50
ToT0.2. MBAN ...ttt ettt ettt e ettt ettt e e e et et e e eaenaan 54
1.11. DIRECTIVITY AMPLIFICATION VS PERIOD ..euuttunttunretuneetueetueetueenueesneesnsesasesnssesnssesnssesnesesnssesnssennnsenns 57
1.12. DIRECTIVITY THRESHOLD DISTANCE: AMPLIFICATION-DISTANCE MODELVS DATA....uviuiiiiiiiieiieeieeieeieeeeeneeens 61
1.13. SIMPLIFIED MODEL FOR DIRECTIVITY-AMPLIFICATION VS DISTANCE — BASED ON ELASTIC RESPONSE SPECTRA........ 64
1.14. SIMPLIFIED DIRECTIVITY-AMPLIFICATION VS DISTANCE MODEL — ACCOUNTING FOR INELASTIC RESPONSE SPECTRA 67
1.14.1. Comparison of Recommended Modelto Data and Models ...........ccocvuviueiiiiiiiiiiiiiiiniiniinennennes 70
T.15. SUMMARY & CONCLUSIONS ...ctuteunetneetnrenetneenneeuetneesneeueeaeeseseuseasssnsensssnsssssensssnssssenssensssnsensesnssnneens 76
T8, REFERENCES «.uttutitienitiueti ettt ettt etu et enaetueeaneseetaeeantseetaeeantsestasssnsessstnsssnsensstnsssnsesssensssnsennsens 79



2. EFFECTS OF NEAR-FAULT DIRECTIVITY AND GROUND MOTION DIRECTIONALITY ON SEISMIC

RESPONSES OF BRIDGES .......ccuutiuuiiuiiiniiiniiiniiniiniieeiienieetitetiteietnetssesstessstastesseesseessssssssssessssssesssesnnes 80
2.1 EXECUTIVE SUMMARY ..ottt s e e e eaaa e eeas 80
2.2. INTRODUGTION ... ittt ettt e e e s e et bt s e e taa e e esaa e esaaas e eenas 82
2.3. SITE-SPECIFIC PROBABILISTIC SEISMIC HAZARD ANALYSIS WITH ORWITHOUT DIRECTIVITY EFFECTS
......................................................................................................................................................... 83
2.4. GROUND MOTION SELECTION AND SCALING .....coivtiiiiiiiiiiiiiiiicci e 85
2.5. BRIDGE CONFIGURATIONS AND DESIGN DETAILLS ......ciiiiiiiiiiiiiiiiiciii it 87
2.6. THREE-DIMENSIONAL NUMERICAL MODELING ........coiiiiiiiiiiiiiiiiiiicciiicci i 88
2. 7. MODALANALYSIS ..ot e e s e 90
2.8. MOMENT-CURVATURE ANALYSIS ....uutiiiiiiii s 91
2.9. PUSHOVERANALYSIS ...ttt e e et e e s e e s s e eaas 93
2.10. NONLINEARTIME HISTORY ANALYSIS ...ouutiiiiiiii e 95
2.11. COMPARISONS BETWEEN NTHA AND SDOF ANALYSES RESULTS.....c.coiiiiiiiiiiiiiiniiiinice, 107
2.12. CONCLUSIONS AND RECOMMENDATIONS ...ttt 114
2183 REFERENGES ... oottt st e e s et e e a e 116
APPENDIX 2.A: MODAL ANALYSIS REPORTS ...ttt 118
APPENDIX 2.B: LISTS OF SELECTED GROUND MOTIONS ...ttt 123

II



TABLES

Table 1.1 Caltrans Spectrum Adjustment Factors (SDC 2.0) ...cccuveeevieeeiieerieeeeiee e 12
Table 1.2 Recommended Directivity Amplification Factor Considering Elastic response only. 66
Table 1.3 Ratio of Recommended Directivity Amplification Factor Considering Elastic response
t0 Caltrans SDC 2.0 ...couuiiiiiiieieeeeee ettt sttt ettt sttt et sa ettt 66
Table 1.4 Recommended Directivity Amplification Factors Accounting for Inelastic Response 77
Table 1.5 Ratio of Recommended Directivity Amplification Factors accounting for Inelastic

RESPONSE t0 SDC 2.0 ...t ettt et e et e e st e e st eesabee e sabeeesaseeennneeeas 78
Table 2.1 Structural and foundation properties of the B-1C and B-2C three-span bridges. ........ 87
Table 2.2 Moment-curvature analysis results based on idealized curve for the B-1C................. 91
Table 2.3 Moment-curvature analysis results based on idealized curve for the B-2C................. 92
Table 2.4 Pushover analysis results based on idealized curves for the B-2C ..........c.cccceeiineenne. 94
Table 2.5 Pushover analysis results based on idealized curves for the B-2C ..........c.ccccceeiineenne. 94
Table 2.6 The number of collapses out of 20 ground motions at each incidence angle in Los
ANgeles FOr the B-1C. ....coouiiiiiiiicieeece ettt ettt e enbe e ssaeebaesaae e 100
Table 2.7 The number of collapses out of 20 ground motions at each incidence angle in Los
ANGeEles TOr the B-2C. .....ccuoiiiiiiieeieeeee ettt ettt e e e e st e baeeaae e 100
Table 2.8 The number of collapses out of 20 ground motions at each incidence angle in Oakland
TOT The B-TC. ettt ettt ettt e et e s et e et eseeeenbeesaeeenbeenneas 106

FIGURES

Figure 1-1 UCERF-3-Based Fault SOUICES........c.cccceriiriiiiiiiiiiiieetcieceseeeeeeese e 8
Figure 1-2 Estimated Site-Specific VS30.......coiiiiiiiiiiiiiiinieceeteecesereee e 8
Figure 1-3 Data availability — metrics and geographic distribution of data.............cceceeverienennnen. 8
Figure 1-4 Findings from Inelastic Response Spectra Study. Bilinear Takeda Hysteretic Model,
VS30=760 m/S, 5% AAMPING. ..ccutiiiiiiiiiiiiiieetee ettt et st sabe e e 10
Figure 1-5 SDC 2.0 -Figure B.1 Near-Fault adjustment factor as a function of distance and
Sy 1STe18 21 0 1<) 0 (o o F TSRS 11
Figure 1-6 Geographic Distribution of Caltrans Bridge and UCERF-3 Fault Sources ............... 13
Figure 1-7 Mapped PSA with and Without Directivity Amplification. T=3.0sec, Vs30=760m/s,
REtUIN PeriOAT=24 75 YT . .e ittt ettt ettt ettt et e et e steeeabeesaeeenseenenas 15
Figure 1-8 Geographic Distribution of Weighted-Model Directivity Amplification Factor
(VS30=760m/s, RP=24T75YT, T=3.08)...ccctetiteiieriieeiieeeeetteeite ettt et sieeeteeseaesaeesieeenbeessneenseens 15
Figure 1-9 Geographic distribution of Weighted-Model Directivity Amplification Factor
(Vs30=760m/s, RP=2475yr) — for Directivity Periods 0.55-108 .........cccecuerriiniiriiiniiiiienieeieene 16
Figure 1-10 Caltrans-Bridge Locations + Geographic Distribution of Weighted-Model Directivity
Amplification Factor (Vs30=760m/s, RP=2475yr) — for Directivity Periods 0.5s-10s................ 16

III



Figure 1-11 Geographic Distribution of Directivity Amplification Factor — Comparison of all

Directivity Models. (Vs30=760m/s, Return Period=2475yr, T=3.08) ....ccccceerrrreririeerrieerrreeereenns 17
Figure 1-12 Source-Type Hazard Curve, Vs30=760m/s, T=3.0 sec (Site 04088, near Los Angeles)
....................................................................................................................................................... 18
Figure 1-13 Source-Type Hazard Curve, Vs30=760m/s, T=3.0 sec (Site 17113, North-West
CalIfOINIA) ...ttt ettt e et e e e ete e e e taeeeteeeeabaeesaaeeestbeeeessaeessseeeesseeenaseeesseeesseeans 18
Figure 1-14 Hazard-Controlling Events (Vs30=760m/s RP=2475y1) .......cccccecvererrerrreneenennnn. 19
Figure 1-15 Percent Contribution to Hazard -- Subduction Events (Interface + Slab) (Vs30=760m/s
RPZE2475YT) ettt bbbt ettt b e h et 19
Figure 1-16 Percent Contribution to Hazard -- Grid Events (Vs30=760m/s RP=2475yr) ......... 20
Figure 1-17 Percent Contribution to Hazard — Crustal-Fault Events (Vs30=760m/s RP=2475yr)
....................................................................................................................................................... 20
Figure 1-18 Directivity-Amplification Factor For Sites in Dataset (Vs30=760m/s, Return
POIIOAT2ATIYT) ettt ettt ettt et e et e et e e aeeesbe e st e easeesaeesseesaesnsaensneesseenseas 21
Figure 1-19 Overlay of Existing-Caltrans-Bridge Locations and Directivity-Amplification Factor
For Sites in Dataset (Vs30=760m/s, Return Period=2475y1) ......ccceeeeriiriienieniienieeeeeeeeeee 21
Figure 1-20 Binned Deaggregation Data. Vs30=760 m/s, T=3.0sec, Site01536 (Southern
CalIfOINIA) ..veeeevie et eeiee ettt e et e e et e e e taeeetaeeeataeesasaeesssaeessseeesssaeessseeessseeanseessseensseeans 22
Figure 1-21 Geographic Distribution of Modal Magnitude (Vs30=760m/s, RP=2475yr).......... 24
Figure 1-22 Geographic Distribution of Modal Distance (km) (Vs30=760m/s, RP=2475yr)..... 24
Figure 1-23 Geographic Distribution of the Contribution of the Mode to the Total Hazard
(VS30=T60mM/8, RPZ24T5YT) ettt ettt sttt 25
Figure 1-24 Overlay of Existing-Caltrans-Bridge Locations and Geographic Distribution of Modal
Magnitude (VS30=760m/S, RP=24T75YT).....ccoiiiieiiiieeiie ettt ee et svee e e 25
Figure 1-25 Overlay of Existing-Caltrans-Bridge Locations and Geographic Distribution of Modal
Distance (VS30=760m/s, RP=24T75YT) ...cc.eoiiiiieiiieieee ettt 26

Figure 1-26 Geographic Distribution of Mean Magnitude (Mbar) (Vs30=760m/s, RP=2475yr) 28
Figure 1-27 Geographic Distribution of Mean Distance (Dbar) (km) (Vs30=760m/s, RP=2475yr)

Figure 1-28 Geographic Distribution of Mean Epsilon (Epsbar) (Vs30=760m/s, RP=2475yr).. 29
Figure 1-29 Overlay of Existing-Caltrans-Bridge Locations and Geographic Distribution of Mean

Magnitude (Mbar) (Vs30=760m/s, RP=24T75YT) ....ceeeiiiiiieeiie ettt 30
Figure 1-30 Overlay of Existing-Caltrans-Bridge Locations and Geographic Distribution of Mean
Distance (Dbar) (km) (Vs30=760m/s, RP=2475¥T) ...cccoiiriiriiiieeeeiieeieeeee et 30

Figure 1-31 Geographic Distribution of Modal-Magnitude Bins (Vs30=760m/s, RP=2475yr) . 31
Figure 1-32 Geographic Distribution of Mean-Magnitude Bins (Vs30=760m/s, RP=2475yr)... 31
Figure 1-33 Modal Distance vs Directivity Amplification Factor + Threshold Distance, All Modal-

MaAZNITUAE BINS. ..ioiiiiiiiieiie ettt e e e stae e et e e et eestaeessbeeesnbeeeenseeenaeeenaeeens 33
Figure 1-34 Modal Distance vs Directivity Amplification Factor + Threshold Distance, Modal-
Magnitude Bin: 6.5-7.0 ...cccuiiiiieeiie et et e et e e bae e enreeennaeeennaeeeas 34

IV



Figure 1-35 Modal Distance vs Directivity Amplification Factor + Threshold Distance, Modal-

Magnitude Bin: 7.0-7.5 ..ottt e e et e e et e e s b e e e sabeeennaeeenneeeas 34
Figure 1-36 Modal Distance vs Directivity Amplification Factor + Threshold Distance, Modal-
Magnitude Bin: 7.5-8.0 ...cc.oiiiiiiieiieieeieeee e et et aennaeenbeennees 35
Figure 1-37 Modal Distance vs Directivity Amplification Factor + Threshold Distance, Modal-
Magnitude Bin: 8.0-8.5 ......oi ittt sttt e b e enaeenbeennees 35
Figure 1-38 Mean Distance vs Directivity Amplification Factor + Threshold Distance, Mean-
Magnitude Bin: All.......ooooeiiieeeee ettt et e et e e et e e e e e s reeennaeeennneeens 36
Figure 1-39 Mean Distance vs Directivity Amplification Factor + Threshold Distance, Mean-
Magnitude Bin: 6.5-7.0 ...cccuuiiiiieeiee ettt et e et e et e e e ba e e eabaeennaeeenaeeens 36
Figure 1-40 Mean Distance vs Directivity Amplification Factor + Threshold Distance, Mean-
Magnitude Bin: 7.0-7.5 .ccoiiiiieieeieeeee ettt ettt ettt e e abaenaaeenbeenneas 37
Figure 1-41 Mean Distance vs Directivity Amplification Factor + Threshold Distance, Mean-
Magnitude Bin: 7.5-8.0 ...cc.oioiiiiiiiiiieie ettt et et eaaeenbeenneas 37
Figure 1-42 Mean Distance vs Directivity Amplification Factor + Threshold Distance, Mean-
Magnitude Bin: 8.0-8.5 ... .ottt et 38
Figure 1-43 Threshold Distance (1.05-amplification) -- Median +/- sigma. Separate Modal-
MaAGNItUAE BINS ... .ooiiiiiiiiiie et et ettt et sateenbeeneas 40
Figure 1-44 Threshold Distance (1.05-amplification) -- Median +/- sigma. Separate Mean-
MaAGNItUAE BINS ... .iiiiiiiiiiiiciiecie ettt ettt et e et e e e et e e beetaeenbe e saeenbaenaaeenseeneas 41
Figure 1-45 Threshold Distance (1.05-amplification) -- Median +/- sigma. Combined Modal-
MaAGNItUAE BINS.....iiiiiiiiiiiiiciiecie ettt ettt et e et e b et e e be e teeenbeentaeenbeenaaeenbeeneas 42
Figure 1-46 Threshold Distance(1.05-amplification) -- Median +/- sigma. Combined Mean-
MaAZNITUAE BINS ..eiiiiiiiiiieeiieee ettt et e ettt e e te e et e e etaeessaeeeenbeeennbeeenaeesnaeeens 42
Figure 1-47 Directivity Amplification Factor vs Modal Distance. Full dataset Modal Magnitude>=
0.0ttt bt a et a et h bt et e bt bt h b bt e bt et bt e bt et e e bt as 43
Figure 1-48 Directivity Amplification Factor vs Modal Distance. Modal-Magnitude Bin: 6.0-6.5
....................................................................................................................................................... 44
Figure 1-49 Directivity Amplification Factor vs Modal Distance. Modal-Magnitude Bin: 6.5-7.0
....................................................................................................................................................... 44
Figure 1-50 Directivity Amplification Factor vs Modal Distance. Modal-Magnitude Bin: 7.0-7.5
....................................................................................................................................................... 45
Figure 1-51 Directivity Amplification Factor vs Modal Distance. Modal-Magnitude Bin: 7.5-8.0
....................................................................................................................................................... 45
Figure 1-52 Directivity Amplification Factor vs Distance. Modal Modal-Magnitude Bin: 8.0-8.5
....................................................................................................................................................... 46
Figure 1-53 Directivity Amplification Factor vs Mean Distance. Full dataset Mean Magnitude>=
0. ettt bt bbbt a e a et h e bbbt bt ettt b et sbeeaeeaeas 47
Figure 1-54 Directivity Amplification Factor vs Mean Distance. Mean-Magnitude Bin: 6.0-6.5
....................................................................................................................................................... 47



Figure 1-55 Directivity Amplification Factor vs Mean Distance. Mean-Magnitude Bin: 6.5-7.0

Figure 1-60 Directivity-Amplification vs Modal Distance Models -- Modal-Magnitude Bin: 6.0-
. ettt bbbt h et ettt et a e bbbt et ettt et bt ene e 51
Figure 1-61 Directivity-Amplification vs Modal Distance Models -- Modal-Magnitude Bin: 6.5-
T0 ettt bbbt a ettt sh e bt bt at et ettt et saeene e 52
Figure 1-62 Directivity-Amplification vs Modal Distance Models -- Modal-Magnitude Bin: 7.0-
et b h e a ettt h bbbt a it e bt e bbbt bt ehten e et e b e et e nbe bt eneeneas 52
Figure 1-63 Directivity-Amplification vs Modal Distance Models -- Modal-Magnitude Bin: 7.5-
0ottt h e bbbt a e a e ettt b e bt bt bt en e a b et et e te b ebenaeene e 53
Figure 1-64 Directivity-Amplification vs Modal Distance Models -- Modal-Magnitude Bin: 8.0-
B ettt h bt h e a ettt h e bt a e bt h ettt ettt e be et 53
Figure 1-65 Directivity-Amplification vs Mean Distance Models -- All Mean-Magnitude Bins
IMIDAIT0.5 ...ttt a e bt eae 54
Figure 1-66 Directivity-Amplification vs Mean Distance Models -- Mean-Magnitude Bin: 6.0-6.5

Figure 1-71 Model Maximum Amplification Factor vs Period for each Modal-Magnitude bin. 58
Figure 1-72 Model Maximum Amplification Factor vs Period for each Mean-Magnitude bin.. 59
Figure 1-73 Model Maximum Amplification Factor vs Period for all Modal-Magnitude bins --

Median +/- one Standard dEVIATION. ..........uueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeseeeeeeeseeenesesesesenenenenenennnes 60
Figure 1-74 Model Maximum Amplification Factor vs Period for all Mean-Magnitude bins --
Median +/- one Standard AEVIATION. ......coovuuenneee e et e e e e e e e e e eaeeeeeeeeeeenaaaeeeeeeneee 60

VI



Figure 1-75 Comparison of Threshold Distances (@1.05-amplification) Directivity
Amplification-Distance Model Intercept (solid line) and Data-Interpolation Threshold Distance
(Data Median, 16-84%, and 9-95% range) — Modal-Deaggregation Magnitude Bins ................ 62
Figure 1-76 Comparison of Threshold Distances (@1.05-amplification) Directivity
Amplification-Distance Model Intercept (solid line) and Data-Interpolation Threshold Distance
(Data Median, 16-84%, and 9-95% range) — Mean-Deaggregation Magnitude Bins.................. 63
Figure 1-77 Proposed Simplified Model considering Elastic Response Only — The proposed model
applies to T<= 3.0 seconds. a. and b. amplification factor, vs Distance and Period, respectively. c.

and d. amplification factor/Caltrans SDC 2.0 factor, vs Distance and Period, respectively ........ 65
Figure 1-78 Directivity Amplification Factor for Inelastic Response Spectra (Vs30=760m/s,
O g ) ) SRS 68

Figure 1-79 Directivity Amplification Factors considered in Study: Comparison of model which
considers only elastic response and model which also considers inelastic response with Caltrans
SDIC 2,01 ettt b et h ettt ettt b et 69
Figure 1-80 Comparison of recommended model with data, period and magnitude-bin model, and
Caltrans model. Modal-Magnitude Bin 6.0-6.5 ..........cccooiiiiiiiiiiiiieeceee e 70
Figure 1-81 Comparison of recommended model with data, period and magnitude-bin model, and
Caltrans model. Modal-Magnitude Bin 6.5-7.0 .........cccciiiiiiiiiiiiiieeeeceee e 71
Figure 1-82 Comparison of recommended model with data, period and magnitude-bin model, and
Caltrans model. Modal-Magnitude Bin 7.0-7.5 .......c.cccciiiiiiiiiiieieeieeeeeesee et 71
Figure 1-83 Comparison of recommended model with data, period and magnitude-bin model, and
Caltrans model. Modal-Magnitude Bin 7.5-8.0 .......c.cccciiiiiiiiiiiieniieieeeeeesee et 72
Figure 1-84 Comparison of recommended model with data, period and magnitude-bin model, and
Caltrans model. Modal-Magnitude Bin 8.0-8.5.......ccciiiiiiiiriieeie e 72
Figure 1-85 Comparison of recommended model with data, period and magnitude-bin model, and
Caltrans model. Mean-Magnitude Bin 6.0-6.5 .........ccccooiiiiiiiiiiiiiiiniececeeeeeeee e 73
Figure 1-86 Comparison of recommended model with data, period and magnitude-bin model, and
Caltrans model. Mean-Magnitude Bin 6.5-7.0 ......ccccooiriiiiiiiniiiiiinceeeeceeeeeeee e 73
Figure 1-87 Comparison of recommended model with data, period and magnitude-bin model, and
Caltrans model. Mean-Magnitude Bin 7.0-7.5 ......c.coooiiiiiiiiiieecee et 74
Figure 1-88 Comparison of recommended model with data, period and magnitude-bin model, and
Caltrans model. Mean-Magnitude Bin 7.5-8.0 .......ccooiiiiiiiiiiieieeee et 74
Figure 1-89 Comparison of recommended model with data, period and magnitude-bin model, and
Caltrans model. Mean-Magnitude Bin 8.0-8.5 ........c.cooiiiiiiiiiiiiiieiecee e 75
Figure 1-90 Recommended Directivity-Amplification Factors & Caltrans SDC 2.0 Factors..... 77
Figure 2-1 (a) UHS with and without directivity amplification factors in Los Angeles, Oakland,
(b) Amplification factor versus period, at the return periods of 1000 and 2475 years. ................ 84
Figure 2-2 The UHS without and with directivity amplification factors (i.e., woDir and wDir
(SDCiod)) in Los Angeles at TR=2475 years. The plots also include the median and individual
spectra of 20 scaled ground MOTIONS. .........eeiiiieriieeiiie ettt e e reeeseaeeeeaee e 86

