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Executive Summary

Bridge engineers in governmental transportation agencies need to regularly forecast the
deterioration condition of the bridges under their supervision in order to develop bridge
maintenance plans, and even more importantly, identify anomalous bridge deterioration that
can result in bridge accidents. Since 1970’s, several U.S. Acts have mandated all local and state
transportation agencies across the nation to perform regular inspections of the bridges (and
culverts) in the regions under their jurisdiction. These inspections have generated valuable
historical databases of bridge performance data, which have remained considerably
underutilized to date. In this project, with the advent of machine learning and data mining
methods, we envisioned data-driven solutions that could derive valuable hidden knowledge
from these databases, the knowledge that could be effectively utilized for enhanced bridge
management. Toward this end, with this study we have developed a hybrid deep learning
methodology that combines advanced data-driven artificial intelligence (Al) models (namely,
deep learning model) with traditional mechanistic models (namely, physics-based models) to
accelerate model learning and improved performance that can leverage the existing historical
bridge (and culvert) performance data, as well as weather data and traffic data, to enable (1)
accurate bridge deterioration forecasting (i.e., predictive analytics), and (2) An interactive
bridge anomaly detection framework that identifies abnormal deterioration patterns and
potential inspection or reporting inconsistencies to enable early detection of bridge (and
culvert) performance anomalies. With extensive experimental evaluation using multi-modal
real datasets, including bridge performance data, traffic data, and weather data for all bridges
in Colorado, we have demonstrated that a selection of our proposed models significantly

outperforms existing models for the deterioration forecasting.

Accordingly, we have turned the deep learning models along with their physics-guided
extension developed under this project into an software system dubbed Intelligent Bridge
Management (i-BM), an advanced, data-driven artificial intelligence (Al) tool that can facilitate
effective bridge management for Colorado Department of Transportation (CDOT) bridge

engineers. Unlike existing bridge management tools such as BrM (i.e., the AASHTO sponsored



Bridge Management software) used by most of the bridge engineers across the nation, to the
best of our knowledge, our proposed tool is the first to make accurate deterioration
forecasts/predictions based on historical data, in a similar way weather forecasts are
generated. This tool is developed as a standalone, web-based, and user-friendly software

application.

Implementation Statement

We have developed and delivered a tool for bridge deterioration forecasting and bridge
anomaly detection that can make accurate deterioration forecasts/predictions based on
historical data. We have demonstrated accuracy of our proposed advanced physics-guided
data-driven Al models (namely, physics-guided deep learning models) that enable this tool via
extensive and rigorous experimental evaluation using multi-modal real datasets including
bridge performance data, traffic data and weather data for all bridges in Colorado, and shown
that a selection of our proposed models significantly outperform existing models for bridge

deterioration forecasting and bridge anomaly detection.

We recommend the adoption of the developed tool by bridge engineers in state and
local transportation agencies to enable further accurate and enhanced bridge deterioration
forecasting, which in turn can improve the ability of these agencies for more cost-effective and

efficient bridge management and maintenance planning.
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Chapter 1. Introduction

Bridges deteriorate with time and use. The deterioration process is affected by several
factors, such as materials, structural design and behavior, daily traffic, freeze and thaw cycles,
climate, pollution, and temperature variation [24-26]. After a certain period of time has
elapsed, the deterioration processes accelerate, and in a relatively short time interval, the

components can lose the capacity to carry the loads they were designed to support.

To address this national issue, several US Acts [27] mandate the state and local
governmental agencies (including cities, state transportation agencies, etc.) to perform regular
bridge inspections. These Acts define the requirements, periodicity, and procedures for such
inspections in the US. Inspections are required to assess the extension, implications, and
current state of deterioration processes that may exist, and they need to be performed at
regular time intervals, typically every 2 years. A bridge report is generated after each
inspection. All bridge reports collect and offer specific data about the health of the inspected
bridge, including condition rating, structure identification, year built, average daily traffic, and
average daily truck traffic. For example, condition ratings (aka condition indexes) are
guantitative descriptors of the state of structural parts that can be used in the assessment for
the structure's maintenance [26, 27]. By associating a deteriorated state with a number, instead
of using a qualitative description of the state, much more flexibility can be achieved in
monitoring groups of similar structures [28-33]. The adoption of condition ratings in the
evaluation of structures allows consistency and uniformity, making it possible to compare

structural performance, establish priorities, and also prevent failures and accidents.