Vil



Figure 2-3(a) Elevation view of the three-span bridge, (b) Modeling scheme of a two-column bent,
and (c) Adopted abutment model (after Zheng et al., 2021)......ccccveeveiiieriiieeeiiieeiie e 89
Figure 2-4 Mode shapes of the 3D bridge models (Left panel: B-1C, Right panel: B-2C)......... 90
Figure 2-5 Moment-curvature curves for the B-1C bridge’s oblong column section in both the

transverse (strong axis) and longitudinal (weak axis) dir€Ctions..........ccceevverveeciieneeesieeneeeieenene. 91
Figure 2-6 Moment- curvature curves for the circular column section of the B-2C bridge ........ 92
Figure 2-7 Pushover curves in the transverse (left panel) and longitudinal (right panel) directions
TOT The B-TC. ettt ettt et be e et e e s bt e sate e bt e enbeesbeesnteens 93
Figure 2-8 Pushover curves in transverse (left panel) and longitudinal (right panel) directions for
11 TS0 5 T SRR 94

Figure 2-9 (a) Scaled (Scale factor=1.36) and 30°-rotated 1994 Northridge earthquake record
(RSN 1013) representing a 1000-year event in Los Angeles, applied to the transverse and
longitudinal directions of the bridge models, (b) Transverse and longitudinal displacements for B-
1C and B-2C bridge MOAEIS.........couiieiiiiieiiieiiecieeteeeee ettt ettt eebeesnaeennaens 96
Figure 2-10 Mean column drift ratio (CDR), and ductility demand (uD) responses from the 20
woDir, wDir, and wDir (SDCiod) motions in the T- and L- directions of the B-1C model for seven
incidence angles, along with the ratios of the CDR to CDRRrotpso, in Los Angeles, at Tr=1000 years
ANA 2475 YEATS .ttt ettt ettt ettt ettt e h e e e bt e bt et e e bt e et e e atteeabeeehteenbeeeneeeabeen 98
Figure 2-11 Mean column drift ratio (CDR), and ductility demand (up) responses from the 20
woDir, wDir, and wDir (SDCod) motions in the T- and L- directions of the B-2C model for seven
incidence angles, along with the ratios of the CDR to CDRRrowso, in Los Angele s, at Tr=1000
VEAIS ANA 2475 YEATS ..eevvieiieeeiieiieeiieetteeteesttesteesttessteeseessseeseessseeseessseenseessseasseessseensaessseenseensss 99
Figure 2-12 In-plane rotations for the B-1C and B-2C models at incidence angles of 0°, 30°, and
90°, based on the 1994-Northridge earthquake ground motion (RSN1013), representing Tr=1000
YEATS 1N LOS ANZELES .....viiiiieiiieiie ettt ettt ettt et st et 101
Figure 2-13 Mean residual drift ratio (RDR) obtained from sets of 20 woDir, wDir, and wDir
(SDCmod) motions in both the transverse (T) and longitudinal (L) directions for the B-1C model,
at seven different incidence angles, for TR=1000 years and 2475years. .......ccccceceerervuervenennens 102
Figure 2-14 Mean residual drift ratio (RDR) obtained from sets of 20 woDir, wDir, and wDir
(SDCmod) motions in both the transverse (T) and longitudinal (L) directions for the B-2C model,
at seven different incidence angles, for Tr=1000 years and 2475years ........c.cccecveerveerrveennnnen. 102
Figure 2-15 Standard deviations of the natural logarithms of CDR and RDR for the B-1C model,
in Los Angeles, at TR=1000 years and 2475 YEaTrS. ......cccccvceeviirieriirerienienieeieeeesie e 103
Figure 2-16 Standard deviations of the natural logarithms of CDR and RDR for the B-2C model,
in Los Angeles, at TrR=1000 years and 2475YCarS. ........ccccuerrueerireriienieeieeeieereeseeeieesiaeeaeesenes 104
Figure 2-17 Mean column drift ratio (CDR), and ductility demand (up), ratios of the CDR to
CDRRrotpso, and residual drift ratio (RDR) from the 20 woDir, wDir, and wDir (SDCiod) motions
in the T- and L- directions of the B-1C model for seven incidence angles, in Oakland, at TR=1000
YEATS. ceeuuttteeeeutteeeeeuuteeeeaatteeeeaatteee e e aaaee e e ntteee e e nteeeeeanaaeeeeannteeeeeannateee e nnteeeeennaeeeeanaaaeeenntaeeeans 105

VIII



Figure 2-18 Standard deviations of the natural logarithms of CDR and RDR for the B-1C model,
in Oakland, at TR=1000 YEATS. .......eeeivieeiiieeiieeeiteeeee e tteeetee e et e e sreeesreeessbeeesabeeesseeesseesneeas 106
Figure 2-19 Comparison of transverse (CDRt) and longitudinal (CDRr) CDR for the B-1C from
inelastic SDOF analysis and NTHA, using 20 wDir (SDCod) motions at seven different incidence
angles, in Los Angeles with Tr = 1000 and 2475 years. Solid lines show inelastic SDOF results,
and cross marks represent 3D bridge reSPONSES. ....c.eeevveeriieriieriieiierie ettt 109
Figure 2-20 Comparison of transverse (CDRr) and longitudinal (CDRr) CDR for the B-2C from
inelastic SDOF analysis and NTHA, using 20 wDir (SDCmod) motions at seven different incidence
angles, in Los Angeles with Tr = 1000 and 2475 years. Solid lines show inelastic SDOF results,
and cross marks represent 3D Drid@e reSPONSES. ....ccccvvieeiuieeriiieeeiieeriee e erreeesree e e e eraeeeeaees 110
Figure 2-21 Comparison of transverse (RDRt) and longitudinal (RDRr) RDR for the B-1C from
inelastic SDOF analysis and NTHA, using 20 wDir (SDCiod) motions at seven different incidence
angles, in Los Angeles with Tr = 1000 and 2475 years. Solid lines show inelastic SDOF results,
and cross marks represent 3D brid@e reSPONSES. .......eevvieriieriieriieiierie e eee et see e see e eenes 111
Figure 2-22 Comparison of transverse (RDRrt) and longitudinal (RDRr) RDR for the B-2C from
inelastic SDOF analysis and NTHA, using 20 wDir (SDCod) motions at seven different incidence
angles, in Los Angeles with Tr = 1000 and 2475 years. Solid lines show inelastic SDOF results,
and cross marks represent 3D bridge reSPONSES. ....c.eeevieriiriiieniieiierie ettt 112
Figure 2-23 Ratios of the RotD50 CDR from elastic and inelastic SDOF systems to the RotD50
CDR of the B-1C 3D bridge model, using wDir (SDCnod) motions at TR=1000 and 2475 years in
Los Angeles, and Tr=1000 years in Oakland. .............cccoeevuiiriiniiieniiieiieniecie e 113
Figure 2-24 Ratios of the RotD50 CDR from elastic and inelastic SDOF systems to the RotD50
CDR of the B-2C 3D bridge model, using wDir (SDCmod) motions at Tr=1000 and 2475 years in
| B AN ST (<] (USRS 113

IX



ACKNOWLEDGMENTS

This study was supported by the California Department of Transportation (Caltrans) and
coordinated by the Natural Hazards Risk and Resiliency Research Center (NHR3) headquartered
at UCLA through the Pacific Earthquake Engineering Research Center (PEER). The support is
gratefully acknowledged. The findings, conclusions, or recommendations in this publication are
those of the authors and do not necessarily represent those of the sponsor, the B. John Garrick Risk
Institute, the NHR3, or the Regents of the University of California.

The authors would like to thank Tom Shantz, Kyungtae Kim, and Sharon Yen of Caltrans,
and Professor Saiid Saiidi (Chapter 2), for their helpful discussions and valuable insights related
to this research.

ORGANIZATION OF THE REPORT

This report covers analyses of Caltrans’ near-fault adjustment factors as recommended in the
Caltrans Seismic Design Criteria. The report has two large chapters.

Chapter 1 builds on prior UCLA studies that performed probabilistic seismic hazard analyses
(PSHA) at numerous California sites across a range of return periods and multiple site classes.
Using that dataset, the chapter develops simplified, distance- and period-dependent models that
quantify directivity amplification of elastic response spectra statewide. Because many bridges are
expected to respond inelastically during major earthquakes, the models are further adapted to
capture period elongation consistent with typical bridge ductility demands.

In Chapter 2, the impacts of the near-fault directivity factors proposed in Chapter 1 were
evaluated on the seismic performance of two Caltrans ordinary long-span bridge configurations: a
single-column bent and a two-column bent. Using nonlinear time history analysis (NTHA), three-
dimensional bridge models were evaluated under 20 bidirectional near-fault ground motions,
scaled to three different target spectra. Analyses were performed for return periods of 1000 and
2475 years at two sites, Los Angeles and Oakland, and included an investigation of the influence
of ground-motion directionality on bridge responses. Finally, the results obtained from elastic and
inelastic analyses of single-degree-of-freedom (SDOF) systems, and NTHA were compared.



1. NEW NEAR-FAULT ADJUSTMENT FACTORS
FOR CALTRANS SEISMIC DESIGN CRITERIA
(SDC) CONSIDERING ELASTIC AND
INELASTIC RESPONSE SPECTRA

by Silvia Mazzoni, Mahdi Bahrampouri, and Yousef Bozorgnia
1.1. ABSTRACT

Structures located near active fault ruptures are exposed to amplified ground shaking caused by
rupture directivity and pulse-like ground motion effects. Since 1992, Caltrans Seismic Design
Criteria (SDC) have included Near-Fault Adjustment Factors (NFAFs) to address these effects,
but only limited updates have been made over the past three decades. This study provides updated
recommendations for NFAFs based on recent advances in seismic hazard modeling, ground motion
databases, and structural response analysis. A comprehensive statewide probabilistic seismic
hazard analysis (PSHA) incorporating directivity was conducted using UCERF-3 fault sources,
NGA-West2 ground motion models, and three directivity models, applied to more than 19,000
sites across California. Simplified distance- and period-dependent models were developed from
PSHA deaggregation results to characterize directivity amplification, with magnitude binning
applied to improve accuracy for large events. Inelastic response effects were incorporated using
new models based on inelastic response spectra and pulse-type motions from NGA-West2 data,
accounting for period elongation and ductility levels consistent with bridge performance. The
recommended updated adjustment factors extend application distances to 35 km, refine period
thresholds for both elastic and inelastic response, and provide Caltrans with flexible
implementation options: (1) simplified distance-based adjustments for standard design, (2)
magnitude-dependent adjustments for critical structures, and (3) a site-specific interactive tool
developed under the UCLA NHR3 program. These updates provide a more scientifically robust,
practical, and implementable framework for future revisions of the Caltrans Seismic Design
Criteria.



1.2. EXECUTIVE SUMMARY

Ground shaking near rupturing faults has been shown to be significantly more intense—and more
damaging—than shaking observed at greater distances. Since 1992, Caltrans has accounted for
near-fault effects by increasing the design response spectrum using period-dependent adjustment
factors for sites within 15 km of an active fault. These provisions have seen only minor revisions
over the past three decades.

Given recent developments in ground motion databases, seismic hazard modeling, and
structural response analysis, this project re-evaluates the current Caltrans Near-Fault Design
Criteria and provides updated recommendations. New insights were drawn from recent research
projects on the statewide probabilistic seismic hazard analysis (PSHA) incorporating near-fault
directivity effects, as well as recent research on inelastic structural response to near-fault ground
motions. The goal of the current project was to develop an improved “near-fault adjustment factor”
model that engineers can implement easily, while still maintaining scientific rigor.

The wupdated adjustment factors are based on two major steps:
(1) updating the Caltrans near-fault adjustment factors based on linear elastic response spectra
employing comprehensive data and models for directivity of ground motion, and
(i1) modifying the adjustment factor developed in step (i) to incorporate the general behavior of
inelastic structural response.

The technical implementation of these two steps is described below.

Task 1: Simplified Directivity Model Using the UCLA NHR3
Interactive 2023 Map

This study builds on the statewide directivity-inclusive PSHA developed by UCLA NHR3 (Al
Atik et al., 2022, Al Atik et al., 2023, Mazzoni et al., 2023), which provided directivity-adjusted
hazard data for over 19,000 sites across California. The statewide hazard calculations incorporated:

e UCERF-3 seismic source model.
o NGA-West2 ground motion models applied with and without directivity.
e Directivity modeled using three established models:
o CS13 (Chiou & Spudich 2013): physically-based rupture geometry model;
o BS13 (Bayless & Somerville 2013): simplified empirical model;
o BSS20 (Bayless et al. 2020): narrowband directivity model incorporating finite-
fault simulations.
e Directivity model weights assigned as: CS13 (50%), BS13 (25%), and BSS20 (25%).

Hazard calculations were performed for multiple oscillator periods (0.5 s to 10 s), eight return
periods, and full site condition coverage (Vszo = 180 to 1100 m/s).

Directivity amplification factors were computed at each site as the ratio of PSA values with
and without directivity effects. Selection filters excluded sites where subduction contributed more
than 30% of the total hazard, as well as offshore sites. Deaggregation analysis was performed to



extract both modal and mean magnitude-distance (M—R) pairs characterizing the controlling
seismic hazard at each location.

Using the statewide NHR3 dataset, simplified functional models were then developed that
relate directivity amplification to rupture distance and oscillator period. Magnitude binning (0.5-
unit intervals from M6.0 to M8.5) was applied to develop magnitude-dependent models. The
resulting functional form employs a plateau amplification within near-fault distances, transitioning
logarithmically with distance — balancing physical realism and engineering practicality.

Task 2: Incorporation of Inelastic Response Effects

The second phase of the project addressed the influence of inelastic structural response on near-
fault amplification, leveraging prior research (GIRS-2023-01; Bahrampouri et al., 2024) on
inelastic ground motion models using NGA-West2 data. This work incorporated:

¢ Inelastic response spectra for ductility levels p =2, 4, 6, and 8;

e Empirical period elongation models to capture nonlinear behavior under pulse-like
motions;

e Pulse-period distributions calibrated with 137 pulse-like NGA-West2 recordings;

e Development of period- and ductility-dependent adjustment factors to translate elastic
directivity amplification into corresponding inelastic amplification.

The inelastic analysis revealed that while nonlinearity reduces the narrowband
amplification seen in elastic response, it shifts amplification effects toward shorter periods.
Consequently, the lower-bound period threshold for inelastic directivity amplification was
adjusted from 0.75 s to 0.5 s—aligning with the existing Caltrans SDC lower bound.



Summary of Proposed Models

Three directivity amplification models are recommended for Caltrans implementation, depending
on project type and design stage:

1. Updated Simplified Near-Fault Adjustment Factors:

o Period- and distance-dependent amplification, valid up to 3 s.

o Magnitude-independent for ease of routine design application.

o Distance threshold extended to 35 km.

o Period threshold set to 0.75 s for elastic spectra and 0.5 s for inelastic spectra.

2. Magnitude-Dependent Models:
o Magnitude binning included for improved precision in large-magnitude events.
o Suitable for critical infrastructure, long-span bridges, or detailed design reviews.
3. Site-Specific Directivity Tool (UCLA NHR3 Platform):

o Enables custom response spectra based on location, magnitude, distance, Vsz, and
fault geometry.

o This method allows the user to specify the location of a bridge, the site class, and
return period to obtain site-specific amplification values. This method should be
used when bridge characteristics are outside of the allowable range of the simplified
models, such as long-period bridges (T>3 seconds) very close to the San Andreas
fault.

o Publicly accessible: https://www.risksciences.ucla.edu/nhr3/california-directivity

Overall Contributions

This study integrates recent scientific advances across PSHA, directivity modeling, nonlinear
response behavior, and period elongation to provide a modernized and scientifically robust update
to Caltrans Near-Fault Adjustment Factors. The proposed models preserve practical simplicity for
routine use, while offering expanded capability for complex or critical bridge designs.


https://www.risksciences.ucla.edu/nhr3/california-directivity

1.3. INTRODUCTION

Recordings from past earthquakes have shown that ground shaking near a rupturing fault can be
significantly more intense—and damaging—than shaking observed at greater distances. In
response, Caltrans has, since 1992, increased the design response spectrum for sites located within
15 km of an active fault to account for the severity of near-fault ground motion. These
enhancements, implemented using period-dependent adjustment factors, have undergone only
minor revisions since their original adoption.

This project seeks to evaluate the current Caltrans Near-Fault Adjustment Factors and
offers recommendations for improving the existing model based on the latest scientific
understanding, including a statewide seismic hazard model that explicitly incorporates near-fault
effects, as well as findings from a recent study examining the inelastic structural response to near-
fault ground motions.

These Near-Fault Adjustment Factors are in part based on probabilistic seismic hazard
spectra, which aggregate contributions from both near-fault and far-fault sources by incorporating
their respective recurrence rates. As a result, the representation of directivity effects in probabilistic
spectra is significantly more complex than in scenario-based spectra, where ground motions are
associated with a single deterministic source. A simplified model of the directivity-based PSHA
was developed. The resulting near-fault adjustment factors were subsequently modified to
incorporate general characteristics of inelastic structural response.

The figures included in the body of this report were selected represent a particular case: a
Return Period of 2475yr. This return period was selected as it typically considered the default case.
The same calculations were carried out for other return periods and the figures will be presented
in a digital appendix.

1.3.1. Task 1: Use of the UCLA NHR3 Interactive 2023
Directivity Hazard Map to Determine Directivity Effects

The objective of this task was to evaluate whether the directivity effects presented in the UCLA
NHR3 interactive 2023-directivity hazard map could be adequately represented using a simplified
parameterization based solely on distance from the fault. Instead of using a set of representative
sites, a simplified directivity-amplification versus distance model was developed using the entire
statewide dataset — binned by magnitude, return period, source type (excluded subduction), and
oscillator period.



The results demonstrated how closely the simplified model aligns with the full directivity
representation, highlighting both strengths and limitations of the reduced parameterization.

This work is documented in this report and includes:
o The statewide geographic distribution of directivity effects,
o The methodology used for simplification,
e The simplified model,
e Quantitative comparisons between the simplified and full directivity models.

This evaluation provides a foundation for assessing whether a simpler distance-based approach
may be suitable for certain design applications, or where incorporating full directivity models may
offer significant benefit.

1.3.2. Task 2: Consideration of Inelastic Response

The objective of this task was to develop near-fault adjustment factors applicable to analysis that
explicitly account for the effects of inelastic structural response under pulse-type ground motions.
This was accomplished using the findings from the UCLA NHR3 report GIRS-2023-01, sponsored
by Caltrans, which quantifies the impact of inelastic behavior on effective period elongation in
response to near-fault pulses.

Using the methodology and supporting data from the above study, inelastic adjustment
factors were derived by evaluating the elongation of structural period due to nonlinear behavior.
These adjustments were calculated across a representative range of pulse periods for two levels of
ductility demand, allowing for coverage of typical structural response characteristics. A
probabilistic model for pulse period was reviewed, and an appropriate model was selected to
ensure realistic representation of near-fault motion variability.

This report documents:
o The development of the inelastic adjustment factors,
e A comparison between traditional elastic-based directivity effects and the refined inelastic
response-based modifications,
e And the final recommended adjustment factors for use in modal analysis.

These results provide a significant advancement in incorporating inelastic behavior into seismic
design near active faults, improving the reliability of structural performance predictions.



1.4. PAST PROJECTS
1.4.1. Statewide California PSHA-with-Directivity Study

As part of a comprehensive risk and resilience study of California’s infrastructure system, a
statewide seismic hazard analysis was conducted using probabilistic seismic hazard analysis
(PSHA) methodology. This analysis reflects the latest advancements in seismic hazard science.
Specifically, the most up-to-date ground motion models (GMMs) were employed to compute
pseudo-spectral acceleration (PSA) intensity measures, both with and without incorporating near-
fault directivity effects. The Uniform California Earthquake Rupture Forecast, Version 3 (UCERF-
3), shown in Figure 1-1, was used as the seismic source model, as it represents the current best
understanding of earthquake behavior in California. The analysis covered 19,316 sites across the
state, based on a high-resolution grid with 0.05° x 0.05° spacing in both longitude and latitude.