The aforementioned inspections across the nation, which have been conducted since
the 1970s (including our region), have generated valuable historic databases of bridge data
based in local and state governmental agencies. While these agencies currently use these
inspections to prevent failure and to administrate the national bridge network by setting
priorities and establishing criteria to allocate available resources to the structures in the most
critical conditions, we believe these databases are heavily underutilized. In particular, with the

advent of machine learning and data mining methods, we envision data-driven solutions that



can derive much more valuable hidden knowledge that can be utilized for enhanced bridge

management.

While in the past, various data-driven deterioration models, including Bayesian models,
Probit models, and Markov chains, were proposed in the literature to model bridge
deterioration [24, 25, 34-38], these models either suffer from low accuracy or are too complex
to be applicable. Moreover, they only address the problem of deterioration forecasting.
Recently, deep learning has been shown to significantly outperform other analytical modeling
methodologies in a variety of application domains, such as computational biology, Electronic
Health Record (EHR) data analysis, activity detection, scene labeling, image captioning, and
object detection [39-47]. In the past, we have introduced and deployed various deep learning-
based models, e.g., for sleep stage classification using brain signals [48, 49], mobility monitoring
[50, 51], and activity classification [52]. In our previous study, we proposed to develop deep
learning models for enhanced bridge management. In particular, we focused on the two
problems of bridge subtyping (descriptive analysis) and data-driven bridge deterioration

forecasting (predictive analysis) [53].

Traditionally, many researchers have introduced mechanistic physics-based methods,
such as simulation-based [54] and finite element modeling, to explore and predict signs of
deterioration such as corrosion, fatigue, and cracking [55]. Because data-driven models
overlook physics-based mechanisms and rely solely on data patterns, while physics-based
models disregard real historical data and depend only on equations and parameters, a
persistent gap remains in deterioration forecasting. In many other domains, in order to bridge
the similar research gap, researchers have introduced the so-called physics-informed neural
networks (PINN) [56-58], which integrate physics-based models with Al-driven data-driven
models to facilitate model learning from the valuable insights of both modeling approaches. In
this study, we extend our earlier work by developing a full-fledged, data-driven software
platform that integrates advanced Al models for bridge monitoring and decision support in a
user-friendly graphical user interface with enhanced operational features. This platform
incorporates previously developed deep learning models as well as additional hybrid physics-

guided models that embed physics-based knowledge into the data-driven models. Moreover,

10



anomalous data points can hamper model training and negatively affect model performance.
To address this issue, we have designed an anomaly detection framework as part of this study
to identify and manage anomalies in real-time bridge data. Effective solutions for these

problems will significantly advance the state-of-the-art in bridge management.
Below, we summarize three contributions of this research project:

1.Intelligent Bridge Management (i-BM) System: We have undertaken a full-phased
software development effort to design and implement the Intelligent Bridge
Management (i-BM) system—an integrated, user-friendly platform that unifies data
management, forecasting, and anomaly detection modules. The i-BM software serves as
an operational environment where bridge engineers can visualize, analyze, and manage

bridge performance data through interactive, data-driven, and physics-informed tools.

2.Physics-Guided Bridge Deterioration Forecasting Model for Predictive Analysis: With this
advanced deterioration forecasting model, one can perform predictive analysis of
bridges through accurate forecasting of quantitative descriptors of structural
deterioration (e.g., condition ratings) by integrating both data-driven learning and
physics-based principles. The incorporation of physics-informed constraints enables the
model to capture real-world deterioration mechanisms more accurately, ensuring
parameter-consistent and interpretable predictions. Accurate prediction of these
descriptors is not only crucial for establishing maintenance priorities and performing
proactive bridge monitoring with optimized resource allocation, but also, more

importantly, essential for failure prevention.