At each site, PSHA was performed for a range of Vs3o values (VS30), from 180 m/s to
1100 m/s. Vs3p is the time-averaged shear-wave velocity in the upper 30 meters of soil. It is used
in determining the site class of a site. The analyses included site-specific VS30 estimates derived
from three-dimensional geophysical velocity models across California, as illustrated in Figure 1-2.
Where available and deemed reliable, the analysis also incorporated site-specific basin depth
parameters—Z1.0 and Z2.5. PSA values were computed for 23 periods, including PGA, PGV, and
spectral periods ranging from 0.01 to 10 seconds, and across 8 return periods spanning from 50 to
10,000 years. Additionally, the study evaluated the effects of near-fault directivity by calculating
directivity amplification factors—defined as the ratio of PSA values with directivity to those
without. These results, along with deaggregation data at all sites, were used to assess and
recommend improvements to the current directivity amplification methodology employed by
Caltrans. The data products from the statewide study are shown in Figure 1-3.

Because of the significant computation effort involved in including directivity in PSHA, it
was included only for the case Vs30=760m/s. However, the study demonstrated that the
directivity-amplification factors computed for this Vs30 applied to all other site classes in regions
where subduction sources did not control the hazard, as is the case for the regions considered in
this study.
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1.4.1.1. Directivity Models used in PSHA Study

Three directivity models were incorporated into GMMs and carried out PSHA including the
directivity effects. Three sets of directivity models were incorporated:

e (CS13 - Chiou and Spudich (2013): This model is based on the Direct Point Parameter
(DPP) and captures directivity effects using a physically grounded approach tied to fault
geometry and rupture characteristics.

o BS13 — Bayless and Somerville (2013): An update to the earlier Somerville et al. (1997)
model, BS13 offers a simplified formulation with a minimal set of predictive parameters,
making it computationally efficient.

e BSS20 - Bayless et al. (2020): A further refinement of the BS13 model, BSS20
incorporates narrowband directivity characteristics and is designed to better handle



complex and multi-segment fault ruptures. While it maintains much of the computational
simplicity of BS13, BSS20 integrates both empirical ground-motion data and finite-fault
simulations in its development. Note: This update applies only to the average horizontal
component of ground motion and does not include revised predictions for fault-normal and
fault-parallel components.

It is important to note that directivity effects were not applied to gridded seismicity or to subduction
sources included in the seismic source characterization model for Northern California.

1.4.1.2. Model Weighting in PSHA Hazard Calculations

Based on an evaluation presented in the full study report, the three models were assigned the
following weights for use in probabilistic seismic hazard analysis (PSHA) to compute the
Weighted-Model with-directivity PSA:

o« CS13:0.50
e BS13:0.25
o BSS20:0.25

These weights reflect the relative confidence and applicability of each model in capturing
directivity effects from crustal fault sources.

1.4.2. Inelastic-Response Spectra Study

This study developed ground motion models (GMMs) specifically for inelastic response spectra,
using data from the NGA-West2 ground motion database. While traditional GMMs focus on
elastic response, this project addresses the gap in predicting how real structures, which behave
inelastically during strong shaking, respond to earthquakes. Inelastic response spectra were
calculated for a range of ductility factors (u = 1.5, 2, 3,4, 5) -- representing increasing levels of
nonlinearity in structures. The authors developed new predictive equations for median inelastic
spectral response and standard deviation, accounting for variables like magnitude, distance, site
effects (e.g., Vs30), fault mechanism, and spectral period. These models are an extension of elastic
GMMs but customized for inelastic demands. In addition to traditional GMMs, this study proposed
models for adjustment factors for elastic PSA to get inelastic response. The study also qualitatively
studied the effect of directivity pulses on inelastic and elastic response spectra.

Figure 1-4 illustrates the average influence of inelastic behavior on ground motions
identified as pulse-like. Here, Cy refers to the seismic coefficient in constant-ductility response
spectra, which represents structural demand accounting for inelastic behavior. Panel (a) shows the
ratio of observed to median predicted Cy values, and panel (b) presents the average difference
between the total residuals of inelastic Cy and those of the elastic response (i.e., PSA). This figure
qualitatively shows that increased structural ductility (inelasticity) reduces the peak directivity
effects near the pulse period (T/Tp = 1) while broadening the response enhancement to shorter



periods (lower T/Tp values). At longer periods (higher T/Tp values), the effect of varying ductility
diminishes as all response curves converge.
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1.5. CALTRANS SEISMIC DESIGN CRITERIA

Appendix B of the Caltrans Seismic Design Criteria (2019) defines a Near-Fault Spectrum
Adjustment Factor to account for elevated ground shaking at sites located near a rupturing fault,
particularly at spectral periods longer than 0.5 seconds. As illustrated in Figure 1-5, this
adjustment factor is applied to sites within 15 km of a fault rupture and gradually tapers to zero at
a distance of 25 km. Similarly, the factor is applied to spectral periods starting at 0.5 seconds,
tapering to a full amplification for period of 1.0 second and above. Factors for a range of distance

and periods are shown in Table 1.1.

For application to probabilistic response spectra, the guidelines specify that the “probabilistic
distance” should be determined as the smaller of the following:

¢ The mean distance, and
e The mode distance corresponding to the distance—magnitude pair contributing the most to

the hazard.

However, this distance must not be less than the shortest distance from the site to the rupture
plane of the nearest fault listed in the Caltrans Fault Database.

Near-Fault Factor with Respect to Distance Near-Fault Factor with Respect to Period
1.3

nN
;
*

Amplification
(for 15km or less)

Amplification

-
4

2 3 4 5
Distance (km) Period (s)

0 5 10 15 20 25 30

o
y

Figure 1-5 SDC 2.0 -Figure B.1 Near-Fault adjustment factor as a function of distance and spectral
period.

Based on the figure above, the Caltrans Directivity Model is governed by three key parameters:
e Threshold Distance — the distance beyond which directivity amplification is considered

negligible.
e Minimum Elastic Period — the spectral period at which directivity effects begin to

influence ground motion.
e Maximum Amplification Factor — the peak amplification applied in near-fault zones,
specifically for sites located within the threshold distance and at periods exceeding the

minimum elastic period.

11



The primary objective of this study is to evaluate the current values assigned to these parameters
and provide recommendations for adjustments. These recommendations are based on analyses of
both elastic and inelastic response spectra to ensure the model more accurately reflects observed
ground motion behavior in near-fault regions.

Table 1.1 Caltrans Spectrum Adjustment Factors (SDC 2.0)

Amp Distance (km)
Factor 0.1 1 2.5 5 7.5 10 12.5 15 20 25 | 30 | 35 | 40
0.01
0.1
0.2
0.3
0.4
0.5
0.75 1.05
1
1.25
1.5
1.75
2
2.5

Period (sec)
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1.5.1. Caltrans Bridge Locations

The Caltrans researchers supporting the project provided us with an unofficial list of Caltrans
Bridges and their location coordinates. This is not intended to be an accurate or extensive list, it
was provided to us to compare the geographic distribution of the PSHA metrics with the
geographic distribution of Caltrans Bridges. These data, along with the UCERF-3 fault sources,
are shown in Figure 1-6.

—— UCERF-3 faults
Caltrans Bridge

SitelLat

iIvia Mazzoni, 2024

1 1 1 1 1
—-124 —-122 -120 —-118 -116 -114
SiteLon

Figure 1-6 Geographic Distribution of Caltrans Bridge and UCERF-3 Fault Sources
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1.6. CALIFORNIA STATEWIDE DIRECTIVITY PSHA
DATA

The geographic distribution of PSA values for an oscillator period of T = 3.0 seconds, Vs30 = 760
m/s, and a return period of 2,475 years, both with and without directivity effects, using a consistent
color scale is shown in Figure 1-7. Fault sources from the UCERF-3 model are overlaid for
reference. Comparable maps have been generated for all other combinations of period, site
condition, and return period considered in the study.

These data were used to compute the directivity amplification ratio (i.e., PSA-with-
directivity / PSA-no-directivity) for the weighted directivity model, as shown in Figure 1-8. The
figure illustrates the complex spatial patterns of both the underlying fault network and the resulting
amplification effects due to directivity, emphasizing the significance of capturing these effects in
regional seismic hazard assessments. As shown in Figure 1-9, the directivity amplification ratio
is also period-dependent — generally, directivity amplification increases with period. These figures
show the geographic distribution of this ratio for all the directivity periods, one graph per period,
in the range of 0.5 to 10 seconds. Figure 1-10 shows the same data, with the addition of the location
of the Caltrans Bridges.

It is worth noting that the directivity amplification factor falls below 1.0 in areas away from
fault sources. This effect is due to some of the directivity models as well as rounding errors. Even
though we recommend setting a lower bound of 1.0 to the directivity amplification, this lower
bound was not applied to the dataset used in this study.
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1.6.1. Directivity-Model Comparison

Directivity-Amplification factors were computed for the Weighted Model as well as the three
individual directivity models. Figure 1-11 shows the mapped values for the case of Vs30=760m/s,
Return-Period=2475yr, and T=3.0sec. To enable a visual comparison, all 4 maps use the same
color scale. The range of values for each case is shown in each legend.

-124 -122 -120 -118 -116 -114 -124 =122 -120 -118 -116 -114

Directivity Amplification Ratio 42
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Figure 1-11 Geographic Distribution of Directivity Amplification Factor — Comparison of all Directivity
Models. (Vs30=760m/s, Return Period=2475yr, T=3.0s)
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1.6.2. Data Selection & Bins

The first step in selecting and binning the data involved removing sites not on land and limiting
the cases to oscillator periods at and above 0.5 seconds, as directivity effects were only considered
for this period range.

1.6.2.1. Selection by Source-Type Contribution

The next step involved excluding sites where subduction events contributed to more than 30% of
the total hazard. These sites were excluded because directivity models were applied only to crustal-
fault events and including them would introduce a bias into the directivity-amplification factor by
reducing its effect.

Figure 1-12 and Figure 1-13 show the Source-Type hazard curves for a site that was
included in the dataset and one that was excluded, respectively, for Vs30=760 m/s, Return
Period=2475yr and oscillator period=3.0s. The site in Figure 1-12 was selected as an example
because it lies very close to the San Andreas Fault, hence this fault controls the hazard at all return
period. The site in Figure 1-13, on the other hand, was chosen as an example because it shows
that the relative contribution of the different types of events is return-period dependent (Annual
frequency of exceedance). These data were processed for all sites and transformed into maps and
are shown in the next set of figures.

3 Source-Type Hazard, Site04088: Vs760, T=3.0s Source-Type Hazard, Site17113: Vs760, T=3.0s

10/ 109
= Total hazard = Total hazard
=3~ Crustal Faults == Crustal Faults
— Grid — Grid

—— 4759r = Interface
- Slab
—— 475yr
= 2,475-yr

10-1 4 ====. 2,475-yr 1071 4

1072 4

1073 § \

-
5

AAN

b
=}

Annual Frequency of Exceedance (/yr)
Annual Frequency of Exceedance (/yr)
=
1)

Directivity-Based Probabilistic Seismic Hazard

10-5 4

“INHR3 California Directivity-Based Probabilistic Seismic Hazard

i
S, NHR3 California

10°¢ T T
103 102 10! 10° 1073 102 107! 10° 1
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=)

Figure 1-12 Source-Type Hazard Curve, Figure 1-13 Source-Type Hazard Curve,
Vs30=760m/s, T=3.0 sec (Site 04088, near Los Vs30=760m/s, T=3.0 sec (Site 17113, North-West
Angeles) California)
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Figure 1-14 maps the source type that has the largest contribution to the hazard. These
plots show the period dependence of the contributions provide an overall understanding of the

regions being considered in this dataset.
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Figure 1-14 Hazard-Controlling Events (Vs30=760m/s RP=2475yr)

Figure 1-15 maps the percent contribution of subduction events — the combination of slab
and interface events -- to the total hazard at each site. The sites where this value exceeded 30%
were excluded from the dataset used in this study. These sites are located in the North-West corner

of the state and the size of the

area is period

dependent, increasing with period.

T=05sec T20.755ec T=10se To1.556c T=2.0sec
| o st o
‘ o5 L 35 Toiosed T ' Tizos
© 3 %
H i - H i
3 5 5 5 3
*
Ed
i
» SubauCtion Sources. Subduction Sources Subduction Sources Subductian Saurces. Subduction Sources. b
e i e s b .
Longiude Langiote Longituce Lonotude Longiuse 2
3
T=3.0sec T=4.0sec T=7.5sec T=10.0sec .
= - o
gt | ¢
. s w - §
Y S
»
i § i ] §
5 § ] § §
”: SubGUCtion Sources. Subduction Sources. SUbOLCLIN SOrces. Subducton Sources. Subduction Sowrces.
G i o b BT
Longuce Longnte npluce Longiude Lomide

Figure 1-15 Percent Contribution to Hazard -- Subduction Events (Interface + Slab) (vs30=760m/s RP=2475yr)
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Figure 1-16 maps the contribution to the hazard of gridded events, to which no directivity
was applied since they are area and not fault sources. These sites have the most significant
contribution to the hazard in moderate periods and in areas away from the San Andreas Fault Zone.
We did not exclude these sites because they lie close enough to fault sources that could have a
higher contribution to hazard when directivity is considered.
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Figure 1-17 maps the contribution of crustal-fault events to the total hazard at each site.
These are the only event type to which directivity-amplification factors were applied. In the
moderate-period range crustal events have the largest contribution to the hazards in regions very
close to faults, as expected. In the longer-period range the contribution increases in areas in
Southern California farther from faults.
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Figure 1-18 maps the directivity factors for the sites in the dataset — after we removed the
sites where subduction events contributed to more than 30% of the total hazard. This figure
corresponds to Vs30 = 760 m/s and a return period of 2,475 years. Each subplot represents a
different oscillator period in the range of 0.5 to 10 seconds. Figure 1-19 overlays the location of
existing Caltrans bridges on the Directivity-Amplification Factor for the sites in the dataset.
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1.6.2.2. Bin by Deaggregation

The binned deaggregation data for the no-directivity case for each site was used in this study.
It is important to emphasize that we need to use this deaggregation data, not the deaggregation
from the directivity case, because it is what is available to a design engineer. An example of these
data is shown in Figure 1-20 for the case of Vs30=760m/s, oscillator period = 3.0 sec and one plot
per return period.

RP=50.862yr T=3.0sec, PSA=0.02g RP=99.499yr T=3.0sec, PSA=0.02g RP=474.561yr T=3.0sec, PSA=0.06g RP=949.118yr T=3.0sec, PSA=0.09g
Mbar=7.05, Dbar=59.7, EPSbar=0.1 Mbar=7.23, Dbar=48.5, EPSbar=0.22 Mbar=7.53, Dbar=31.04, EPSbar=0.67 Mbar=7.61, Dbar=26.64, EPSbar=0.92

NHR3 California Directivity-Based Probabilistic Seismic Hazard, ©2022
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Mbar=7.61, Dbar=26.44, EPSbar=0.94 Mbar=7.66, Dbar=22.73, EPSbar=1.3 Mbar=7.69, Dbar=21.09, EPSbar=1.54 Mbar=7.7, Dbar=19.56, EPSbar=1.78

Contribution
Contribution
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Figure 1-20 Binned Deaggregation Data. Vs30=760 m/s, T=3.0sec, Site01536 (Southern California)

For each combination of Vs30, return period, and oscillator period, the following parameters

were extracted:

Modal Magnitude and Distance — Corresponding to the magnitude-distance bin that
contributes the most to the hazard. While sensitive to bin size, these values represent a
physically-meaningful scenario. As is shown in the plots of Figure 1-20, the distance bins
had varying distance intervals -- 5, 10, 20, and 25km -- and the magnitude bins had
magnitude intervals of 0.5 Magnitude units. The center values of each bin were used.
Mean Magnitude and Distance — Computed as weighted averages based on each case’s
contribution to the hazard. Although convenient, these values do not represent a specific
earthquake scenario. However they are easy to obtain because they are output by the hazard
program itself as Mbar and Dbar.

Directivity Amplification Factor — Defined as the ratio of PSA with directivity to PSA
without directivity. The analysis used the weighted-average value across the three
directivity models, though individual model results were also recorded.

The data were then binned by both modal and mean magnitude, allowing for a more structured
assessment of directivity effects.
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1.6.3. Deaggregation Bins
1.6.3.1. Mode

The modal magnitude and distance—defined as the center values of the magnitude-distance (M-
R) bin contributing the most to the seismic hazard—were used in this study. The geographic
distributions of these modal values are presented in Figure 1-21 and Figure 1-22, corresponding
to a Vszo of 760 m/s and a return period of 2,475 years. The geographic distribution of the
contribution of the Mode to the total hazard is shown in Figure 1-23. Figure 1-24 and Figure 1-25
overlay the Caltrans-Bridge locations with these Modal values.

These figures provide valuable insight into the spatial variability of the controlling
earthquake scenarios and serve as a practical tool for estimating representative magnitude and
distance values. Notably, the results illustrate a strong dependence of modal values on spectral
period, highlighting the importance of period-specific analyses in seismic hazard assessment,
especially when directivity is considered.

These maps can directly inform site-specific design decisions and provide a rational basis
for selecting input parameters in ground motion modeling and scenario-based structural analyses.
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24

825

8.00

775

& g
Mode_Mag (6.25-8.3)

P
g

675

650

250.0

157.74

628

3962

250

15.77

Mode_Dist (2.5-250.0)

995

628



T=0.5sec T=0.75sec T=1.0sec T=1.5sec T=2.0sec

gt
P.2474.911;
R e W
[ 4
40 3
% o o¥
3 )|
£ £
& 5
36 07
34 o
068
.
2
32 »
124 -122 -120 -118 -116 -114 124 -122 -120 -118 -116 -114 124 -122 -120 -118 -116 -114 -124 122 -120 -118 -116  -114 -124 -122 -120 -118 -116 114 058
it SiteLon SiteLon SiteLon SiteLon e
2
T=3.0sec T=4.0sec T=5.0sec T=7.5sec T=10.0sec =
W 7o o H
Fosa RP2474.911 % | PP Fosaasn il g
2 PEe Ty Widources \a ¥ Ridoorces L Mﬁ;uw:s 1 Q
i ’ ] Y i \ } 3
. : ( =
a0 0 03
%38 %38
3 s 02
g g
& &
£ 36
01
3 3
2 2
-124 -12 -120 -118 -116 -11¢ -12¢ -122 -120 -118 -116 -118 -12¢ -122 -120 -118 -116 -114 -12¢ -122 -120 -118 -116 114 -12¢ -122 -120 -118 -116 -11¢
SiteLon SiteLon SiteLon SiteLon

Figure 1-23 Geographic Distribution of the Contribution of the Mode to the Total Hazard (Vs30=760m/s,
RP=2475yr)
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1.6.3.2. Mean

The mean magnitude, distance, and epsilon — generated by the hazard program — were computed
and reported here, but were not used in this study. The geographic distributions of these values are
presented in Figure 1-26, Figure 1-27, and Figure 1-28, respectively. These data correspond to
a Vszg of 760 m/s and a return period of 2,475 years. Figure 1-29 and Figure 1-30 overlay the
Caltrans-Bridge locations with mean magnitude and distance values, respectively.

The data shown in these figures are similar to those for the modal values, however, because
they are mean values that consider the entire hazard, they do not have the same extreme values as
the mode. A detailed comparison of these two sets of data, which is beyond the scope of this study,
can lead to valuable insight into hazard in California.
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1.6.3.3. Magnitude Bins

The datasets were grouped into Magnitude Bins, from Magnitude 6 to 8, in half-magnitude units.
The data are shown in Figure 1-31 and Figure 1-32 for the modal and mean magnitudes,

respectively, for the case of Vs30=760 m/s, return period=2475yr.
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1.7. PROCEDURE TO UPDATE CALTRANS NEAR-
FAULT ADJUSTMENT FACTORS

The following steps were taken to evaluate and refine the current Caltrans Directivity
Amplification Factors:

1. Extraction of Dominant Seismic Parameters: For all 19,000+ analysis sites, the magnitude
(M) and rupture distance (Rrup) were extracted from the deaggregation results — for both
mean and mode.

2. Analysis of Amplification Across Magnitude Bins: The directivity amplification factor was
evaluated as a function of Rrup, categorized into magnitude bins:

o M<45
o 45<M<6.5
o M>6.5

This analysis was performed across different return periods and oscillator periods
to observe trends and dependencies.

3. Assessment of Rupture Distance Threshold: The effectiveness of the current 15 km
threshold for Rrup (used to trigger directivity amplification) was examined to determine if
it remains appropriate or requires adjustment.

4. Sensitivity Analysis: The sensitivity of directivity amplification was evaluated with respect
to:

o The directivity model used
o Return period

o Oscillator period

o Rupture distance (Rrup)

5. Evaluation of Inelastic Response Effects: Building on the findings from Bahrampouri et
al. (2023), the influence of inelastic response on the effective oscillator period was
examined.

o For each (M, Rrup) bin and a range of pulse periods (Tp), the minimum elastic
period where directivity effects remain significant was estimated.

o These findings were used to assess whether the current 0.5 to 1.0 second period
range defined in the Caltrans criteria should be revised.
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1.8. DIRECTIVITY-AMPLIFICATION THRESHOLD
DISTANCE

The first step in developing a directivity amplification model was the determination of the
threshold distance. In this study, this threshold distance was defined as the shortest distance where
the directivity amplification factor exceeded 1.05. This value was set with a 5% margin account
for rounding errors in computing the directivity amplification factor, which was calculated as the
ratio of the PSA with and without directivity considerations.