3.Anomaly Detection Algorithm for Data Quality and Predictive Diagnostics: With this
novel algorithm, one can perform automated detection of anomalous bridge
performance, addressing issues that may lead to unexpected failures or accidents. This
tool enables diagnostic and predictive analysis of bridge performance data by (1)
automatically identifying anomalous or inconsistent patterns in historical and real-time
bridge condition data abnormal deterioration trends; (2) validating and refining anomaly

labels through an interactive active learning interface, where users can visually review
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and confirm anomalies; and (3) continuously retraining the model using these user-
verified samples to enhance its detection capabilities across new datasets and use cases.
This iterative learning process enables the users to perform predictive analysis of the
bridge performance by accurate prediction of quantitative descriptors for the structure
deterioration state (e.g., condition ratings) while proactively identifying and flagging
possible anomalies in the deterioration pattern of the bridge structure in advance.
Accurate prediction of such anomalies is essential not only for improving the quality and
reliability of the data but also for failure prevention by supporting early detection of
potential safety issues (e.g., bridge accidents), facilitating timely maintenance, and

informed bridge management decisions.

Note that the second and third algorithmic contributions are also incorporated in i-BM to offer

all aforementioned capabilities under a unified software platform.

I-BM allows for enhanced bridge management by improving depth, accuracy, and
efficiency/speed in descriptive, diagnostic, and predictive analysis of the historic bridge data
reported by bridge inspectors. In turn, this can lead to more effective resource allocation for

bridge monitoring, maintenance, and construction.

In the remainder of this report, Section 2 introduces the Intelligent Bridge Management
(i-BM) system, describing its overall architecture, software modules, and underlying
technologies. It also details the integrated data sources and the functionalities of each major
component, including the Forecasting and Anomaly Detection modules. Thereafter, Section 3
presents the Physics-Guided Bridge Deterioration Forecasting approach, including related work,
methodological framework, and model evaluation. Section 4 focuses on the Anomaly Detection
Framework for Bridge Deterioration, reviewing relevant literature and explaining the underlying
methods and implementation strategy, respectively. Finally, in Section 5, we will conclude and

briefly discuss future directions for this research and system enhancement.
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Chapter 2. Intelligent Bridge Management (i-BM) System

The Intelligent Bridge Management (i-BM) system is a user-friendly, data-driven web-
based software platform equipped with a graphical user interface and advanced analytical
capabilities. It is designed to assist CDOT bridge engineers in making accurate, data-informed
predictions of bridge and culvert deterioration and to support proactive maintenance planning.
The i-BM system integrates multiple data sources—such as the National Bridge Inventory (NBI)
and weather datasets—along with several artificial intelligence (Al) modules, including baseline
deep learning forecasting models, physics-guided forecasting models, and anomaly detection
frameworks, into a unified operational environment for intelligent decision-making. Its
interconnected architecture enables seamless communication among components, ensuring
efficient data processing, model execution, and visualization through an interactive interface.
This section presents the overall system design, architecture, software modules, and core
technologies that comprehensively enable the i-BM system’s intelligent bridge management
capabilities. The subsequent sections—2.1 (System Architecture), 2.2 (Data Module), 2.3
(Forecast Module), and 2.4 (Anomaly Detection Module)—describe these components and

their workflows in detail.

2.1 System Architecture

The Intelligent Bridge Management (i-BM) system follows a modular, web-based, cloud-
hosted architecture that integrates data management, model development, model registry, and
deployment components within a uniform structure. The system is designed for scalability,
interoperability, and efficient execution of Al-driven bridge management tasks, enabling
smooth interaction between server-side data processing and client-side visualization. The
overall system architecture of the i-BM platform is illustrated in Figure 1, which depicts the
interaction among key components and the data flow across different layers—from data
ingestion and preprocessing to model training, registry, deployment, and visualization through

the user interface.
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Figure 1. Overall Architecture of the Intelligent Bridge Management (i-BM) System

2.1.1 Server-Side Architecture

The i-BM backend is hosted on an Amazon EC2 instance within the Colorado
Department of Transportation (CDOT) cloud infrastructure. The system adopts microservices-
based architecture, where multiple backend services—such as Data Management, Forecasting,
Anomaly Detection, Family Generation, and Model Registry—are deployed as independent
Docker containers or system-level services. This containerized structure ensures modularity,
scalability, and ease of maintenance across the platform. All services are integrated under a
single secure public interface, accessible via https://intelligencebmtool.codot.gov, which is
routed through an AWS Application Load Balancer (ALB). The ALB dynamically manages web
traffic across services, ensuring high availability, fault tolerance, and optimized performance.
This deployment strategy allows each service to be updated or scaled independently without

system downtime, providing a robust and flexible operational environment for intelligent
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bridge management. The different layers of the architecture are described in detail in the

following subsections.

2.1.1.1 Data Source Layer

The system integrates data from multiple authoritative sources, including the National
Bridge Inventory (NBI), the National Oceanic and Atmospheric Administration (NOAA) Weather
Database, and CDOT’s repair datasets. These serve as foundational inputs for both predictive

and diagnostic modeling.

2.1.1.2 Data Management Layer

The Data Management Layer handles data ingestion, preprocessing, transformation, and
storage. Raw datasets from multiple sources introduced in the previous section are collected,
cleaned, and standardized through automated ETL (Extract, Transform, Load) pipelines. The
system employs a TimescaleDB (PostgreSQL-based) time-series database to manage and query
temporal datasets—such as bridge condition histories, traffic volumes, and weather records,
while Microsoft SQL Server is used to store static datasets, including bridge inventory and
structural attributes. This dual-database configuration enables efficient handling of both
dynamic and static data, ensuring high performance and data consistency across the forecasting

and anomaly detection modules.

2.1.1.3 Model Development Layer
Three major Al components are implemented in this layer:

eBridge Deterioration Forecasting — incorporates both baseline deep learning and
physics-guided models to predict bridge and culvert condition deterioration over
time.

eBridge Family Generation — currently implemented using a clustering algorithm
that groups newly added bridges with similar existing structures. This facilitates
smoother forecasting for bridges with limited historical data, providing
foundational support for future enhancement into a full descriptive analytics

module.
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eAnomaly Detection — identifies and flags abnormal deterioration trends or data
inconsistencies using an interactive active learning framework to improve data

quality and model reliability.

2.1.1.4 Model Registry Layer

Trained models and their metadata are tracked and version-controlled using MLflow,
which serves as the centralized Model Registry for managing the lifecycle of each experiment
and trained models. The registry uses a Microsoft SQL Server database as the backend store to
maintain model configurations, parameters, metrics, and version history, while model artifacts
are saved locally within the /mlruns directory on the EC2 instance. This configuration ensures
reproducibility, transparency, and efficient management of model versions. Models can be
smoothly loaded, registered, retrieved, and deployed within the i-BM system for real-time

forecasting and anomaly detection tasks.

2.1.1.5 Deployment Layer

The Deployment Layer manages the delivery and operation of all i-BM services through
a hybrid environment hosted on an Amazon EC2 instance. Core analytical services—such as
data management, forecasting, family generation, and anomaly detection—run as persistent
background processes managed via system-level services, while supporting services such as
databases and authentication are containerized using Docker to allow modular updates and
isolated operation. The frontend (React-based) interface is built and served using npm, while
the backend services (Node.js/Express and Python APIs) run continuously on the same EC2
instance. All web traffic is routed through an AWS Application Load Balancer (ALB), which
performs path-based routing to direct user requests to the corresponding service. This setup
ensures reliable load distribution, high availability, and flawless integration between the
analytical backend and the user-facing dashboard, supporting continuous and uninterrupted

operation of the i-BM platform.

2.1.2 Client-Side Architecture

The client interface consists of a web-based interactive visualization dashboards

developed using React.js, allowing CDOT bridge engineers to generate and access analysis
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results, visualize model outputs, and interact with bridge data in real time. The web interface
communicates securely with the backend services through a Flask-based API layer, ensuring

efficient data exchange between the analytical engine and the user interface.

2.1.3 Technological Stack

The i-BM system is developed using a robust stack of technologies, including Python,
Pandas, TensorFlow, Scikit-learn, React.js, Flask, MLflow, TimescaleDB, and Microsoft SQL
Server. Development and experimentation are supported through Jupyter Notebook, Visual
Studio Code, and PyCharm, while Git and Azure DevOps are used for version control,
collaborative development, and codebase management. Deployment is managed on an
Amazon EC2 instance using Docker-based containerization and path-based routing through an

AWS Application Load Balancer (ALB).