1.8.1. Computation of the Directivity-Amplification Threshold
Distance

A mean and a standard deviation were computed for each dataset for this threshold
distance. Even though these data were not explicitly used to develop the recommended Near-Fault
Adjustment Factors, these data would help us evaluate our model to ensure that we considered this
threshold distance in developing our model. These data is best visualized by plotting the Distance
metric (Modal or Mean) on the vertical axis and the directivity amplification on the horizontal
axis. Figure 1-33 through Figure 1-37 plot these data for all bins in one figure, and the individual
Modal-Magnitude bins, one per figure. Figure 1-38 through Figure 1-42 plot the same data for
the Mean-Magnitude bins.
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Magnitude Bins.
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Figure 1-36 Modal Distance vs Directivity Amplification Factor + Threshold Distance, Modal-
Magnitude Bin: 7.5-8.0
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Figure 1-38 Mean Distance vs Directivity Amplification Factor + Threshold Distance, Mean-Magnitude
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Figure 1-39 Mean Distance vs Directivity Amplification Factor + Threshold Distance, Mean-Magnitude

Bin: 6.5-7.0
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Figure 1-40 Mean Distance vs Directivity Amplification Factor + Threshold Distance, Mean-Magnitude
Bin: 7.0-7.5
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Figure 1-41 Mean Distance vs Directivity Amplification Factor + Threshold Distance, Mean-Magnitude
Bin: 7.5-8.0
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Figure 1-42 Mean Distance vs Directivity Amplification Factor + Threshold Distance, Mean-Magnitude
Bin: 8.0-8.5
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1.8.2. Directivity Threshold Distance vs Period

Figure 1-43 and Figure 1-44 plot the threshold distance vs period mean and 16-84%ile in
separate plots for each magnitude bin, for modal and mean magnitude, respectively. The
magnitude bins are collapsed into a single plot in Figure 1-45 and Figure 1-46, for modal and
mean magnitude, respectively. Please note that the range of the vertical axes are the same within
each figure, but have different ranges for modal and mean magnitude. A comparison of the latter
2 figures demonstrates the difference between the modal distance (corresponding to the magnitude
and distance of the largest contributor to hazard), and mean distance (averaged over all scenarios
considered in the PSHA).
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Figure 1-43 Threshold Distance (1.05-amplification) -- Median +/- sigma. Separate Modal-Magnitude
Bins
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Figure 1-44 Threshold Distance (1.05-amplification) -- Median +/- sigma. Separate Mean-Magnitude
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1.9. DIRECTIVITY AMPLIFICATION FACTOR VS
DISTANCE

1.9.1. Mode

The Directivity Amplification Factor (Weighted Model) is plotted vs Distance for each oscillator
period and different magnitude bins using the Modal magnitude and distance is shown Figure 1-47
through Figure 1-52. The first figure in the set shows the entire dataset: Modal Magnitude 6.5 and
above. The subsequent figures show the individual magnitude bins. Please note that while the
vertical axis has the same range for all period plots in each figure, it differs between each figure.
This set of figures show that amplification is both distance and period dependent, as well as
magnitude dependent. As noted earlier, the mean distance from deaggregation is not a realistic
measure, so it will not be shown in this report. The figures correspond to a Vs30=760m/s and a
return period of 2475 year. These values were selected as they are considered reference values.
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Figure 1-47 Directivity Amplification Factor vs Modal Distance. Full dataset Modal Magnitude>= 6.0
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Figure 1-48 Directivity Amplification Factor vs Modal Distance. Modal-Magnitude Bin: 6.0-6.5
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Figure 1-49 Directivity Amplification Factor vs Modal Distance. Modal-Magnitude Bin: 6.5-7.0
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Figure 1-51 Directivity Amplification Factor vs Modal Distance. Modal-Magnitude Bin: 7.5-8.0
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Figure 1-52 Directivity Amplification Factor vs Distance. Modal Modal-Magnitude Bin: 8.0-8.5
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1.9.2. Mean

The Directivity Amplification Factor is plotted as a function of distance for the Mean-
Deaggregation data in Figure 1-53 through Figure 1-58. Both mean magnitude (Mbar) and mean
distance (Dbar) values are unique to each site, resulting in a different data distribution than the
modal-deaggregation data.
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Figure 1-53 Directivity Amplification Factor vs Mean Distance. Full dataset Mean Magnitude>= 6.5
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Figure 1-54 Directivity Amplification Factor vs Mean Distance. Mean-Magnitude Bin: 6.0-6.5
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Figure 1-56 Directivity Amplification Factor vs Mean Distance. Mean-Magnitude Bin: 7.0-7.5
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Figure 1-58 Directivity Amplification Factor vs Mean Distance. Mean-Magnitude Bin: 8.0-8.5
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1.10. MODEL FOR DIRECTIVITY-AMPLIFICATION VS
DISTANCE BINNED BY PERIOD AND
MAGNITUDE

The data presented in the previous section were used to develop a model for the Directivity
Amplification Factor (DAF) as a function of distance, grouped by magnitude and oscillator period
bins. The model was based on the modal magnitude and distance obtained from hazard
deaggregation, enabling estimation of both the mean and standard deviation of the amplification
factor for each bin.

Given the observed behavior of amplification with distance—characterized by elevated
amplification at short distances and diminishing effects at greater distances—we selected a hinged-
type functional form. This formulation features a constant amplification plateau near the fault and
a gradual transition (linear function of the log of the distance) to zero amplification at larger
distances. A regression analysis was performed to determine the optimal parameters of the function
by minimizing the mean squared error relative to the binned mean values.

1.10.1. Mode

Figure 1-59 presents all binned DAF vs Modal Distance models for the Modal Magnitude bins
plotted on a consistent scale for direct comparison. Each curve is shown alongside the
corresponding study data and the existing Caltrans SDC directivity amplification factor, which
does not vary with magnitude. The figure also identifies the distance at which each model intersects
a DAF of 1.05 (indicating a 5% amplification). This threshold is used to define the distance beyond
which directivity effects are considered quantifiable, as amplification levels below this point may
fall within numerical uncertainty or rounding error.

Figure 1-60 through Figure 1-64 present the directivity amplification models for individual
magnitude bins. These figures demonstrate that the simplified models effectively capture both the
mean and standard deviation of the amplification across all modal magnitude and oscillator period
bins, showing strong agreement with the binned data.
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Figure 1-59 Directivity Amplification vs Modal Distance Models -- all Modal-Magnitude Bins
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Figure 1-60 Directivity-Amplification vs Modal Distance Models -- Modal-Magnitude Bin: 6.0-6.5
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Figure 1-61 Directivity-Amplification vs Modal Distance Models -- Modal-Magnitude Bin: 6.5-7.0
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Figure 1-62 Directivity-Amplification vs Modal Distance Models -- Modal-Magnitude Bin: 7.0-7.5
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Figure 1-63 Directivity-Amplification vs Modal Distance Models -- Modal-Magnitude Bin: 7.5-8.0
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Figure 1-64 Directivity-Amplification vs Modal Distance Models -- Modal-Magnitude Bin: 8.0-8.5
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1.10.2. Mean

The models for the directivity-amplification factor as a function of Mean Distance (Dbar) for all

Mean-Magnitude (Mbar) bins are compared to the data in Figure 1-65. Figure 1-66 through

Figure 1-70 compare the models to the data for the individual bins.
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Figure 1-65 Directivity-Amplification vs Mean Distance Models

-- All Mean-Magnitude Bins Mbar>6.5
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Figure 1-66 Directivity-Amplification vs Mean Distance Models -- Mean-Magnitude Bin: 6.0-6.5
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Figure 1-67 Directivity-Amplification vs Mean Distance Models -- Mean-Magnitude Bin: 6.5-7.0
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Figure 1-68 Directivity-Amplification vs Mean Distance Models -- Mean-Magnitude Bin: 7.0-7.5
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Figure 1-69 Directivity-Amplification vs Mean Distance Models -- Mean-Magnitude Bin: 7.5-8.0
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Figure 1-70 Directivity-Amplification vs Mean Distance Models -- Mean-Magnitude Bin: 8.0-8.5
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1.11. DIRECTIVITY AMPLIFICATION VS PERIOD

The maximum directivity amplification factors from the distance-based models were extracted and
plotted as functions of period. Both the estimated median values as well as the estimated median
plus/minus one and two standard deviations (16"-84™, and 2"4-98" percentile ranges) for Vs30 =
760 m/s and a return period of 2475 years are shown in Figure 1-71 and Figure 1-72 for Modal
and Mean deaggregation data bins, respectively. The data for the model median and one-standard
deviation estimates from each of these figures was combined into a single plot for all magnitude
beans, as shown in Figure 1-73 and Figure 1-74 for Modal and Mean deaggregation data bins,
respectively. Please note that the range of the vertical axes are different for Modal and Mean
deaggregation bins. It is worth noting that the data for Modal Magnitudes show a more-predictable
pattern of behavior.
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Figure 1-71 Model Maximum Amplification Factor vs Period for each Modal-Magnitude bin.
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Figure 1-72 Model Maximum Amplification Factor vs Period for each Mean-Magnitude bin.
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1.12. DIRECTIVITY THRESHOLD DISTANCE:
AMPLIFICATION-DISTANCE MODEL VS DATA

The Directivity-Amplification Threshold Distance has been defined as the shortest distance where
the directivity amplification factor exceeded 1.05 earlier in this chapter, which we obtained from
the data (Data Median, 16-84%ile, & 5-95%). We can now compare these data with the value
predicted by the directivity-amplification vs distance model -- estimated as the distance at which
the median prediction of amplitude intercepts and amplification of 1.05 (Amp-Dist Model
Intercept). These data are shown in Figure 1-75 and Figure 1-76 for Modal and Mean
Deaggregation magnitude bins, respectively. These data were used in evaluating whether the
amplitude-distance model yielded unreasonable results. Both deaggregation types do not raise any
red flags.
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1.13. SIMPLIFIED MODEL FOR DIRECTIVITY-
AMPLIFICATION VS DISTANCE - BASED ON
ELASTIC RESPONSE SPECTRA

The Directivity Amplification models developed in the previous section provide a practical
simplification of more detailed site-specific models. However, for implementation within the
Caltrans Seismic Design Criteria (SDC), an additional simplification is required: the removal of
magnitude dependence. To ensure the model remains conservative and suitable for design
applications, the resulting simplified model must envelop both the empirical data and the
magnitude-dependent models previously developed. Figure 1-77 shows the simplified model as a
modification to the current Caltrans Directivity Amplification Factors — for period less than or
equal to 3.0 seconds. Panels a. and b. display the model directivity-amplification factor vs distance
and period, respectively. Panels c. and d. display the ratio of this amplification factor divided by
the Caltrans SDC 2.0 amplification factor, vs distance and period, respectively. The values for a
range of distances and oscillator periods are shown in Table 1.2. The change from the current SDC
value is shown as the ratio of recommended to Caltrans in Table 1.3.

The recommendation extend the distance from 25 to 35km and shift the minimum period
from 0.5 to 0.75 seconds as well as the maximum-amplification period from 1.0 to 2.0 seconds. It
is important to note that this simplified model is recommended only for oscillator periods of 3
seconds or less. Additional consideration and studies need to be performed to extend the period
range. However, the 3-second limit was considered acceptable for bridge-design applications
where this simplified method would be used. Magnitude dependent, or site-specific studies should
be used for longer-period structures.
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Figure 1-77 Proposed Simplified Model considering Elastic Response Only — The proposed model
applies to T<= 3.0 seconds. a. and b. amplification factor, vs Distance and Period, respectively. c. and d.
amplification factor/Caltrans SDC 2.0 factor, vs Distance and Period, respectively
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Table 1.2 Recommended Directivity Amplification Factor Considering Elastic response only.

Amp

Distance (km)

Factor

0.01

Period (sec)

Table 1.3 Ratio of Recommended Directivity Amplification Factor Considering Elastic response to
Caltrans SDC 2.0

Amp Distance (km)
Factor
Ratio 0.1 1 2.5 5 7.5 10 12.5 15 20 25 30 35 | 40
0.01 1 1 1 1 1 1 1 1 1 1 1 1 1
0.1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.2 1 1 1 1 1 1 1 1 1 1 1 1 1
0.3 1 1 1 1 1 1 1 1 1 1 1 1 1
0.4 1 1 1 1 1 1 1 1 1 1 1 1 1
S 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1
:"’i 075 | 091 | 091 | 091 | 091 | 091 | 091 | 091 | 091 | 0.95 1 1 1 1
"g 1 094 | 1.02 | 1.01 1 1
'E 1.25 | 0.9 0.9 0.9 0.9 0.9 0.9 0.9 09 | 096 | 1.04 | 1.02 1 1
R 1.5 093 | 093 | 093 | 093 | 0.93 | 093 | 0.93 | 093 | 0.99 | 1.06 | 1.03 1 1
1.75 | 097 | 097 | 0.97 | 097 | 097 | 097 | 0.97 | 097 | 1.02 1.04 1 1
2 1 1 1 1 1 1 1 1 1.05 1.05 1 1
2.5 1 1 1 1 1 1 1 1 1.05 1.05 1 1
1 1 1 1 1 1 1 1 1.05 1.05 1 1
NA NA NA NA NA NA NA NA NA NA | NA | NA
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1.14. SIMPLIFIED DIRECTIVITY-AMPLIFICATION VS
DISTANCE MODEL — ACCOUNTING FOR
INELASTIC RESPONSE SPECTRA

The goal of this step is to convert the effect of directivity on elastic response to the effect of
directivity on inelastic response with ductility of 3. The ductility of 3 is used as a representative
value. Ductility demands for code-designed structures generally range between 1 (for elastic
response) and 6 (for ductile systems). Values lower than 2.5 are not expected for designs specially
for locations in California. The decision between higher ductilities is not critical, because the yield
strength drops significantly when moderate levels of ductility are allowed. But after that, the effect
is not as large. Figure 1-4 shows the effect of ductility on median Cy prediction for damping of
5%, Bilinear Takeda hysteretic model, and Vs30 of 760 m/s. You see that there is a greater change
when we go from 1-3 than 3-5.

Treating the effect of directivity as the difference between observed response and median
prediction of GMMs, this goal is achieved by developing models between inelastic response and
elastic response residuals. The Inelastic-Response Spectra Study produced a set of period- and
ductility-dependent adjustment factors to convert effect of directivity on elastic response spectra
into the effect of directivity on inelastic response spectra.

The conversion relies on two complementary models. The first model was developed from
the full dataset of elastic and inelastic response spectra, including records with and without
directivity. Because it is trained on the broad dataset, it provides a general relationship between
elastic and inelastic residuals. However, when applied specifically to the 137 pulse-like ground
motions in the NGA-West2 database, this general model does not fully capture the unique effects
that pulse characteristics impose on inelastic response. To address this limitation, the second
model was developed using only the 137 pulse-like records. This targeted model accounts for the
additional inelastic amplification caused by pulses, which the general model misses. Using both
models together allows us to quantify directivity amplification factors for inelastic response with
greater accuracy.

These amplification factors were plotted as a function of distance for each oscillator period,
assuming Vs3o =760 m/s and a return period of 2,475 years, as shown in Figure 1-78. In this figure,
it can be observed that directivity amplification of inelastic response spectra exceeds the 5%
threshold at an oscillator period of 0.75 seconds—a behavior that was not observed for the elastic
response spectra shown previously in Figure 1-47.

The amplification observed at shorter periods for inelastic response spectra is consistent
with the concept of period elongation in yielding structures. Accordingly, the proposed directivity
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amplification model was modified to account for this period-dependent behavior by shifting the
minimum period at which amplification is considered from 0.75 seconds to 0.5 seconds. This
adjustment aligns the model with the Caltrans SDC, which also uses a 0.5-second threshold. A
comparison of the directivity amplification models for inelastic and elastic responses is shown in
Figure 1-78.
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Figure 1-78 Directivity Amplification Factor for Inelastic Response Spectra (Vs30=760m/s, RP=2475yr)
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a) Near-Fault Factor wrt Distance b) Near-Fault Factor wrt Period (for 15km or less)
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Figure 1-79 Directivity Amplification Factors considered in Study: Comparison of model which
considers only elastic response and model which also considers inelastic response with Caltrans SDC
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1.14.1. Comparison of Recommended Model to Data and
Models

The recommended model was compared to the data, the period and magnitude-bin dependent
model, as well as the current Caltrans NF factor for each individual magnitude bin and period, as
shown in Figure 1-80 through Figure 1-84 for the Modal data, and Figure 1-85 through Figure
1-89 for the Mean Data.
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T=0.5sec T=0.75sec T=1.0sec T=1.5sec T=2.0sec
ST o =750 sy
1.20 Rp2ara0n Data (4097 sites) 1.20 }p.2474.911 1.20 p-2474 93y == === Dyta (2669 sites) 120 Fp2araorr—-—== Dgta (1302 sies)
AL S ki Efinsuba o) & {16.84%i0) i D (5-95%l0) & (16.84%0)
] ] ] g g
g g g gs g
3 & & £ 3
3 E E 3 £
< < < < £
Z 110 £110]  =mme—mee—ees 2110 £ 110 z
H s \ s ] s
g g \ g g S
I} 105 5 g 105 g 1.05 =}
i § 2 g g
£ £ £ 2 Z
£ ) ) s s
2 2 2 2 2
1.00 1 2 100 H
a a o = =
£ i3 3 3 £
< £ < 2 H 2
4 b {
9 Jode Mag E %% Mode Mag = %% Mode Mag E %% ModeMag | E % ModeMag !
129:6.0-6.5 3 139:6.0-6.5 3 20:6.0-6.5 ] 20:6.0-6.5 : Mag:6.0-6.5
1 Bt 100 1 10 100 1 10 100 1 10 100 1 10 00
Dist Mode_Dist Dist Mode_Dist Dist Mode._Dist Dist Mode._Dist Dist Mode_Dist
T=3.0sec T=4.0sec T=5.0sec T=7.5sec T=10.0sec
T TS0 sy B
1.20 -Rp 2474, 9y mmmmmm Bt (240 sites) 1.20 -RP 2478 9y e Sta (111 sites) 120 5274 9prm e B 7 120 Rp2474.911
kipSubd s KipSubd = Oka: 15 95%de) & (16 845%l) Edinsund DR (5-95%le) & (16.84%) KipSubd
—= oaly so%ie - ok
5 5 5 5 =2 Cafians NF Factor 5
g g 3 g —-mx‘s\‘mmmm gs
5 & 3 3 i\ 3
£ E E £ ¥ £
< £ H H " H
2110 2110 z 2110 il Z110
z h H H E " :
3 . 1 g B I z
¢ g g 4 i\ @
5 105 S 105 5 S 108 i S 105
g 2 2 2 by 2
£ £ g 2 | £
- (-] -] (-J i -
3
2 100 2 100 2 £ 100 Ll 2100 L
a 4 i £ 2 2
g E £ 3 i3 = £ E
2 < e < E < 2 E
09 Mode Mag '+ E 99 Mode Mag £ %9 Mode Mag E %% Mode Mag 995 Mode Mag E
129:6.0-6.5. 3 Mag:6.0-6.5 3 20:6.0-6.5 3 30:6.0-6.5 20:6.0-6.5 :
1 100 1 100 1 100 - A 100 (! 100

10 10 10 10 10
Dist Mode_Dist Dist Mode_Dist Dist Mode_Dist Dist Mode_Dist Dist Mode_Dist

Figure 1-80 Comparison of recommended model with data, period and magnitude-bin model, and
Caltrans model. Modal-Magnitude Bin 6.0-6.5
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Figure 1-82 Comparison of recommended model with data, period and magnitude-bin model, and
Caltrans model. Modal-Magnitude Bin 7.0-7.5
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Figure 1-83 Comparison of recommended model with data, period and magnitude-bin model, and
Caltrans model. Modal-Magnitude Bin 7.5-8.0
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Figure 1-84 Comparison of recommended model with data, period and magnitude-bin model, and
Caltrans model. Modal-Magnitude Bin 8.0-8.5
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1.14.1.2. Mean

The recommended model was applied to the Mean deaggregation data and compared to the data
and other models mentioned above, as shown in Figure 1-85 through Figure 1-89, for each Mean-
Magnitude bin.
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Figure 1-85 Comparison of recommended model with data, period and magnitude-bin model, and
Caltrans model. Mean-Magnitude Bin 6.0-6.5
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Figure 1-86 Comparison of recommended model with data, period and magnitude-bin model, and
Caltrans model. Mean-Magnitude Bin 6.5-7.0
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Figure 1-88 Comparison of recommended model with data, period and magnitude-bin model, and
Caltrans model. Mean-Magnitude Bin 7.5-8.0
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Figure 1-89 Comparison of recommended model with data, period and magnitude-bin model, and
Caltrans model. Mean-Magnitude Bin 8.0-8.5
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1.15. SUMMARY & CONCLUSIONS

Through this study, we leveraged the data and findings from recent UCLA research on both elastic
and inelastic response spectra in the near-fault regions to develop recommendations for updating
Caltrans near-fault adjustment factors. Multiple models and tools have been developed in this
project:

1. Updated Near-Fault Adjustment Factors:
We have enhanced the simplified directivity amplification model currently used by
Caltrans engineers during preliminary bridge design. The updated model depends only on
distance to the fault and oscillator period, making it easy to apply without requiring
extensive site-specific data. The new model includes the near-fault directivity effects on
both elastic and inelastic response spectra. The new model is illustrated in panels a. (vs
distance) and b. (vs period) of Figure 1-90. Numerical values are provided in Table 1.4.
To help users transition from previous Caltrans design criteria, panel c. (vs distance) and
d. (vs period) of Figure 1-90 and Table 1.5 provide the ratios between the proposed
amplification factors and those specified in SDC 2.0.

2. Magnitude-Dependent Model:
For applications requiring greater accuracy, we developed an additional model that
introduces magnitude dependence into the directivity amplification factors. This model
remains relatively simple to use while offering improved precision and a wider range of
applicability, particularly for large-magnitude earthquake scenarios.

3. Site-Specific Tool:
For cases where a fully site-specific assessment is desired, engineers can access an
interactive online tool developed as part of the UCLA NHR3 project. This resource allows
users to generate directivity-adjusted response elastic response spectra based on site-
specific parameters including location, magnitude, and distance from faults. The tool is
publicly available at:
https://www.risksciences.ucla.edu/nhr3/california-directivity

It is important to note that the primary objective of this study was to develop recommendations for
simplified modifications to the current Caltrans SDC 2.0 criteria for computing Near-Fault
Adjustment Factors. The figures included in this report provide the main basis for developing these
factors. Unless otherwise indicated, the figures correspond to a 2,475-year return period and use
the Weighted-Directivity Model described in Section 1.4 of this report. For completeness,
additional data plots were generated for the 1,000-year return period as well as for the individual
Directivity Models. These supplemental plots are not included here but are be provided in the
project web page: https://www.risksciences.ucla.edu/caltrans-directivity-hazard.
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Figure 1-90 Recommended Directivity-Amplification Factors & Caltrans SDC 2.0 Factors

Table 1.4 Recommended Directivity Amplification Factors Accounting for Inelastic Response

Amp
Factor

Distance (km)

Period (sec)

0.01

15
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Table 1.5 Ratio of Recommended Directivity Amplification Factors accounting for Inelastic Response to

SDC 2.0
Amp Distance (km)
Factor
Ratio 0.1 1 2.5 5 7.5 10 12.5 15 20 25 30 35 | 40
0.01 1 1 1 1 1 1 1 1 1 1 1 1 1
0.1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.2 1 1 1 1 1 1 1 1 1 1 1 1 1
0.3 1 1 1 1 1 1 1 1 1 1 1 1 1
0.4 1 1 1 1 1 1 1 1 1 1 1 1 1
0.5 1 1 1 1 1 1 1 1 1 1 1 1 1
g 0.75 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.98 1.02 1.01 1 1
E 1 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.95 1.03 1.02 1 1
E 1.25 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.98 1.05 1.03 1 1
1.5 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 1 1.07 1.03 1 1
1.75 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 1.02 1.08 1.04 1 1
2 1 1 1 1 1 1 1 1 1.05 1.1 1.05 1 1
2.5 1 1 1 1 1 1 1 1 1.05 1.1 1.05 1 1
3 1 1 1 1 1 1 1 1 1.05 1.1 1.05 1 1
5 NA NA NA NA NA NA NA NA NA NA NA | NA | NA
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2. EFFECTS OF NEAR-FAULT DIRECTIVITY AND
GROUND MOTION DIRECTIONALITY ON
SEISMIC RESPONSES OF BRIDGES

by Esra Zengin and Yousef Bozorgnia
2.1. EXECUTIVE SUMMARY

This chapter evaluates the impacts of the recently proposed near-fault directivity factors for the
Caltrans Seismic Design Criteria (SDC) on the seismic performance of two Caltrans ordinary long-
span bridge configurations: one with a single-column bent and the other with a two-column bent.
Using nonlinear time history analysis (NTHA), three-dimensional (3D) bridge models were
evaluated under 20 bidirectional near-fault ground motions, scaled to three different target spectra:
1) Uniform Hazard Spectrum (UHS) without directivity, 2) UHS with directivity amplification
factors based on a weighted average of directivity models (wDir), and 3) UHS with proposed
(modified) SDC directivity factors (wDir-SDCnod). Analyses were conducted for return periods
(Tr) of 1000 and 2475 years in two sites: Los Angeles and Oakland. Both bridge configurations
feature zero skew angles and seat-type abutments and explicitly incorporate soil-structure
interaction effects in their 3D numerical modeling. However, it is important to note that bridge
designs do not reflect site-specific seismicity considerations. The ground motions were rotated to
different incidence angles to examine the influence of ground-motion directionality on the
transverse and longitudinal responses, specifically column drift ratio (CDR), displacement
ductility demand (pup), and residual drift ratio (RDR), of the bridges. Finally, the results obtained
from different methodologies, including elastic and inelastic analyses of single-degree-of-freedom
(SDOF) systems, and NTHA were compared.

The findings demonstrated that in seismic design and analysis of bridges, it is important to
include the near-fault directivity factors, as well as the directionality of ground motions. Such
effects result in an increased structural demand. Specifically, pulse-like ground motions (wDir and
wDIir-SDCrod cases) resulted in higher CDR and pp compared to nonpulse motions. It was
observed that the CDRs at specific incidence angles deviated by 15-35% from their corresponding
median values (CDRRotps0), with maximum responses typically occurring between 0°-45° for the
transverse direction and at 90° for the longitudinal direction. Seismic demands were higher for
bridges located in Oakland, a site with higher seismicity than Los Angeles. In Oakland, up values
for the two-column bent bridge exceeded Caltrans’ design target displacement ductility demand of
5, indicating insufficient capacity to withstand extreme pulse motions. These findings emphasized
the critical need for site-specific seismic design strategies in high-seismicity sites. Unlike CDRs,
RDRs did not exhibit a clear trend with respect to incidence angle, and their variability was more
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pronounced. While mean RDRs often remained within acceptable serviceability limits (e.g., < 1%),
84" percentile values exceeded thresholds, highlighting potential concerns for post-earthquake
functionality.

This study also evaluated the effectiveness of a simplified inelastic SDOF model in
comparison to the NTHA results. While inelastic SDOF models yielded comparable or slightly
conservative CDRs at lower hazard levels (Tr=1000 years), they underestimated demands at Tr
=2475 years. Inelastic SDOF models underpredicted RDRs due to limitations in representing
hysteretic and multi-directional behavior of the 3D bridge models. Comparing the results from
elastic and inelastic SDOF analyses, the equal displacement rule, a common assumption in seismic
design, was shown to be unconservative for periods shorter than 1.5 seconds.

In summary, this study highlights the importance of incorporating near-fault directivity and
ground motion directionality into seismic bridge design. Our recommendations are: For bridges in
high-seismicity regions, target spectra with directivity amplification factors should be adopted,
ground motion directionality effects should be considered, and generally we should move beyond
a simplified SDOF elastic analysis considering the equal displacement rule. Implementing these
measures can improve the resilience of bridges subjected to pulse motions.
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2.2. INTRODUCTION

The seismic response of bridges is influenced by the characteristics of the ground motions,
including the effects of near-fault forward directivity and the directionality or polarization of
seismic waves. Directivity motions differ significantly from far-field motions, exhibiting
distinctive features such as short-duration velocity pulses with high-intensity energy bursts
(Somerville et al, 1997; Zengin and Abrahamson, 2020). Analytical and experimental
investigations have demonstrated that directivity pulses can significantly increase displacement
demands and residual drifts in bridge components, potentially exacerbating damage beyond what
is predicted by far-field ground motions (Phan et al., 2007; Choi et al., 2010; Sengupta et. al.,
2016; Zhong et al., 2020; Zengin et al., 2025a). While directivity is a defining characteristic of
near-fault ground motions, directionality, which is defined as the sensitivity of structural response
to the angle of incidence of seismic waves, may also be crucial for evaluating seismic demands on
bridges. Past studies demonstrated that the incidence angle of ground motion affected the seismic
response by intensifying demands on various bridge components (Torbol and Shinozuka, 2012;
Wei et al., 2021). This direction-dependent behavior can become more pronounced for skewed
bridges under bidirectional loading (Kaviani et al., 2012; Wang et al., 2020).

Caltrans SDC (SDC, 2019) includes a near-fault spectrum adjustment factor to account for
amplified shaking at near-fault sites. Ground shaking is represented by a Design Spectrum (DS)
based on a 975-year return period (i.e., 7% exceedance in 75 years), representing the Safety
Evaluation Earthquake (SEE). The DS uses the latest USGS hazard maps based on RotD50
component, the median spectral accelerations over all orientations. The adjustment factor increases
spectral ordinates by up to 20% for structures within 15 km of a fault, tapering linearly to zero at
25 km. For sites within 15 km, amplification applies to spectral periods above 0.5 s, reaching 1.20
at 1.0 s and remaining constant thereafter. While this partially addresses near-fault directivity, it
does not capture directionality, pulse features in the time domain, or bidirectional loading effects,
which can be important for the accurate seismic response of bridges in near-fault regions.

NTHA is typically applied to important or nonstandard bridges; however, ordinary bridges
located near active faults can also experience severe seismic demands due to directivity and
directionality effects. Simplified design procedures may underestimate critical responses such as
peak displacements and residual drifts and often fail to capture complex behaviors related to
directionality. This highlights the need for advanced modeling approaches and focused research
efforts to better align design practices with the complex seismic behavior observed in near fault
environments.
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2.3. SITE-SPECIFIC PROBABILISTIC SEISMIC
HAZARD ANALYSIS WITH OR WITHOUT
DIRECTIVITY EFFECTS

To assess the impact of varying seismicity levels on seismic responses, the bridges used in this
study were assumed to be at high-seismicity sites, namely Oakland (37.805°N, 122.27°W), and a
relatively lower seismicity site, Los Angeles (34.054°N, 118.243°W). For each site, the site-
specific probabilistic seismic hazard analysis (PSHA) was used to develop three target spectra for
ground motion selection and scaling at Tr= 1000 and 2475 years. The site’s shear-wave velocity
at the top 30 m (Vs30) was assumed to be 400 m/s. This is approximately the “center” of Vs3o
values in NGA-West2 database (Ancheta et al., 2014). The considered response spectra are as
follows:

1. UHS without directivity (woDir),

2. UHS with directivity (wDir), incorporating amplification factors from the weighted
average of three directivity models, namely Chiou and Spudich (2013) weighed 0.50,
Bayless and Somerville (2013) weighed 0.25, and Bayless et al. (2020) weighed 0.25
Please see details in Chapter 1 of this report.

3. UHS with directivity using modified Caltrans SDC near-fault adjustments, i.e., wDir
(SDCiod). Please see details in Chapter 1 of this report.

Figure 2.1(a) illustrates the target spectrum for each site, in which the ground motions were
selected and scaled to be “compatible” with the median target spectrum within a period range of
0.8 to 4.0 seconds as the first three modes of the bridges fell between 1.2 and 1.9 seconds, as
discussed in the subsequent section. Figure 2.1(b) illustrates the near-fault amplification factors
from the UCLA weighted average of the directivity models
(https://www.risksciences.ucla.edu/nhr3/california-directivity) and the proposed (modified)
Caltrans SDC near-fault adjustments. These adjustment factors were applied to UHS-woDir to
obtain the UHS-wDir. As seen in Figure 2.1(b), the wDir adjustment factors show site-dependency,
where Oakland tends to have higher factors compared to Los Angeles, while wDir (SDCiod)
adjustments are constant and show a 5 to 10% increase between periods 1.5 to 2.0 seconds as
compared to site-specific directivity models.
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Figure 2-1 (a) UHS with and without directivity amplification factors in Los Angeles, Oakland, (b)
Amplification factor versus period, at the return periods of 1000 and 2475 years.
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2.4. GROUND MOTION SELECTION AND SCALING

The ground motions were selected from the NGA-West2 database (Ancheta et al., 2014) with the
following criteria: a moment magnitude (M) greater than 6.5, closest distance to the fault plane
Rrup< 25 km, the highest usable periods>5.0 seconds, and Vs3op values ranging from 180 to 760
m/s. The maximum scale factor was set to 6.0. The ground motions were then classified into pulses
and non-pulses. The pulse-like ground motions had pulse periods (T,) between 0.8 and 4.0
seconds. This range was selected considering the periods of the bridges. The next step was to scale
and rank the top candidate motions from each group based on their deviation from the target
spectral acceleration. For each target spectrum, the geometric mean of the two horizontal
components of the ground motions was used for scaling. The scaling factor was determined by
minimizing the deviation between the scaled ground motion spectrum and the target spectral
ordinates using the sum of squared errors (SSE) of natural logarithmic differences in spectral
accelerations over the specified period range.

When selecting non-pulses, the top 50 to150 candidate ground motions were chosen based
on the smallest SSE, while all available pulse motions, typically ranging from 20 to 25 candidates,
were considered for selection. With the initial set of top-ranked motions identified, the algorithm
proceeded with an iterative greedy selection process. In each iteration, the algorithm evaluated all
remaining unselected pulse and non-pulse motions. The algorithm iteratively selected ground
motions that minimize the deviation from the target spectral acceleration by evaluating all
remaining unselected candidates at each step. The final selection was validated by assessing the
mean spectral acceleration of the chosen set against the target spectrum to ensure optimal
matching. If only non-pulse motions were required, the pulse motion selection step was skipped
entirely.

For both wDir and wDir (SDCmoq) cases, 15 pulses out of 20 motions were selected. The
proportion of pulses in the set can be estimated as a function of epsilon, where epsilon refers to
the number of standard deviations from the median of the GMM, typically spectral acceleration at
1 s at the design seismic hazard level, though peak ground velocity (PGV) is preferably used when
available (i.e., the number of standard deviations from the mean of the GMM) and Ry, (Hayden
et al., 2014). This study ensured that 75% of the ground motions had pulses, corresponding to
PSHA disaggregation values of epsilon >1.0 for the 5%-damped spectral acceleration at 1 s, and
Rrup <5 km. For the UHS-woDir case, 20 ordinary (non-pulse) ground motions were selected and
scaled to be, on average, compatible with the target median. All selected ground motions along
with their seismological properties, scale factors, and other relevant details are provided in
Appendix 2.B of this report.

Figure 2.2 illustrates an example of the target median spectra for both the woDir and wDir
(SDCnoq) cases, as well as the scaled record and suite median spectra at a return period of 2475
years in Los Angeles. As seen, the wDir (SDCiod) case demonstrates increased spectral variability
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for periods longer than 2 seconds. This is due to the distinct spectral characteristics of pulses, in
contrast to the woDir case, which includes only ordinary ground motions. The average Tp values

in the sets of motions were approximately 2.6 seconds.

Los Angeles lerl (SDCmO d) [TR=.2475 yrs]

Los Angeles woDir [TR=2475 yrs]

4 4 -
Target median Target median
Suite median Suite median
O \ Scaled record Scaled record
O N % Lf
6 NS 2
0.1 : : ' : 0.1 : : ' :
0.8 1 1.5 2 3 4 0.8 1 1.5 2 3 4
Period (s) Period (s)

Figure 2-2 The UHS without and with directivity amplification factors (i.e., woDir and wDir (SDCioq)) in
Los Angeles at Tr=2475 years. The plots also include the median and individual spectra of 20 scaled

ground motions.
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2.5. BRIDGE CONFIGURATIONS AND DESIGN
DETAILS

In consultations with Caltrans, two bridges were selected for this study: a three-span bridge with
a single-column bent (B-1C) and a three-span bridge with a two-column bent (B-2C). Both bridges
have equal side and middle spans, and their key structural and foundation characteristics are
summarized in Table 2.1. The superstructures of both bridges consist of five-cell box girders,
which are monolithically connected to the piers. The B-1C bridge has an oblong column cross
section with longitudinal and transverse reinforcement ratios of 2% and 1%, respectively. The
axial load ratio for this bridge is 15%. In contrast, the B-2C bridge has a circular column cross
section with longitudinal and transverse reinforcement ratios of 2% and 0.9%, respectively, and
an axial load ratio of 13%. Both bridges are supported by seat-type abutments with a skew angle
of 0°, which rest on cast-in-drilled-hole (CIDH) piles.

Table 2.1 Structural and foundation properties of the B-1C and B-2C three-span bridges.

Unit B-1C Value B-2C Value
Span Length Ft 230.0 200.0
Deck Width Ft 33.0 48.0
Deck Depth Ft 9.25 8.0
Column Height Ft 33.0 28.0
Column Section Ft 5-1/2 x 8-1/4 5-1/2
(Oblong) (Circular)
Shear Span Ratio - 3.0(L)-2.0(T) 5.1 (L/T)
Longitudinal Reinforcement - T2#11 (2%) 44#11 (2%)
Transverse Reinforcement - #8@6.0 (1%) #8@6.0 (0.9%)
Axial Load Ratio - 15% 13%
Column Foundation Pile Size In 16 (CIDH) 16 (CIDH)
Column Foundation Pile Number - 7 %7 4%x6
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2.6. THREE-DIMENSIONAL NUMERICAL MODELING

To ensure consistency with Caltrans, we used the finite element computer models developed and
provided by Caltrans engineers. All numerical analyses were conducted using the OpenSees
computational platform (Mazzoni et al., 2006). For representative visualization, Figure 2.3
illustrates the elevation view of the three-span bridge, the modeling scheme of a two-column bent,
and the adopted abutment model. For both bridge models, the Concrete02 material model was used
to simulate the behavior of concrete under compression and tension, accounting for elastic,
inelastic, and post-peak behaviors. The cover concrete has a compressive strength of 5 ksi, while
the core concrete (i.e., confined concrete) has a compressive strength of 7.675 ksi, the modulus of
elasticity (Ec) was 4030.5 ksi. To simulate the nonlinear responses of columns, nonlinear fiber-
section elements (nonlinearBeamColumn) were employed. The P-delta effect was included in the
bridge model to account for axial load-lateral deformation interaction. The zero-length-section
element was used to model the strain penetration effect (Bond SP0I material) at both ends of the
column. The reinforcement was defined using Hysteretic material to capture the force-
displacement behavior, including pinching and damage effects, with a yield strength of 68 ksi and
an ultimate strength of 89.7 ksi. The superstructure elements, i.e., bridge deck and transverse
beams, were modeled using elastic beam-column elements with effective section properties. A
spine model was adopted for the superstructure. Rigid links were employed to connect the top of
the columns to the deck elements.

Zheng et al. (2021) proposed a refined abutment model by dividing the abutment wall into
the backwall and stem wall, allowing for a more accurate spring system. The backfills were
modeled using nonlinear springs with hyperbolic backbone, as defined by Xie et al. (2019).
Detailed information on the abutment model and backbone curves of the bridge components can
be found in Zheng (2021).
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2.7. MODAL ANALYSIS

Figure 2.4 illustrates the mode shapes and corresponding periods for each bridge model. For the
B-1C, the rotational, transverse, and longitudinal periods are 1.88, 1.87, and 1.24 seconds,
respectively, while for the B-2C, they are 1.73, 1.41, and 1.34 seconds. Rayleigh damping was
implemented using mass-proportional and last committed stiffness-proportional damping. A
critical damping ratio of 4.5% was applied to the first and fourth modes of each bridge model.
Detailed modal analysis results for the two bridge models are provided in Appendix 2.A of this
report.
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Figure 2-4 Mode shapes of the 3D bridge models (Left panel: B-1C, Right panel: B-2C).
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2.8. MOMENT-CURVATURE ANALYSIS

Moment-curvature (M — ¢) analyses were performed for the B-1C bridge’s oblong column section
in both the transverse (strong axis) and longitudinal (weak axis) directions using OpenSees
software. The axial load on the column section was 4157 kips. Figure 2.5 depicts the actual and
idealized (bilinear) moment-curvature curves for both directions, while Table 2.2 lists the yield
curvature, yield displacement, and displacement ductility capacity of the column, obtained from
the idealized curve using the formulations in SDC (2019). It was found that the estimated
displacement ductility capacities were 14.0 in the transverse direction and 7.5 in the longitudinal
direction. For the B-2C bridge, M — ¢ analyses were conducted for the circular column section
under an axial load of 2240 kips. Figure 2.6 illustrates the actual and idealized (bilinear) moment-
curvature curves. Table 2.3 summarizes the key parameters from the idealized curve, with the
displacement ductility capacity of the column estimated at approximately 8. Displacement ductility
capacities of the three-span bridges were calculated through pushover analysis, as detailed in the
following section.
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Figure 2-5 Moment-curvature curves for the B-1C bridge’s oblong column section in both the transverse
(strong axis) and longitudinal (weak axis) directions

Table 2.2 Moment-curvature analysis results based on idealized curve for the B-1C.

Transverse Longitudinal
Yield curvature (¢y) 7.37E-5 7.26E-5
Yield displacement (in) (Ay) 3.90 3.70
Displacement ductility capacity 14.0 7.5
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Figure 2-6 Moment- curvature curves for the circular column section of the B-2C bridge

Table 2.3 Moment-curvature analysis results based on idealized curve for the B-2C.