2.2 Data Module

The Data Module in the Intelligent Bridge Management (i-BM) system serves as the
foundation for all data-driven operations, enabling the import, organization, exploration, and
export of bridge-related datasets. It provides a combined interface that connects multiple data
sources, backend databases, and analytical modules, ensuring smooth data exchange across the

i-BM platform. Additional details are discussed in the following subsections.

2.2.1 Data Sources

The i-BM platform integrates multiple authoritative data sources that provide the
foundation for its analytical and predictive capabilities. These datasets inclusively capture

structural, traffic, and environmental characteristics of bridges and culverts across Colorado.

eNational Bridge Inventory (NBI):
For the bridge evaluation and traffic data, we utilized publicly available data from the
National Bridge Inventory (NBI) [1] database. This dataset contains national bridge
inspection/evaluation data collected over the years 1992-current for different bridge
structures all over the USA. Figure 2 illustrates a map of bridges within Colorado. We

extracted 32 primary-level features - Year Built, ADT, Traffic Lanes on, Traffic Lanes
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Under, Design Load, Structure Type, Main Unit Spans, Approach Unit Spans, Horizontal
Clearance Measurement, Maximum Span Length Measurement, Structure Length
Measurement, Roadway Width Measurement, Deck Width Measurement, Deck
Condition Rating, Superstructure Condition Rating, Substructure Condition Rating,
Culvert Condition Rating, Channel Condition Rating, Operating Rating, Inventory Rating,
Structural Evaluation, Deck Geometry Evaluation, Under Clearance Evaluation, Posting
Evaluation, Waterway Evaluation, Approach Road Evaluation, Traffic Direction, Deck
Structure Type, Surface Type, Deck Protection, Percent ADT Truck, Future ADT - detailed
in Table 1, from this dataset with the help of a bridge engineering expert which served

as inputs into our model for each year’s worth of evaluations.
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Figure 2. Map of Bridges (Blue Markers) Within Colorado State

Table 1. NBI Bridge and Culvert Features (Gold Indicates Traffic Input Data, Sky Blue Indicates Bridge
Evaluation Input Data, And Blue with Red Border Indicates Bridge Condition Rating Input/Output Data)

NBI Item i Target Forecasting
Feature Description Data Type
No. P P Condition
Vear Built 027 The construction year of the Datetime Deck, Superstructure,
structure Substructure, Culvert
ADT 029 Aver.‘age daily traffic volume of Number Deck, Superstructure,
a bridge Substructure, Culvert
Traffic Lanes on 028A Ntfmber of traffic lanes on a Number Deck, Superstructure,
bridge structure Substructure, Culvert
Traffic Lanes Under | 0288 Ntfmber of traffic lanes under a Number Deck, Superstructure,
bridge structure Substructure, Culvert
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The live load for which the

Deck, Superstructure,

Design Load 031 . Number
: structure was designed Substructure, Culvert
Type of structural design of the Deck, Superstructure,
Structure Type 043B P . & Number P
construction Substructure, Culvert
. . Number of spans in the main Deck, Superstructure,
Main Unit Spans 045 . 2 Number .
unit Substructure, Culvert
. Number of approach spans in Deck, Superstructure
Appr Unit Spans 046 ; . Number ! !
PP P the major bridge Substructure, Culvert
Horizontal . .
Largest available horizontal Deck, Superstructure,
Clearance 047 . Number
clearance for wide loads Substructure, Culvert
Measurement
Maximum Span Deck, Superstructure
Length 048 Length of the maximum span Number »2UP !
Substructure, Culvert
Measurement
Structure Length Deck, Superstructure,
£ 049 Total length of the structure Number P
Measurement Substructure, Culvert
Roadway Width Distance between curbs or rails Deck, Superstructure,
051 Number
Measurement on the structure roadway Substructure, Culvert
Deck Width Deck rstr r
el 052 Out-to-out width of the deck Number eck, Superstructure,
Measurement Substructure
Deck Condition Overall condition rating of the Deck, Superstructure,
. 058 . Number
Rating bridge deck (1 to 9) Substructure
Superstructure Physical condition of all Deck, Superstructure,
. . 059 Number
Condition Rating structural members (1 to 9) Substructure
al — -
Substructure Aneies] GeliEm G PCE, Deck, Superstructure,
L. . 060 abutments, and other elements | Number
Condition Rating Substructure
(1to9)
— £ -
Culyert Condition 062 valuates all.gr?ment, Number Culvert
Rating settlement, joints, scour, etc.
Physical iti I
Channel Condition PRIl el (LU i Deck, Superstructure,
. 061 the water flow through the Number
Rating ) Substructure, Culvert
bridge
. . Numeric value indicating the Deck, Superstructure
(0] ting Rat 064 . . Numb ! !
perating Rating structure's service sufficiency Umber Substructure, Culvert
. Load level for safe, indefinite Deck, Superstructure,
Inventory Rating 066 Number P
use Substructure, Culvert
Structural Evaluation score of the Deck, Superstructure,
. 067 Number
Evaluation structure Substructure, Culvert
Deck Evaluati f k Deck
ec Ggometry 068 valuation score for dec Number eck, Superstructure,
Evaluation geometry Substructure
Under Clearance Measures vertical and Deck, Superstructure,
. 069 . Number
Evaluation horizontal under clearances Substructure
Load limit postings when the
. . P g Deck, Superstructure,
Posting Evaluation 070 legal load exceeds the Number
. . Substructure, Culvert
operating rating
Watervx{ay 071 L|keI|hoo<.:I of bridge Number Deck, Superstructure,
Evaluation overtopping Substructure, Culvert
E i D
Appranh Road 072 valuation .Of the approach Number eck, Superstructure,
Evaluation roadway alignment Substructure, Culvert
D
Traffic Direction 102 Direction of traffic flow Number 85 SUEEITERS,

Substructure, Culvert
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Deck
Deck Structure Type | 107 Type of deck structure Number EES, BUPETHIUE U,
Substructure
Surface Type 108A Type of wearing surface on the Number Deck, Superstructure,
deck Substructure
Deck Protection 108C Protective system on the bridge Number Deck, Superstructure,
deck Substructure
. ) Deck, Superstructure,
Percent ADT Truck 109 Percentage of daily truck traffic | Number
Substructure, Culvert
Deck truct
Future ADT 114 Projected average daily traffic Number e C s
Substructure, Culvert

Note: Background colors are used to visually distinguish categories of input data. Gold indicates average
daily traffic (ADT)-related variables. Sky blue indicates bridge or culvert evaluation variables, such as

structural evaluation, deck geometry evaluation, etc., and Blue with a red border indicates bridge condition rating

input or output variables (e.g., deck condition rating, culvert condition rating, etc.) used in forecasting.

eNational Oceanic and Atmospheric Administration (NOAA):

For the weather data, we utilized another publicly available dataset from the National
Oceanic and Atmospheric Administration’s (NOAA) online weather database, the
dataset is the Normals Daily dataset [2]. This dataset contains daily precipitation and
snow records over global land areas. The following five features from this data were
used: Precipitation, snowfall, snow depth and maximum temperature, Average
temperature, and Minimum Temperature. Once again, domain experts were consulted
to determine relevant features for the task of bridge deterioration forecasting. There
was an emphasis on the importance of precipitation in predicting bridge deterioration
forecasting. This is because protective epoxy coatings may be affected negatively when
moisture is introduced to a bridge structure. In addition to this, there was also an
importance in considering snowfall and snow depth since the freeze/thaw cycles of
bridge structures contribute to how bridges may deteriorate, as well as how
maintenance strategies are scheduled. Finally, the daily temperature has an effect on

the bridge deck over time.

«Traffic and Repair Data (CDOT):

The Colorado Department of Transportation (CDOT) provides supplemental datasets
containing traffic statistics and repair histories. These data are linked with the NBI and

NOAA records within the i-BM databases to support forecasting analyses.
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All external data sources (e.g., NOAA and NBI datasets) are preprocessed and

synchronized through the i-BM Data Source Service. The service integrates datasets based on

latitude and longitude coordinates and aligns them before storing them in the databases.

Figure 3 illustrates the preprocessing approach where bridge and weather station data are

matched by geographic coordinates and standardized for forecasting.
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2.2.2 Data Source Service Architecture
The Data Source Service operates as the backend engine that connects the i-BM
frontend with the system’s two core databases:
eMicrosoft SQL Server, which stores static data tables such as StructureStaticTbl,
GroupStructureMapping, and GroupTable containing bridge inventory and
metadata.
eTimescaleDB (PostgreSQL-based), which stores dynamic and temporal datasets
including bridge condition ratings (structuredynamictbl) and weather

observations (noaadatatbl).