Transverse/Longitudinal

Yield curvature (¢y) 7.69E-5
Yield displacement (in) (Ay) 3.0
Displacement ductility capacity 7.6
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2.9. PUSHOVER ANALYSIS

Displacement-controlled pushover analyses were conducted on the bridge models in both the
transverse and longitudinal directions. Incremental loading was applied at the top node of the
columns, gradually pushing the bridge to a target displacement of approximately 9% of the total
column height (or a drift ratio of 9%). Figure 2.7 illustrates the results of the pushover analysis for
the B-1C bridge in both directions. In the transverse direction, the total base shear was determined
by summing the base shears for each individual column. For the longitudinal direction, the total
base shear included the forces from the abutments and the base shears from the piers. The abutment
forces, which include contributions from spring backfills and foundations, were activated once the
2-inch gap between the backwall and deck closed. The pushover curve was approximated by a
bilinear relationship using the equal-area method. The ultimate displacement for the bridge was
defined as the point at which the base shear dropped to 85% of its peak value. Table 2.4 lists the
key parameters from the analysis results. As shown, the displacement ductility capacities of the B-
1C bridge, representing the ratio of ultimate displacement to yield displacement, were found to be
6.0 in the transverse direction and 8.0 in the longitudinal direction. The associated column drift
ratio capacities were 8% and 9%, respectively.

Figure 2.8 and Table 2.5 present the corresponding results for the B-2C bridge. In
comparison, the displacement ductility capacities for the B-2C bridge were found to be slightly
lower than those of the B-1C bridge, with values of 5.9 in the transverse direction and 6.1 in the
longitudinal direction. The column drift ratio capacities for the B-2C bridge were also slightly
lower, with values of 6% and 8%, respectively.
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Table 2.4 Pushover analysis results based on idealized curves for the B-2C

Column height Yield Ultimate Displacement ~ Column drift
B-1C (in) displacement displacement ductility ratio capacity
(in) (in) capacity
Longitudinal 4.9 36 8.0 9%
396
Transverse 53 31 6.0 8%
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Figure 2-8 Pushover curves in transverse (left panel) and longitudinal (right panel) directions for the B-

2C
Table 2.5 Pushover analysis results based on idealized curves for the B-2C
Column height Yield Ultimate Displacement ~ Column drift
B-2C (in) displacement  displacement ductility ratio capacity
(in) (in) capacity
Longitudinal 4.6 28 6.10 8%
336
Transverse 3.2 19 5.90 6%
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2.10. NONLINEAR TIME HISTORY ANALYSIS

To investigate the effects of ground motion directionality on bridge responses, the ground motions
were rotated in 15° increments over a range of 0° to 90°. The ground motions were first rotated to
fault-normal (FN) and fault-parallel (FP) directions. At an incidence angle of 0°, the FN
component was applied in the transverse (T) direction and the FP component in the longitudinal
(L) direction. At a 90° incidence angle, the FP component was applied in the T- direction and the
FN component was applied in the L- direction. The two rotated horizontal components of the
ground motion were applied simultaneously to the T- and L- directions of the bridge, i.c.,
bidirectional loading. Figure 2.9(a) illustrates the scaled (Scale factor=1.36) and 30°-rotated
acceleration time series of the 1994 Northridge earthquake (RSN 1013-LA Dam station),
representing a 1000-year event in Los Angeles, applied to the transverse and longitudinal
directions of the two bridge models. Figure 2.9(b) depicts the resulting displacements in each
direction for the B-1C and B-2C models. The CDR was calculated as the ratio of the maximum
absolute bridge displacement (measured at the column top) to the column height. B-1C exhibited
higher initial stiffness and a longer transverse period (1.87 s), whereas B-2C had lower stiffness
but a shorter transverse period (1.34 s). The shorter period of B-2C aligned more closely with the
pulse period of the ground motion, leading to dynamic amplification. This resonance effect
combined with normalization by its shorter column height resulted in higher CDR for B-2C. It
should be noted that this calculation captured only the flexural deformation of the columns,
excluding any displacement contributions from rigid body rotation associated with foundation
flexibility. The RDR was computed as the ratio of permanent displacement observed at the column
top to the height. For this ground motion, while both bridges showed similar permanent
displacements in the longitudinal direction, the B-1C model demonstrated better recentering
behavior in the transverse direction.

Figure 2.10 illustrates the mean CDR and pp responses obtained from the sets of 20 woDir,
wDir, and wDir (SDCod) motions in both the T- and L- directions of the B-1C model for seven
different incidence angles, while Figure 2.11 shows the corresponding results for the B-2C model.
The case where the CDR exceeded the CDR capacity obtained from pushover analysis was defined
as collapse, and the responses from those ground motion were assumed as the capacity CDR values
(e.g., 9%) in the computation of the mean responses at each incidence angle. The figures also
depict the ratios of the CDRs to CDRRrotpso, where CDRRrotpso was computed as the median values
of CDRs over seven incidence angles. In this context, the RotD50 captures the central tendency of
structural responses. This indicates that the responses exhibit variability around their respective
medians, highlighting the influence of directional effect on bridge response. Tables 2.6 and 2.7 list
the number of collapses at each incidence angle for the B-1C and B-2C, respectively, in Los
Angeles.
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Figure 2-9 (a) Scaled (Scale factor=1.36) and 30°-rotated 1994 Northridge earthquake record (RSN
1013) representing a 1000-year event in Los Angeles, applied to the transverse and longitudinal
directions of the bridge models, (b) Transverse and longitudinal displacements for B-1C and B-2C bridge
models

For the B-1C model, at Tr =1000 years, the average CDR was 3%, with up values ranging
from 1.9 to 2.5 in the T- and L- directions, respectively. On average, up values were higher in the
L- direction. The critical angle maximizing the transverse response was typically between 0-45°,
whereas the maximum longitudinal response occurred at 90°, where the FN components produced
the highest CDRs. In the L-direction, CDRs from wDir and wDir (SDCmed) motions
underestimated CDRRrowso by approximately 20% between 0-45° but exceeded it by a similar
margin between 45-90°. This difference was more pronounced compared to woDir motions. In the
T- direction, both wDir and woDir cases showed similar trends, though deviations were larger in
wDir cases. The ratio of CDR/CDRRrotpso results indicated higher transverse responses between 0-
45° and comparable or lower responses between 45-90°. Trends observed in CDR/ CDRRopso at
Tr =1000 years remained consistent at Tr=2475 years. At TR=2475 years, the average CDR was
5%, with mean pp values of 3.3 and 4.0 in the T- and L- directions, respectively. For the woDir
motions, CDR variations are approximately 10%, corresponding to an increase in pp from 2.9 to
3.3. However, for the wDir (SDCmod) motions, the percentage difference between minimum and
maximum CDRs reached approximately 58% in the L- direction and 30% in the T- direction,
leading to up values exceeding 3.5. Statistical analysis using a two-sample t-test (ttest2) confirmed
that these variations are statistically significant, indicating that the directionality in seismic loading
have an impact on responses. These results suggest that the near-fault motions could produce high
variation in the response depending on the incidence angle and this effect seemed to be more
pronounced when bridge behaves highly nonlinear at higher hazard levels, thus neglecting this
effect may impact the accuracy of the seismic performance prediction of the bridges.
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For the B-2C model, at TR=1000 years, CDRs and pp values ranged from 3.3-3.7% and
2.45-2.7, respectively, in the L- direction. In the T- direction, CDRs and up values ranged from
3.6-4.0% and 3.8-4.3, respectively. The lower transverse yield displacement compared to the L-
direction resulted in higher up values in the T- direction. At Tr=2475 years, CDRs in the T- and
L- directions were approximately 5.5% and 6%, respectively. In the L-direction, up values ranged
from 4.2 to 4.6, while in the T-direction, they averaged 5.5. This suggests that the bridge may be
at risk of significant damage, given that its transverse ductility capacity is limited to 5.9. For the
woDir motions, variability around CDRRromso was within +£10%, but this variability did not show
statistical significance in both directions. For the wDir and wDir (SDCmod) motions, responses at
incidence angles between 15-60° showed comparable or higher-than-average responses in the T-
direction. The critical angle in the L- direction was 90°. Similar to the observations in the B-1C
model, the wDir (SDCnod) motions resulted in variations of up to 30% in the T-direction and 50%
in the L-direction.

As shown in Tables 2.6 and 2.7, for both bridges, the most collapse cases were observed
in the wDir (SDCmod) motions at Tr=2475 years. The collapse behavior demonstrated a
dependency on incidence angle, with T-direction collapses predominantly occurring within the 0-
45° range and L-direction collapses within 45-90°. Since the two horizontal components of the
ground motions were applied simultaneously along the principal axes of the bridges, certain
ground motions induced in-plane rotations, amplifying responses in both the T- and L- directions.
Specifically, it is possible that the first mode of the bridge, particularly the torsional mode, coupled
with the period of pulse-like motions, amplifying the torsional effects. To investigate the origin of
torsional excitation, analyses were conducted applying unidirectional ground motion only in the
transverse direction (no longitudinal component). This produced negligible in-plane rotation,
whereas bidirectional loading induced torsional effects, confirming that torsional excitation
primarily results from modal coupling under combined excitation.

As an illustration, Figure 2.12 presents the in-plane torsion for both bridges at incidence
angles of 0°, 30°, and 90°, based on the 1994 Northridge earthquake ground motion (RSN1013)
in Los Angeles with Tr=1000 years. These rotations were computed as the lateral displacement
differences between abutments divided by the total span length of the bridge. The results indicated
that directivity motions could exacerbate in-plane rotations, with their impact varying based on the
incidence angle and the bridge characteristics.

The results highlight that variations across incidence angles can influence the severity of
bridge damage, especially when pup >3.5, a condition that tends to occur at high seismic hazard
levels (e.g., TR=2475 years). While woDir motions showed relatively small variations, directivity
motions led to significant differences in structural response. Although similar trends were observed
across different hazard levels, the extent of ductility demand and collapse cases varied. These
findings emphasize that at TrR=2475 years, the choice of incidence angle can be a critical factor in
whether a bridge experiences severe damage or even collapse. This underscores the need to

97



account for incidence angle effects in seismic design and assessment particularly for sites located

in high seismic regions.
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Figure 2-10 Mean column drift ratio (CDR), and ductility demand (uD) responses from the 20 woDir,
wDir, and wDir (SDCoq) motions in the T- and L- directions of the B-1C model for seven incidence
angles, along with the ratios of the CDR to CDRropso, in Los Angeles, at Tr=1000 years and 2475 years
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Figure 2-11 Mean column drift ratio (CDR), and ductility demand (up) responses from the 20 woDir,
wDir, and wDir (SDCyoq) motions in the T- and L- directions of the B-2C model for seven incidence
angles, along with the ratios of the CDR to CDRroso, in Los Angele s, at Tv=1000 years and 2475 years
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Table 2.6 The number of collapses out of 20 ground motions at each incidence angle in Los Angeles for

the B-1C.
Incidence Angle (°)
Los CDR 0 15 30 45 60 75 90
Angeles
T-woDir - - - 1 - - -
T-wDir - - - - - - -
T-wDir
Tr=1000 | (SDCmoa) 0 0 0 0 0 1 0
yrs L-woDir - - - 1 - - -
L-wDir - 1 1 - 1 1 1
L-wDir
(SDCoa) 0 1 1 0 0 0 0
T-woDir - - 1 - - - 1
T-wDir 2 2 - 1 2 1 2
Tr=2475 | T-wDir
yrs (SDCimoa) 2 2 2 3 2 1 1
L-woDir - - 2 - - 1 2
L-wDir - 2 1 - - 2 3
L-wDir
(SDCrnoa) 2 1 1 1 2 3 5
Table 2.7 The number of collapses out of 20 ground motions at each incidence angle in Los Angeles for
the B-2C.
Incidence Angle (°)
Los CDR 0 15 30 45 60 75 90
Angeles
T-woDir - - - - - - -
T-wDir 2 3 1 1 - - -
T-wDir
Tr=1000 | (SDChmoa) 0 1 3 2 2 2 1
yrs L-woDir - - - - - - -
L-wDir - - 1 1 - - 1
L-wDir
(SDCrmoa) 1 1 0 0 0 0 1
T-woDir 1 3 6 8 7 6 6
T-wDir 7 5 9 9 8 7 5
T-wDir
Tr=2475 | (SDCumoa) 9 9 12 12 12 9 8
yrs L-woDir 3 3 2 3 3 4 3
L-wDir 3 1 3 2 3 2
L-wDir
(SDCinoa) 5 2 4 3 6 7 10
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Figure 2-12 In-plane rotations for the B-1C and B-2C models at incidence angles of 0°, 30°, and 90°,
based on the 1994-Northridge earthquake ground motion (RSN1013), representing Tr=1000 years in Los
Angeles

The residual displacement, RDR, serves as an important response metric for assessing
structural damage and guiding post-earthquake repair decisions, influencing the serviceability and
safety of the bridge. Figures 2.13 and 2.14 illustrate the mean RDRs obtained from sets of 20
woDir, wDir, and wDir (SDCmod) motions in both the T- and L- directions for the B-1C and B-2C
models, respectively, at seven different incidence angles, for TR=1000 years and Tr=2475years.

For the B-1C model, RDRs range from 0.2% to 0.35% at Tr=1000 years, and from 0.6%
to 0.9% at Tr=2475 years. In general, wDir (SDCmod) and wDir motions tended to produce
comparable or slightly higher RDRs than woDir motions, with the increase becoming more
significant under higher hazard levels, in line with previous studies (Phan et al. 2007, Choi et al.
2010, Zengin et al. 2025a). Interestingly, no clear trend was observed for RDR/RDRRrotpso with
respect to incidence angle, although the critical angle for the L- direction tended to align with 90°.
It was observed that as the CDR increased, the RDR also increased. However, the high uncertainty
in the RDRs prevented a strong alignment with the CDR patterns.

For the B-2C model, the mean RDRs were approximately 0.5% at Tr=1000 years and
around 1.0% at Tr=2475 years. While the average RDRs remained below the 1% post-earthquake
serviceability limit set by some design codes such as those from Japan (JSCE, 2000), the large
dispersion, especially in wDir (SDCmod) and wDir motions, suggested that the 84™ percentile of
RDRs could exceed this threshold. This increased exceedance risk at Tr=2475 years needs
attention to the long-term functionality of the bridges. The subsequent section further explores
dispersion in RDRs.
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Figure 2-13 Mean residual drift ratio (RDR) obtained from sets of 20 woDir, wDir, and wDir (SDCmod)

motions in both the transverse (T) and longitudinal (L) directions for the B-1C model, at seven different

incidence angles, for Tr=1000 years and 2475years.
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Figure 2-14 Mean residual drift ratio (RDR) obtained from sets of 20 woDir, wDir, and wDir (SDCmod)
motions in both the transverse (T) and longitudinal (L) directions for the B-2C model, at seven different
incidence angles, for Tr=1000 years and 2475years

Figures 2.15 and 2.16 illustrate the standard deviations of the natural logarithms of CDR
(Gin(cpry)) and RDR (0, (rpr)), for the B-1C and B-2C models, respectively. It was observed that
Oin(cpr) Values ranged from 0.3 to 0.5, with wDir and wDir (SDCrmod) motions generally producing
the highest variability in both the T- and L- directions. A slight reduction in 0y, cpr) Was observed
at Tr=2475 years, as these standard deviations were estimated based on the pooled collapse and
non-collapse responses. When estimating the probability of collapse or exceeding some damage
limit state, it is important to separate collapse and non-collapse data for accuracy. The probability
of exceeding a specific response parameter threshold at a given seismic hazard level should first
be calculated using non-collapse responses to account for its variability. The collapse probability
at that level can be estimated by the fraction of collapse responses. To determine the overall
probability of exceeding damage or collapse limit, the probabilities from both collapse and non-
collapse cases can be summed. The use of pooled data allows for a general assessment of the

102



bridges overall seismic behavior under different ground motions, as the probabilistic evaluation of
limit state exceedance is outside the scope of this study.

For ojnrpr), the values ranged from 0.75 to 2.0, with the high dispersion not consistently
associated with wDir or wDir (SDCmod) motions. The woDir motions might produce comparable
variability depending on the incidence angles and response directions. The higher dispersions
observed in RDRs compared to CDR (or pup), are in line with the findings of Zengin et. al. (2025b).
As noted, since the 84 percentile of RDRs may affect bridge functionality and serviceability, the
variation in standard deviation due to incidence angle highlights the importance of considering this
factor in seismic bridge design.
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Figure 2-15 Standard deviations of the natural logarithms of CDR and RDR for the B-1C model, in Los
Angeles, at Tr=1000 years and 2475 years.
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Figure 2-16 Standard deviations of the natural logarithms of CDR and RDR for the B-2C model, in Los
Angeles, at Tr=1000 years and 2475years.

Figure 2.17 illustrates the mean CDR, pup, CDR/CDRRotpso, and RDR responses obtained
from the sets of 20 woDir, wDir, and wDir (SDCmod) motions in both the T- and L- directions of
the B-1C model for seven different incidence angles, Tr=1000 years, in Oakland. Table 2.8 lists
the number of collapses at each incidence angle in Oakland. As seen in Figure 2.17, while woDir
and wDir ground motions produced similar CDRs on average, wDir (SDCmod) resulted in
approximately 10% higher CDRs, with an average of around 5%. The pp values were between 3.0
and 5.0. The number of collapses observed in Oakland at Tr=1000 years was higher than in Los
Angeles, consistent with Oakland’s higher seismicity. Similar to the observations in Los Angeles,
most collapse cases resulted from wDir (SDCmod) motions. Trends observed for the
CDR/CDRRotpso were also consistent with those in Los Angeles. Critical responses in the T-
direction were concentrated between 0-45°, while the highest CDRs in the L- direction were
associated with 90° or the FN component. Note that at Tr=2475 years, the elastic spectral ordinates
nearly doubled, leading to numerous collapses and non-convergence issues for most ground
motions. This indicates a risk of severe damage and possible collapse at the Oakland site; thus, the
results are not reported due to unreliable statistics. Similarly, for the B-2C model, pup values
exceeded Caltrans’ target ductility demand limit of 5, indicating that this bridge model lacks
sufficient capacity to withstand Oakland’s high seismic demands. This underscores the need for
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site-specific seismic design in high-seismic zones like Oakland, where extreme events
significantly increase the risk to bridges located in near-fault regions. The RDR values ranged
between 0.7% and 0.9%. RDRs from wDir (SDCmod) were about 20% higher than woDir in the T-
direction, while woDir had 10% higher RDRs in the L- direction. The results suggest that given
the large dispersion in RDRs, combined with the presence of very small values (e.g., RDR <1%)
the differences in mean values across incidence angles are unlikely to significantly influence post-
earthquake decision-making regarding structural usability or repairability.

Figure 2.18 illustrates the standard deviations of the natural logarithms of CDR and RDR
in Oakland, displaying similar trends with those observed in Figures 2.15 and 2.16. The results
suggest that the variations in dispersion of RDRs with respect to ground motion incidence angle
are higher than those observed in CDRs.
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Figure 2-17 Mean column drift ratio (CDR), and ductility demand (up), ratios of the CDR to CDRgopso,
and residual drift ratio (RDR) from the 20 woDir, wDir, and wDir (SDC.0q) motions in the T- and L-
directions of the B-1C model for seven incidence angles, in Oakland, at Tr=1000 years.
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Table 2.8 The number of collapses out of 20 ground motions at each incidence angle in Oakland for the
B-1C.

Incidence Angle (°)
Oakland | CDR 0 15 30 45 60 75 90
T-woDir 2 0 1 0 0 1 0
T-wDir 2 2 4 2 1 1 1
Tr=1000 | T-wDir
yrs (SDCnoa) 4 4 6 2 3 2 2
L-woDir 1 0 1 0 0 2
L-wDir 1 1 2 1 2 1 3
L-wDir
(SDCinoa) 2 2 2 2 2 2 5

QOakland [TR=1000 yrs] Oakland [TRZIOOO yr1s]
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Figure 2-18 Standard deviations of the natural logarithms of CDR and RDR for the B-1C model, in
Oakland, at TR=1000 years.
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2.11. COMPARISONS BETWEEN NTHA AND SDOF
ANALYSES RESULTS

This section presents a comparison between the CDRs and RDRs obtained from NTHA and the
inelastic SDOF systems. The validity of the equal displacement rule between elastic and inelastic
responses is also assessed. The inelastic SDOF systems, characterized based on the Takeda
hysteretic model (Takeda et al., 1970), were analyzed. The behavior of these systems was defined
using the seismic coefficient (Cy), which represents the ratio of the yield force to the total weight
of the bridge, along with a post-yield stiffness that incorporates a 2% strain-hardening effect. A
viscous damping ratio of 5% was applied. From the pushover analysis, the Cy values for the B-1C
were found to be nearly identical in both the T- and L- directions (see Figure 2.7), with values of
approximately 0.37. For the B-2C, Cy in the T- and L- directions were 0.22 and 0.32, respectively.
Instead of relying on a single effective period for the SDOF system, we examined six distinct
periods ranging from 0.8 to 2.0 seconds to assess the sensitivity of the results to period variations
and period lengthening. The CDRs for the SDOF systems were determined by dividing the
maximum inelastic displacement by the column height of the bridge.