The Data Source Service processes APl requests from the frontend, queries both
databases through the appropriate data connectors, and returns structured responses to the
user interface. This dual-database configuration enables efficient querying of both static and
time-series data, ensuring fast access and synchronization across analytical modules. Figure 4
illustrates the backend data source architecture connecting the frontend interface to the SQL

Server and TimescaleDB environments.
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Figure 4. Data Source Service Backend Architecture
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2.2.3 Database and Data Table Design

The i-BM system connects both relational and time-series databases to manage bridge,
culvert, and weather datasets efficiently. The details database schema is explained in the next

subsections.

2.2.3.1 Backend Schema and Relationships

The database architecture follows a modular and relational schema that connects multiple
functional tables to maintain organized data flow across the system. The design incorporates

three major categories of tables:

1.Static Data Tables — store non-changing bridge inventory attributes derived from the
National Bridge Inventory (NBI). These include:
eStructureStaticTbl — contains location (LAT_016, LONG_017), construction
(YEAR_BUILT_027), and geometric attributes (TRAFFIC_LANES ON_028A,
DESIGN_LOAD_031).
eGroupTable — stores user-defined grouping information with fields such as
Group_Name, Construction_Year, and Structure_Category.
eGroupStructureMapping — serves as a bridge between GroupTable and
StructureStaticTbl, linking each structure to one or more analysis groups.
2.Dynamic Data Tables — store annual, time-varying bridge and environmental data
retrieved from NBI and NOAA. These include:
estructuredynamictbl — records yearly measurements such as Average Daily Traffic
(ADT), deck and substructure condition ratings, roadway width, and operating
ratings.
enoaadatatbl — contains environmental parameters such as precipitation, snowfall,
and temperature averages corresponding to each bridge location and year.
3.Analytical and Support Tables — store model and analysis-related information generated
within the i-BM system. These include:
eregistered_models and trained_models — maintain model registry, configurations,

and training metadata.
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econdition_ratings — stores forecasted condition outputs.

erepairlisttbl — records repair history and condition updates.

Both static and dynamic tables are linked through the primary key Structure_number_008,

ensuring that static bridge identifiers are synchronized with yearly inspection and weather

datasets. This relational integrity allows data queries to be joined appropriately between SQL

Server and TimescaleDB.

Figure 5 illustrates the complete backend database schema, including relationships among

static, dynamic, and analytical tables that support the forecasting and anomaly detection

modules.

Data Source Info Table

Static Structure Table

Dynamic Structure Table

Model Registry Table

Maodel Training info Table

= DataSourceDownloadinfo

3 StructureStaticThl

Group Mapping Table

B GroupStructureMapping
Hi0 .
¢ Group_Name

Ao Structure_number_ 008

"¢ Structure_number_008
23 LAT_016

"2 LONG_ T
“23YEAR_BUILT 027

~2 TRAFFIC_LANES_ON_028A

4 (##¢ DESIGN_LOAD_031

w3t Structure_kind_0434
mi¢ structure_type_(43B

“¥ Group_Name
222 Construction_Yeal
e Structure_Category

N 23 main_unit_spans_M3
-3 APPR_SPANS_(48
st traffic_direction 102
23 deck_area
Group Table Repair Data Table
5
B GroupTable BB repairlisttbl

“23id
¢ structure_number_008
i repaired _year

*** condition_rating

& structuredynamictbl

“Hid

abe structure_number 008
D evaluation_year

127 a¢lt_029

123 appr_width_mt_032
“22horr_clr_mt_047
-22max_span_len_mt_043
2% structure_len_mt_04S

-22 roadway_width_mt_051
23 deck_width_mt_052

mee deck_cond_058

mve superstructure_cond_058
A4 gy bstructure_cond_06(
At channel_cond_061

wve cubvert_cond_062

23 pperating_rating_064
‘ZZinventory_rating_066

Ak structural_eval_067

Me deck_geometry_eval 068
me yndclrence_eval 069

Ave posting_eval_070

A watenvay_eval_071

A" appr_road_eval 072

e deck_structure_type_107
e surface_type_108a

wve deck_protection_108¢
-22 percent_adt_truck_109

2% future_adt_114

"¢ bridge_condition

2B timestamp

B registered_models
Hid

#2¢ model_name

b deck

i superstructure

b4 substructure

Forecasted Data Table

B8 condition_ratings
i Bridge_ID
wbe Rating_Type
uwh Input_Time_Series

Weather Data Table

FP trained_models
“Hiid

avctrained_on

Act data_source

D date_range_start
D date_range_end
Ab¢ structure_group
ave model_name
At model_type