Figure 2.19 compares the transverse CDR (CDRr) and longitudinal CDR (CDRy) for the
B-1C, obtained from inelastic SDOF analysis and NTHA. The comparisons were made using sets
of 20 wDir (SDCmod) motions in Los Angeles at Tr= 1000 years and 2475 years. In the inelastic
SDOF analyses, the ground motions were applied separately to the T- and L- directions. The solid
lines represent the inelastic SDOF results over the period range at seven incidence angles, while
the cross marks represent the corresponding 3D bridge responses. Results for the B-2C are shown
in Figure 2.20. Inelastic CDRs exhibited an increasing trend with respect to the period. The results
revealed that the effects of incidence angles on the CDRs were consistent with those observed in
the NTHA, where the maximum transverse responses occurred within the 0-45° range, and the
maximum longitudinal responses were observed at 90°. Additionally, the CDRs from NTHA were
more accurately represented by the inelastic CDRs at shorter periods, which are compatible with
the expectation that the periods of the equivalent SDOF systems would be shorter than those of
the 3D bridge model. For both bridges, depending on the response direction, inelastic SDOF
analyses produced CDRs that were either comparable to or slightly higher than the NTHA results
at TR=1000 years. However, at Tr=2475 years, the inelastic SDOF analyses underestimated the
NTHA CDRs. These discrepancies can be attributed to multiple factors. At Tr= 1000 years, the
fixed-base SDOF system may overestimate inelastic responses compared to NTHA, as it does not
account for foundation flexibility or multi-directional load redistribution, which can reduce
displacement demands in the 3D model. In contrast, at Tr=2475 years, increased nonlinearity,
multi-directional interactions, period elongation, and P-delta effects in NTHA may lead to larger
deformations than the SDOF model predicts, causing underestimation.

Figures 2.21 and 2.22 compare the transverse RDR (RDRr) and longitudinal RDR (RDRy)
from inelastic SDOF analysis and NTHA, for the B-1C and B-2C, respectively. The results showed
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that inelastic SDOF analyses significantly underestimated the RDRs compared to the NTHA
results. It is well known that RDRs can be highly sensitive to various factors, including material
properties and computational models. Additionally, representing the SDOF system as a single
mode may fail to capture coupling effects arising from bidirectional loading, as observed in the
3D bridge models. The absence of pinching, ductility, and energy damage parameters in the
simplified Takeda hysteretic model further limited its ability to accurately predict residual
displacement demand. The results indicate that RDRs are more sensitive to these parameters than
CDRs. While calibrating the hysteretic model parameters was outside the scope of this study,
incorporating these factors could improve the accuracy of RDR predictions.

Figure 2.23 illustrates the RotD50 CDR ratios of elastic and inelastic SDOF systems to the
RotD50 CDR of the B-1C 3D bridge model, using wDir (SDCmod) motions at TR=1000 years and
2475 years in Los Angeles, and at Tr=1000 years in Oakland. Figure 2.24 depicts the RotD50
CDR ratios of elastic and inelastic SDOF systems compared to the RotD50 CDR of the B-2C
bridge, using wDir (SDCmod) motions at Tr=1000 years and 2475 years in Los Angeles. It was
observed that, for both bridges, elastic SDOF analyses tended to underestimate the NTHA results
for periods below 1.5 seconds, with the underestimation being more significant at shorter periods.
Conversely, for periods longer than 1.5 seconds, elastic analyses yielded CDRs that were either
comparable to or higher than those from NTHA. This behavior may be attributed to the increasing
influence of the superstructure’s high axial stiffness in more flexible bridges, which acts to limit
longitudinal deformation, an effect that is not captured in simplified SDOF models. For the B-1C,
inelastic SDOF analyses slightly overestimated the NTHA CDRs at Tr=1000 years in Los
Angeles, but at TR=2475 years, it underestimated them by 10 to 15%. In Oakland, the inelastic
SDOF analysis slightly underestimated the NTHA CDRs. For the B-2C, inelastic SDOF analyses
showed a more pronounced underestimation of the NTHA results at Tr=2475 years. These
discrepancies highlight the limitations of the inelastic SDOF analysis for capturing the nonlinear
dynamic behaviors of the 3D bridge models subjected to pulse-like motions, particularly at higher
return periods and for more complex multi-directional effects. Additionally, a comparison of the
elastic and inelastic analysis responses between 0.8 and 1.5 seconds revealed that the elastic CDRs
were lower than the inelastic CDRs. This indicates that the equal displacement rule (Veletsos and
Newmark, 1960) may underestimate inelastic displacement demands, potentially resulting in
unconservative estimates. Consequently, relying on the equal displacement rule for ordinary long-
span (long-period) bridges in high-seismicity sites may lead to unsafe design practices. These
findings support the conclusions of previous studies by Bozorgnia et al. (2010), Bahrampouri et
al. (2023), and Zengin et al. (2023).
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Figure 2-19 Comparison of transverse (CDRy) and longitudinal (CDR;) CDR for the B-1C from inelastic
SDOF analysis and NTHA, using 20 wDir (SDC.q) motions at seven different incidence angles, in Los
Angeles with Tr = 1000 and 2475 years. Solid lines show inelastic SDOF results, and cross marks
represent 3D bridge responses.
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Figure 2-20 Comparison of transverse (CDRy) and longitudinal (CDR;) CDR for the B-2C from inelastic
SDOF analysis and NTHA, using 20 wDir (SDCy0q) motions at seven different incidence angles, in Los
Angeles with Tr = 1000 and 2475 years. Solid lines show inelastic SDOF results, and cross marks
represent 3D bridge responses.
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Figure 2-21 Comparison of transverse (RDR7) and longitudinal (RDR;) RDR for the B-1C from inelastic
SDOF analysis and NTHA, using 20 wDir (SDC.q) motions at seven different incidence angles, in Los
Angeles with Tr = 1000 and 2475 years. Solid lines show inelastic SDOF results, and cross marks

represent 3D bridge responses.
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Figure 2-22 Comparison of transverse (RDR7) and longitudinal (RDR;) RDR for the B-2C from inelastic
SDOF analysis and NTHA, using 20 wDir (SDCyoq) motions at seven different incidence angles, in Los
Angeles with Tr = 1000 and 2475 years. Solid lines show inelastic SDOF results, and cross marks

represent 3D
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Figure 2-23 Ratios of the RotD50 CDR from elastic and inelastic SDOF systems to the RotD50 CDR of
the B-1C 3D bridge model, using wDir (SDCpoq) motions at Tr=1000 and 2475 years in Los Angeles, and
Tr=1000 years in Oakland.
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Figure 2-24 Ratios of the RotD50 CDR from elastic and inelastic SDOF systems to the RotD50 CDR of
the B-2C 3D bridge model, using wDir (SDCoq) motions at Tr=1000 and 2475 years in Los Angeles.
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2.12. CONCLUSIONS AND RECOMMENDATIONS

This study investigated the effects of ground motion directivity and directionality on the seismic
responses of two three-span long-period ordinary bridges, i.e., one-column bent bridge, and two-
column bent bridge. Nonlinear time history analyses (NTHA) were performed on both three-
dimensional (3D) numerical models using bidirectional ground motions rotated from 0° to 90° in
15° increments. Analyses were conducted using three ground motion sets, i.e., motions without
directivity (woDir), with directivity obtained from weighted average of three directivity models
(wDir), and modified SDC directivity model (wDir-SDCmod), at return periods (Tr) of 1000 and
2475 years in two sites with varying seismicity: Los Angeles and Oakland.

Responses were evaluated for both transverse (T) and longitudinal (L) directions, and the
results revealed that wDir and wDir (SDCmod) motions produced consistently higher seismic
demands compared to woDir motions. The ground motion incidence angle was found to
significantly influence response, especially for pulse motions, with maximum displacement
ductility demand (up) and column drift ratios (CDRs), and collapse occurrences generally
occurring between 0°-45° in the T-direction and at 90° in the L-direction. The results indicated
that the interaction between bidirectional ground-motion components and the structural
characteristics of the bridges induced torsional responses, which, in turn, might amplify the seismic
responses in both the T- and L- directions. A key observation was that CDRs computed at specific
incidence angles deviated by 15-35% from those computed using the median CDRs over seven
incidence angles, i.e., CDRromso, suggesting that neglecting directional effects could lead to
inaccurate estimates of seismic demands. Furthermore, the number of collapses was affected by
these directional effects, especially at Tr=2475 years, underscoring the importance of considering
directionality in seismic design and assessments. The findings revealed that at high-seismicity sites
like Oakland, the two-column bent bridge model lacked sufficient capacity to withstand extreme
ground motions. This emphasizes the necessity of site-specific design and analysis to mitigate the
risk of severe damage and collapse.

Unlike CDR and pp, the residual drift ratios (RDRs) did not demonstrate a clear
dependence on the incidence angle. RDRs showed high dispersion, despite average values
remaining below the 1% serviceability threshold, 84™ percentile RDRs often exceeded it at Tr
=2475 years, raising concerns for post-earthquake bridge functionality.

To assess the efficacy of simplified models, inelastic single-degree-of-freedom (SDOF)
analyses using Takeda hysteretic model were compared to the NTHA results. The SDOF models
incorporated variations in structural period (0.8-2.0 seconds) and used seismic coefficient (Cy)
values derived from pushover analyses of the bridges. Results demonstrated that:

e At Tr =1000 years, inelastic SDOF models produced CDRs comparable to or slightly
higher than NTHA, particularly at shorter periods. This is likely due to the SDOF model’s
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simplified assumptions, such as fixed-base boundary condition and lack of multidirectional
load redistribution. At Tr =2475 years, NTHA CDRs exceeded inelastic SDOF predictions
by 10-15%, owing to greater period elongation, bidirectional interaction, and P-delta
effects in the 3D bridge models.

e The RDRs from SDOF models underestimated NTHA results. The SDOF systems,
particularly those using idealized hysteretic behavior like the Takeda model, were
inadequate for capturing residual drift demands, especially under multi-directional loading
conditions. Comparisons of elastic vs. inelastic SDOF analyses further revealed that the
equal displacement rule may underestimate inelastic displacements, especially for periods
shorter than 1.5 seconds, potentially leading to unconservative seismic design.

Incorporating near-fault directivity and ground motion directionality into seismic bridge
design is important for improving performance under extreme events. Based on our findings, we
recommend that bridges in high-seismicity regions should adopt target spectra with directivity
amplification factors, account for ground motion directionality effects, and move beyond
simplified SDOF elastic analysis based on the equal displacement rule. Implementing these
measures can improve the resilience of bridges subjected to severe ground motions. Future work
should investigate the effects of bridge skew angles and 3D ground motion components, including
vertical motions, on seismic response and collapse risk.
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APPENDIX 2.A: MODAL ANALYSIS REPORTS

The modal analysis uses the kip—inch—second system. Translational mass is in kip-s*/in; rotational
mass (moment of inertia) in kip-in-s?. Center of mass is in inches. Eigenvalues are in (rad/s)?;
angular frequencies in rad/s; frequencies in Hz; periods in seconds. Modal participation factors are
in inches (translations) and radians (rotations). Modal participation masses match total mass units,
and modal mass ratios are percentages (%).
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MODAL ANALYSIS REPORT (B1-C)
1. DIRECTIONS:

X-Longitudinal, Y-Vertical, Z-Transverse

2. EIGENVALUE ANALYSIS:
MODE LAMBDA OMEGA FREQUENCY PERIOD
11.1682 3.34188  0.531877 1.88013
11.2243 3.35027  0.533212 1.87543
25.5385 5.05356 0.8043 1.24332
29.053 5.39008  0.857858 1.16569

A W N ==

3. TOTAL MASS OF THE STRUCTURE:
The total masses (translational and rotational) of the structure
including the masses at fixed DOFs (if any).

MX MY MZ RMX RMY RMZ

28.0719  28.0719  28.0719 412564 1.63023e+08 1.62704e+08

4. TOTAL FREE MASS OF THE STRUCTURE:
The total masses (translational and rotational) of the structure
including only the masses at free DOFs.

MX MY MZ RMX RMY RMZ

28.0719  28.0719  28.0719 412564 1.63023e+08 1.62704e+08

5. CENTER OF MASS:
The center of mass of the structure, calculated from free masses.
X Y Z

4140 0 0
6. MODAL PARTICIPATION FACTORS:
The participation factor for a certain mode 'a' in a certain direction '1'
indicates how strongly displacement along (or rotation about)
the global axes is represented in the eigenvector of that mode.

MODE MX MY MZ RMX RMY RMZ
1 0 -8.05698e-06 7.8522e-08 2.7379¢-07  4711.27 0
2 -4.82252e-05 0 -1.45394 -4.82286 0.000272573 0.0116278
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3 0.830997 0 3.25108e-05 0.00047924 0 -708.154
4 0 -0.505302 0 0 -0.0598262 0
7. MODAL PARTICIPATION MASSES:
The modal participation masses for each mode.
MODE MX MY MZ RMX RMY RMZ
1 0 0 0 0 1.57602¢+08 0
2 0 0 13.8731 152.648 0 0.000887316
3 231874 0 0 0 0 1.68387e+07
4 0  3.08472 0 0 0.0432411 0
8. MODAL PARTICIPATION MASSES (cumulative):
The cumulative modal participation masses for each mode.
MODE MX MY Mz RMX RMY RMZ
1 0 0 0 0 1.57602e+08 0
2 0 0 13.8731 152.648 1.57602¢+08 0.000887316
3 231874 0 13.8731 152.648 1.57602e+08 1.68387¢+07
4 23.1874  3.08472 13.8731 152.648 1.57602¢+08 1.68387¢+07

9. MODAL PARTICIPATION MASS RATIOS (%):
The modal participation mass ratios (%) for each mode.

MODE MX MY MZ RMX RMY RMZ
1 0 1.64194e-09 0 96.6744 0
2 5.43696e-08 0 49.4199 0.0369998 0 5.45357e-10
3 82.6001 0 1.26426e-07 1.86925e-09 0 10.3493
4 0 10.9886 0 0 2.65245e-08 0
10. MODAL PARTICIPATION MASS RATIOS (%) (cumulative):
The cumulative modal participation mass ratios (%) for each mode.
MODE MX MY MZ RMX RMY RMZ
1 0 1.64194e-09 0 96.6744 0
2 5.43696e-08 1.64194e-09  49.4199 0.0369998  96.6744 5.45357e-10
3 82.6001 1.64194e-09  49.4199 0.0369998  96.6744 10.3493
4 82.6001 10.9886  49.4199 0.0369998  96.6744 10.3493

MODAL ANALYSIS REPORT (B2-C)
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1. DIRECTIONS:
X-Longitudinal, Y-Vertical, Z-Transverse

2. EIGENVALUE ANALYSIS:
MODE LAMBDA OMEGA FREQUENCY PERIOD
13.2535 3.64053  0.579408 1.7259
19.9421 4.46565  0.710731 1.407
22.0834 4.6993  0.747917 1.33705
40.3824 6.35471 1.01138  0.988744

A W N ==

3. TOTAL MASS OF THE STRUCTURE:
The total masses (translational and rotational) of the structure
including the masses at fixed DOFs (if any).

MX MY MZ RMX RMY RMZ

30.2762 30.2762 30.2762 878711 1.3397e+08 1.33175e+08

4. TOTAL FREE MASS OF THE STRUCTURE:
The total masses (translational and rotational) of the structure

including only the masses at free DOFs.
MX MY MZ RMX RMY RMZ

30.2762 30.2762 30.2762 878711 1.3397e+08 1.33175e+08

5. CENTER OF MASS:
The center of mass of the structure, calculated from free masses.
X Y Z

3600 0 0

6. MODAL PARTICIPATION FACTORS:
The participation factor for a certain mode 'a' in a certain direction '’
indicates how strongly displacement along (or rotation about)

the global axes is represented in the eigenvector of that mode.
MODE MX MY MZ RMX RMY RMZ

1 0 -1.01383e-08 6.16411e-08 3.37159e-07  -3791.01 3.13986¢e-06
2 -0.970077 -1.35186e-08 4.04041e-07 2.57589¢-07 -3.34359¢-06  274.615
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3 7.79216e-07 0 1.57413 1.07053 0.000128178 -0.000277089
4 1.33665e-08 -0.497981 0 0 8.6929¢-05 -0.000137209

7. MODAL PARTICIPATION MASSES:
The modal participation masses for each mode.

MODE MX MY MZ RMX RMY RMZ
1 0 0 0 0 1.33458e+08 0
2 29.2677 0 0 0 0 2.34544e+06
3 0 0  23.2422 10.7495 0 0
4 0  3.20959 0 0 0 0

8. MODAL PARTICIPATION MASSES (cumulative):
The cumulative modal participation masses for each mode.

MODE MX MY MZ RMX RMY RMZ
1 0 0 0 0 1.33458e+08 0
2 29.2677 0 0 0 1.33458e+08 2.34544e+06
3 29.2677 0 232422 10.7495 1.33458e+08 2.34544e+06
4 29.2677 3.20959  23.2422 10.7495 1.33458e+08 2.34544e+06

9. MODAL PARTICIPATION MASS RATIOS (%):
The modal participation mass ratios (%) for each mode.

MODE MX MY MZ RMX RMY RMZ
1 0 0 0 0 99.6181 0
2 96.6692 0 0 0 0 1.76117
3 0 0 76.7672 0.00122333 0 0
4 0 10.6011 0 0 0 0

10. MODAL PARTICIPATION MASS RATIOS (%) (cumulative):
The cumulative modal participation mass ratios (%) for each mode.

MODE MX MY MZ RMX RMY RMZ
1 0 0 0 0 99.6181 0
2 96.6692 0 0 0 99.6181 1.76117
3 96.6692 0 76.7672 0.00122333 99.6181 1.76117
4 96.6692 10.6011 76.7672 0.00122333 99.6181 1.76117
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APPENDIX 2.B: LISTS OF SELECTED GROUND MOTIONS
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Table B.1. Los Angeles woDir motions (Tr= 1000 years).

RSN | Earthquake name Year Station name M Riyp (km) | Vs3o(m/s) | Scale Factor | PGA (g) | PGV (cm/s)
763 | Loma Prieta 1989 | Gilroy - Gavilan Coll. | 6.93 9.96 730 4.68 0.34 2737
162 | Imperial Valley-06 | 1272 | Calexico Fire Station | 6.53 10.45 231 4.48 0.24 2131

5829 | El Mayor-Cucapah | 2010 RIITO 7. 13.71 22 2.01 0.39 46.36
1158 | Kocaeli, Turkey | 1779 Duzce 7.51 15.37 282 133 0.32 56.11

4742 | Wenchuan, China | 2008 Maoxiannanxin 7.9 21.85 430 3.37 0.40 27.25

4740 | Wenchuan, China | 2908 Maoxiandiban 7.9 2231 638 5.07 0.33 24.74
164 | Imperial Valley-06 | 1277 Cerro Prieto 6.53 15.19 472 4.00 0.17 15.88
1208 | Chi-Chi, Taiwan | 1°%° CHY046 7.62 24.1 442 2.99 0.17 22.13

4218 | Niigata, Japan | 2004 NIG028 6.63 9.79 431 2.56 0.65 35.75
163 | Imperial Valley-06 | 27 | Calipatria Fire Station | 6.53 24.6 206 6.00 0.10 14.29

2007 Mitsuke Kazuiti Arita 276

4859 | Chuetsu-oki Town 6.8 20.33 274 : 0.13 20.10
495 | Nahanni, Canada | 9% Site 1 6.76 9.6 605 2.04 1.16 40.41
286 | Irpinia, Italy-01 | 1280 Bisaccia 6.9 21.26 496 3.85 0.08 18.54

1989 Coyote Lake Dam 457
754 Loma Prieta (Downst) 6.93 20.8 295 ' 0.16 19.18

1198 | Chi-Chi, Taiwan | 1799 CHY029 7.62 10.96 545 2.46 0.27 36.09
1116 |  Kobe, Japan 1995 Shin-Osaka 6.9 19.15 256 2.11 0.23 27.11

4798 | Wenchuan, China | 2008 Anxiantashui 7.9 0.05 376 2.25 0.25 31.03

1994 LA - Century City CC 3 45
988 | Northridge-01 North 6.69 23.41 278 : 0.23 21.98
4881 |  Chuetsu-oki 2007 | Nagaoka Kouiti Town | 6.8 20.77 294 3.60 0.19 12.92
5818 Iwate 2008 Kurihara City 6.9 12.85 512 1.97 0.59 48.58
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Table B.2. Los Angeles wDir motions (Tr= 1000 years).

RSN | Earthquake name Year Station name M (l:{;::) Vs (m/s) Fit?tfr P((g;;A (lc)rcn;/\s]) ;rsl;
767 Loma Prieta 1989 Gilroy Array #3 693 | 12.82 350 2.48 050 | 43.52 |2.64
723 SuperStl(t)12On il o Parachute Test Site 6.54 0.95 349 1.06 0.43 102.22 2.39
162 | Imperial Valley-06 | 1979 Calexico Fire Station 6.53 | 1045 231 4.68 024 | 2131 | -
1182 | Chi-Chi, Taiwan | 1°%° CHY006 762 | 976 438 132 036 | 55.82 | 257
68 San Fernando 1971 1 | A _Hollywood Stor FF | 6.61 | 22.77 316 433 022 | 2047 | -
1063 |  Northridge-01 1994 Rinaldi Receiving Sta 669| 65 282 0.72 0.71 | 114.40 | 1.25
1013 | Northridge-01 1994 LA Dam 669 | 592 629 130 035 | 67.13 | 1.62
1100 Kobe, Japan 1995 Abeno 69 | 2485 256 428 021 | 2115 | -

4228 |  Niigata, Japan | 2004 NIGHI 1 6.63 | 893 375 2.13 051 | 4815 | 1.80
1086 |  Northridge-01 1994 1 Svimar - Olive View Med FF | 6.69 | 5.3 441 0.93 0.64 | 9453 |244
164 | Imperial Valley-06 | 197° Cerro Prieto 6.53 | 15.19 472 4.18 0.17 | 1588 | -
1045 | Northridge-01 1994 | Newhall - W Pico Canyon Rd. | 6.69 |  5.48 286 1.02 036 | 99.73 | 298
1104 Kobe, Japan 1995 Fukushima 6.9 | 17.85 256 1.60 0.19 | 3417 | -

2114 | Denali, Alaska | 2992 |  TAPS Pump Station#10 | 7.9 | 2.74 329 1.06 032 | 9423 |3.16
828 | Cape Mendocino | 1792 Petrolia 701 | 8.18 422 1.04 0.62 | 71.56 |3.00
1114 Kobe, Japan 1995 Port Island (0 m) 69 | 331 198 0.93 032 | 73.09 |283
171 | Imperial Valley-06 il pl Centro Al\lilrzly(l)land oot 6.53 0.07 263 1.40 0.31 83.52 342
1044 |  Northridge-01 1994 Newhall - Fire Sta 6.69 | 592 269 0.90 0.65 | 86.67 | 137
982 |  Northridge-01 o Adiz?lfiesltlr:tlil\iré)lll?lnclting 6.69 | 5.43 373 0.70 0.52 | 9762 | 316
983 | Northridge-01 5| Jeneen Flltgigé?ztgGenerator 6.60 | 543 526 1.03 076 | 6837 | >
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Table B.3. Los Angeles woDir motions (Tr= 2475 years).

RSN | Earthquake name Year Station name M Ryyp (km) (‘I;s/?) Scale Factor | PGA (g) | PGV (cm/s)
162 | Imperial Valley-06 | 127 | Calexico Fire Station 6.53 10.45 231 6.00 0.24 2131
1208 | Chi-Chi, Taiwan | 297 CHY046 7.62 24.1 442 4.46 0.17 22.13
1104 | Kobe, Japan 1995 Fukushima 6.9 17.85 256 2.28 0.19 34.17
5265 | Chuetsu-oki 2007 NIGO19 6.8 23.36 372 6.00 0.41 34.12
164 | Imperial Valley-06 | 1°7° Cerro Prieto 6.53 15.19 472 5.96 0.17 15.88
1158 | Kocaeli, Turkey | 1777 Duzce 7.51 1537 282 1.98 0.32 56.11
5829 | El Mayor-Cucapah | 2010 RIITO 7.2 13.71 242 2.99 0.39 46.36
4740 | Wenchuan, China 2008 Maoxiandiban 7.9 22.31 638 6.00 0.33 24.74
1198 | Chi-Chi, Taiwan | 1°%° CHY029 7.62 10.96 545 3.67 0.27 36.09
1116 | Kobe, Japan 1995 Shin-Osaka 6.9 19.15 256 3.14 0.23 27.11
286 | Irpinia, Italy-01 | 1280 Bisaccia 6.9 21.26 496 5.73 0.08 18.54
4742 | Wenchuan, China | 2908 Maoxiannanxin 7.9 21.85 430 5.02 0.40 27.25
988 | Northridge-01 o] LA Ceggghcny CC 6.69 23.41 278 >14 0.23 21.98
1499 | Chi-Chi, Taiwan | 1797 TCU060 7.62 8.51 375 3.48 0.15 41.86
5818 Twate 2008 Kurihara City 6.9 12.85 512 2.94 0.59 48.58
4863 | Chuetsu-oki 2007 Nagaoka 6.8 16.27 514 2.52 0.31 32.67
4798 Wenchuan, China 2008 Anxiantashui 7.9 0.05 376 3.36 0.25 31.03
1006 | Northridge-01 1994 | [ A _UCLA Grounds 6.69 22.49 398 4.99 0.39 21.99
4391 Chuetsu-oki 27 MitsukeTIf)avleS i A 6.8 20.33 274 4.12 0.13 20.10
1494 | Chi-Chi, Taiwan | 1797 TCU054 7.62 5.08 461 3.03 0.17 45.15

126




Table B.4. Los Angeles wDir motions (Tr= 2475 years).

RSN | Earthquake name Year Station name M (l:{;::) (\1;5/3;)) FSaccatl(fr 1)(E)A (lc)rcn;/\s]) o
767 Loma Pricta 1989 Gilroy Array #3 6.93 12.82 350 3.72 0.50 | 43.52 2.64
723 | Superstition Hills-02 | 1987 Parachute Test Site 6.54 0.95 349 1.60 0.43 | 102.22 2.39

68 San Fernando 1971 | LA - Hollywood Stor FF | 6.61 22.77 316 6.00 022 | 2047 -

1104 Kobe, Japan 1995 Fukushima 6.9 17.85 256 2.41 0.19 | 34.17 -
1086 Northridge-01 1994 | Sylmar - Olive View Med FF | 6.69 53 441 1.40 0.64 | 94.53 2.44
1114 Kobe, Japan 1995 'Port Island (0 m)' 6.9 3.31 198 1.40 032 | 73.09 2.83
1182 | Chi-Chi, Taiwan | 1999 CHY006 7.62 9.76 438 1.98 036 | 55.82 2.57
1100 Kobe, Japan 1995 Abeno 6.9 24.85 256 6.00 021 | 21.15 -
982 |  Northridge-01 1994 N dﬁ?j;‘;g&%?ﬁ?ﬁng 6.69 | 543 373 105 | 052 | 97.62 3.16
1013 Northridge-01 1994 LA Dam 6.69 5.92 629 1.96 035 | 67.13 1.62
162 | Imperial Valley-06 | 1979 | Calexico Fire Station | 6.53 10.45 231 6.00 024 | 2131 -

4207 Niigata, Japan 2004 NIGO17 6.63 12.81 274 6.00 0.43 | 41.13 -
828 | Cape Mendocino | 1992 Petrolia 7.01 8.18 422 1.56 0.62 | 71.56 3.00

2114 Denali, Alaska 2002 | TAPS Pump Station #10 | 7.9 2.74 329 1.59 032 | 94.23 3.16

4228 Niigata, Japan 2004 NIGH11 6.63 8.93 375 3.20 0.51 | 48.15 1.80
171 | Imperial Valley-06 | 270 | FI Ce(f:etg‘; Al\fr‘j;la“d 6.53 0.07 265 210 | 031 | 83.52 3.42
1044 Northridge-01 1994 Newhall - Fire Sta 6.69 5.92 269 1.35 0.65 | 86.67 1.37
983 |  Northridge-01 1994 é‘l‘f;‘;;fﬁﬁﬁ; 669 | 543 526 155 | 076 | 6837 3.54
1063 Northridge-01 1994 | Rinaldi Receiving Sta | 6.69 6.5 282 1.09 0.71 | 114.40 1.25
181 | Imperial Valley-06 | 1979 El Centro Array #6 6.53 1.35 203 1.87 0.45 | 87.82 3.77
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Table B.5. Los Angeles wDir (SDCmod) motions (Tr= 1000 years).

V3o Scale PGA PGV Tp (s)
RSN | Earthquake name Year Station name M| Reyp (km) (m/s) Factor | (g) (cm/s)
723 S“persngz"“ Hills- 1 1987 | b rachute Test Site 6.54 | 095 349 111 | 043 | 10222 | 240
162 Imperial Valley-06 | 1979 Calexico Fire Station 6.53 10.45 231 4.88 0.24 21.309 -
1013 Northridge-01 | 1994 LA Dam 6.69 5.92 629 136 | 035 | 67.133 1.62
68 San Fernando | 1971 | LA - Hollywood Stor FF | 6.61 | 22.77 316 452 | 022 | 20472 -
1182 | Chi-Chi, Taiwan | 1999 CHY006 7.62 9.76 438 137 | 036 | 55.819 2.5
1045 Northridge-01 | 1094 | Newhall - Vglco Canyon | ¢ 69 5.48 286 1.07 | 036 | 99.734 | 298
767 Loma Prieta 1989 Gilroy Array #3 6.93 12.82 350 2.58 0.50 | 43.521 2.64
1100 Kobe, Japan 1995 Abeno 6.9 24.85 256 4.48 0.2 21.151 -
983 | Northridge-01 | 0% Jensen Filter Plant 6.69 | 543 526 107 | 076 | 68372 | 3.4
Generator Building
754 Loma Prieta 1989 Coyote Lake Dam 6.93 20.8 295 498 | 0.16 | 19.181 -
(Downst)
2114 Denali, Alaska 2002 | TAPS Pump Station #10 7.9 2.74 329 1.11 0.32 94.23 3.16
495 Nahanni, Canada | 1985 Site 1 6.76 9.6 605 2.25 1.16 | 40.405 -
1086 Northridge-01 | 1204 | Sylmar- 0111:? ViewMed | ¢ ¢o 53 441 097 | 0.64 | 94.527 2.44
1114 Kobe, Japan 1995 Port Island (0 m) 6.9 3.31 198 097 | 032 | 73.092 2.83
) 1994 'Jensen Filter Plant
982 Northridge-01 Administrative Building' | 0 5.43 373 073 | 052 | 97.617 3.16
171 | Imperial Valley-06 | 1070 | I Centro- Meloland 6.53 0.07 265 147 | 03 | 83519 3.42
Geot. Array
1044 Northridge-01 | 1994 Newhall - Fire Sta 6.69 5.92 269 093 | 0.65 | 86.674 1.37
4228 Niigata, Japan | 2004 NIGH11 6.63 8.93 375 221 | 051 | 48.15 1.80
181 | Imperial Valley-06 | 1979 El Centro Array #6 6.53 1.35 203 1.30 0.45 | 87.818 3.77
1119 Kobe, Japan 1995 Takarazuka 6.9 0.27 312 0.95 |0.654 | 72.739 1.81
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Table B.6. Los Angeles wDir (SDCmod) motions (Tr= 2475 years).

Year Rruwp Vs3o Scale PGA PGV Ty ()
RSN Farthquake name Station name M (km) (m/s) Factor (2) (cm/s)
723 | Superstition Hills-02 | 1987 | Parachute Test Site | 6.54 | 0.95 349 1.66 0.43 102.22 2.39
767 Loma Prieta 1989 Gilroy Array #3 6.93 12.82 350 3.85 0.50 43.52 2.64
68 San Fernando 1971 | LA- HOHFYIXVOOd Stor | 661 | 2277 | 316 6.00 0.22 20.47 -
983 Northridge-01 1994 | Jensen Filter Plant | ¢ oo | 543 | 556 160 | 076 | 6837 3.54
Generator Building
1114 Kobe, Japan 1995 Port Island (0 m) 6.9 3.31 198 1.45 0.32 73.09 2.83
2114 | Denali, Alaska | 2002 | TAPS Fump Station |\ 59 | 574 | 329 165 | 032 | 9423 3.16
1104 Kobe, Japan 1995 Fukushima 6.9 17.85 256 2.50 0.19 34.17 -
1086 Northridge-01 1994 Sylma;/ie(;lgf View | 669 | 53 441 1.45 0.64 94.53 2.44
1100 Kobe, Japan 1995 Abeno 6.9 | 2485 256 6.00 0.21 21.15 -
1013 Northridge-01 1994 LA Dam 6.69 | 592 629 2.03 0.35 67.13 1.62
1045 Northridge-01 1994 1 Newhall - WPico | ¢ o9 | 549 286 1.60 0.36 99.73 2.98
Canyon Rd.
495 Nahanni, Canada 1985 Site 1 6.76 9.6 605 3.36 1.16 40.41 -
721 | Superstition Hills-02 | 1987 | Fl Cent(r:‘;rﬁnp' Co 1654 | 182 192 3.74 0.26 43.67 -
1182 Chi-Chi, Taiwan 1999 CHY006 7.62 9.76 438 2.04 0.36 55.82 2.57
171 | Tmperial Valley-06 | 1079 | El Centro - Meloland | (551 57 | 95 219 | 031 83.52 3.42
Geot. Array
1044 Northridge-01 1994 | Newhall - Fire Sta | 6.69 5.92 269 1.39 0.65 86.67 1.37
4228 Niigata, Japan 2004 NIGH11 6.63 | 8.93 375 3.30 0.51 48.15 1.80
292 Irpinia, Italy-01 1980 Sturno (STN) 6.9 10.84 382 3.03 0.28 52.80 3.27
1119 Kobe, Japan 1995 Takarazuka 6.9 0.27 312 1.42 0.65 72.74 1.81
181 Imperial Valley-06 | 1979 | ElCentro Array #6 | 6.53 1.35 203 1.94 0.45 87.82 3.77
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Table B.7. Oakland woDir motions (Tr= 1000 years).

Scale
RSN Earthquake name Year Station name M Ry (km) | Vszg (m/s) Factor PGA (g) | PGV (cm/s)
162 | Imperial Valley-06 | 1979 | Calexico Fire Station | 6.53 10.45 231 6.00 0.24 2131
1208 |  Chi-Chi, Taiwan | 1999 CHY046 7.62 24.1 442 4.28 0.17 22.13
4742 | Wenchuan, China | 2008 Maoxiannanxin 7.9 21.85 430 4.82 0.40 2725
1198 |  Chi-Chi, Taiwan | 1999 CHY029 7.62 10.96 545 3.53 0.27 36.09
4740 | Wenchuan, China | 2008 Maoxiandiban 7.9 2231 638 6.00 0.33 24.74
2007 Mitsuke Kazuiti Arita 274 3.92
4859 Chuetsu-oki Town 6.8 20.33 : 0.13 20.10
4798 | Wenchuan, China | 2008 Anxiantashui 7.9 0.05 376 3.21 0.25 31.03
5829 | ElMayor-Cucapah | 2010 RIITO 7.2 13.71 242 2.88 0.39 46.36
1158 Kocaeli, Turkey 1999 Duzce 751 15.37 282 1.88 0.32 56.11
5265 Chuetsu-oki 2007 NIGO19 6.8 23.36 372 6.00 0.41 34.12
1494 |  Chi-Chi, Taiwan | 1999 TCU054 7.62 5.8 461 2.89 0.17 45.15
763 Loma Prieta 1989 | Gilroy - Gavilan Coll. | 6.93 9.96 730 6.00 0.34 27.37
5818 Iwate 2008 Kurihara City 6.9 12.85 512 2.80 0.59 48.58
164 | Imperial Valley-06 | 1979 Cerro Prieto 6.53 15.19 472 5.68 0.17 15.88
4882 Chuetsu-oki 2007 Ojiya City 6.8 23.44 430 6.00 0.29 23.27
495 Nahanni, Canada | 1°%° Site 1 6.76 9.6 605 2.92 1.16 40.41
286 Irpinia, Italy-01 1980 Bisaccia 6.9 21.26 496 5.46 0.08 18.54
1971 LA - Hollywood Stor 316 5.90
68 San Fernando FF 6.61 22.77 ) 0.22 20.47
1006 Northridge-01 1994 | A -UCLA Grounds | 6.69 22.49 398 4.76 0.39 21.99
1994 | LA - Century City CC 278 4.90
988 Northridge-01 North 6.69 23.41 ' 0.23 21.98
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Table B.8. Oakland wDir motions (Tr= 1000 years).

RSN Farthquake name Year Station name M (ﬁ;p) (‘1;5/3;)) lf:cil(fr P((g;;A (Ic)r(li/‘s]) O
723 | Superstition Hills-02 | 1987 Parachute Test Site 6.54 | 0.95 349 1.54 | 043 | 10222 | 2.39
68 San Fernando 1971 | LA - Hollywood Stor FF 6.61 | 22.77 316 6.00 0.22 | 2047 -
767 Loma Prieta 1989 Gilroy Array #3 6.93 | 12.82 350 3.57 0.50 | 43.52 | 2.64
983 Northridge-01 1994 éi‘ii‘;tiftg;ﬁfg 6.69 | 5.43 526 149 | 076 | 6837 | 3.54
1100 Kobe, Japan 1995 Abeno 6.9 24.85 256 6.00 021 | 21.15 -
982 Northridge-01 1994 A dﬁﬁ;ﬁ?fi?f;?gmg 6.69 | 5.43 373 1.00 | 052 | 9762 | 3.16
162 Imperial Valley-06 | 1979 Calexico Fire Station 6.53 | 10.45 231 6.00 024 | 2131 -
2114 Denali, Alaska 2002 | TAPS Pump Station #10 7.9 2.74 329 1.53 032 | 9423 | 3.16
495 Nahanni, Canada 1985 Site 1 6.76 9.6 605 3.12 1.16 | 40.41 -
721 | Superstition Hills-02 | 1987 | EI Centro Imp. Co. Cent 6.54 18.2 192 3.48 026 | 43.67 -
1182 Chi-Chi, Taiwan 1999 CHY006 7.62 9.76 438 1.90 036 | 55.82 | 2.57
292 Irpinia, Italy-01 1980 Sturno (STN) 6.9 10.84 382 2.81 028 | 52.80 | 3.27
1044 Northridge-01 1994 Newhall - Fire Sta 6.69 5.92 269 1.29 0.65 | 86.67 | 1.37
1114 Kobe, Japan 1995 Port Island (0 m) 6.9 3.31 198 1.34 032 | 73.09 | 2.83
181 Imperial Valley-06 | 1979 El Centro Array #6 6.53 1.35 203 1.80 | 045 | 87.82 | 3.77
4228 Niigata, Japan 2004 NIGH11 6.63 8.93 375 3.07 0.51 | 48.15 | 1.80
1013 Northridge-01 1994 LA Dam 6.69 5.92 629 1.88 035 | 67.13 | 1.62
3746 Cape Mendocino 1992 CenterVi”eFEgaCh’ Naval 561 | 1831 459 232 | 045 | 5040 | 1.97
828 Cape Mendocino 1992 Petrolia 7.01 8.18 422 1.48 0.62 | 71.56 | 3.00
171 Imperial Valley-06 | 172 | ElCentro- Al\frzl;land Geot- | 653 | 0.07 265 204 | 031 | 83.52 | 3.42
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Table B.9. Oakland wDir (SDCod) motions (Tr= 1000 years).

RSN Farthquake name Year Station name M (ﬁ;:lp) (‘1:1S/3s0) Fsaccatl:r P((g};A (Ic)r(li/‘s]) O
723 | Superstition Hills-02 | 1987 Parachute Test Site 6.54 0.95 349 1.54 0.43 | 102.22 | 2.39
68 San Fernando 1971 LA - Hollywood Stor FF 6.61 | 22.77 316 6.00 022 | 2047 -
767 Loma Prieta 1989 Gilroy Array #3 6.93 12.82 350 3.57 0.50 | 43.52 | 2.64
983 Northridge-01 1994 (J}Z?ls;l;tzftgfjiﬁtg 669 | 543 | 526 149 | 076 | 6837 | 3.54
1100 Kobe, Japan 1995 Abeno 6.9 24.85 256 6.00 021 | 21.15 -
982 Northridge-01 1994 A dﬁ?ﬁiﬁ?rf&?&?gmg 6.69 | 543 373 1.00 | 052 | 97.62 | 3.16
162 | Imperial Valley-06 | 1979 Calexico Fire Station 6.53 10.45 231 6.00 024 | 2131 -
2114 Denali, Alaska 2002 TAPS Pump Station #10 7.9 2.74 329 1.53 032 | 9423 | 3.16
495 Nahanni, Canada 1985 Site 1 6.76 9.6 605 3.12 1.16 | 40.41 -
721 | Superstition Hills-02 | 1987 El Centro Imp. Co. Cent 6.54 18.2 192 3.48 026 | 43.67 -
1182 Chi-Chi, Taiwan 1999 CHY006 7.62 9.76 438 1.90 036 | 55.82 | 2.57
292 Irpinia, Ttaly-01 1980 Sturno (STN) 6.9 10.84 382 2.81 028 | 52.80 | 3.27
1044 Northridge-01 1994 Newhall - Fire Sta 6.69 5.92 269 1.29 0.65 | 86.67 | 1.37
1114 Kobe, Japan 1995 Port Island (0 m) 6.9 3.31 198 1.34 032 | 73.09 | 2.83
181 Imperial Valley-06 | 1979 El Centro Array #6 6.53 1.35 203 1.80 045 | 87.82 | 3.77
4228 Niigata, Japan 2004 NIGH11 6.63 8.93 375 3.07 0.51 | 48.15 | 1.80
1013 Northridge-01 1994 LA Dam 6.69 5.92 629 1.88 035 | 67.13 | 1.62
3746 | Cape Mendocino | 1002 CemervmeFEgaCh’ Naval 1501 | 1831 459 232 | 045 | 5040 | 1.97
828 Cape Mendocino 1992 Petrolia 7.01 8.18 422 1.48 0.62 | 71.56 | 3.00
171 | TImperial Valley-06 | 1077 | El Centro-Meloland Geot. | ¢ 53 1 07 | 565 204 | 031 | 8352 | 3.42

Array
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