“*7 num_features
77 out_steps

2 rmse

AEE cument_stage
AbE run_id

" cource

APE ctatus

Avt component_tag
wet datasource_tag

AEEversion

D created_timestamp

B8 noaadatatbl
Hiid
wbe structure_number 008
£ evaluation_year
23 prep_avg
“EFgnow_avg

B timestamp

Figure 5. i-BM Backend Database Design

2.2.3.2 Bridge and Culvert Distinction

A key backend function in the Data Source Service is automatic structure categorization,
which determines whether a record belongs to a bridge or a culvert. The classification logic uses

the field structure_type_043B from the static table:
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if structure_type_043B == 19:
set Structure := "Culvert"
else:
set Structure := "Bridge"

This conditional logic is applied during data import and retrieval, ensuring consistent
filtering across all modules. It also allows users to manage datasets separately for bridges and

culverts while maintaining shared architecture and the same backend code.

The logic operates at the service layer, immediately after querying the SQL Server and
before sending structured responses to the frontend or analytical modules such as Forecasting
or Anomaly Detection. Figure 6 shows the flow of structure classification and data filtering logic

within the Data Source Service.
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Figure 6. Bridge and Culvert Classification and Filtering Logic

2.2.4 Data Module Functionalities
The Data Module provides four primary functionalities accessible through the user

dashboard.
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2.2.4.1 Data Import

Enables users to import bridge and weather datasets directly from NBI and NOAA. Users

can select between two update options:

eUpdate—adds missing data entries.

eOverwrite—replaces existing records completely.

The import interface ensures that data is validated and stored in the correct database

(SQL Server for static data and TimescaleDB for dynamic data).

2.2.4.2 Data Grouping

Allows users to create, edit, or delete structure groups individually for bridges and
culverts. Users can select structures directly from an interactive map interface using rectangle,
circle, or point tools, or upload a list of structures via CSV. Group mapping tables link each

structure to its assigned group for downstream analysis.

2.2.4.3 Data Exploration

Provides visualization and tabular access to both historical and non-historical bridge
data. Users can view bridge condition trends over time, examine structure attributes, and
compare performance across selected groups. Historical data are presented through time-

series plots, while non-historical data appear in an interactive grid view.

2.2.4.4 Data Export

Enables users to export selected datasets—including bridge evaluation, traffic, and
weather data—to standard formats such as .csv or .xIsx. Users can specify the desired time
range, select relevant attributes, and choose to export all structures or grouped subsets. This

ensures flexible reporting and integration with external analysis tools.

Figure 7 shows the key data management functionalities developed in the i-BM tool,

which allow users to import, export, and explore the bridge dataset.
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Figure 7 Data Management Module of the i-BM Tool

2.3 Forecast Module
The Forecast Module in the Intelligent Bridge Management (i-BM) system is designed to

perform predictive analysis of bridge and culvert condition ratings by utilizing both data-driven
and physics-informed machine learning models. This module enables CDOT engineers to
proactively estimate future deterioration states and plan maintenance interventions based on

guantitative evidence.

2.3.1 Forecast Service Architecture

The Forecast Service provides the functionality to train, manage, and deploy predictive
models that estimate future bridge condition ratings (deck, superstructure, substructure, and
culvert). It interacts directly with the backend data sources—SQL Server and TimescaleDB—to
retrieve structural, traffic, and weather data required for model training and inference.

Users can configure forecasting parameters, such as input features, time range, and prediction
horizon, directly from the i-BM user interface. The forecast results can then be stored in the

system database for further analysis or exported as external files for reporting purposes. Figure
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8 illustrates the overall backend architecture of the forecasting workflow, showing the

interaction between the data sources, model management system, and user interface.
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Figure 8. Forecast Service Back-end Architecture

2.3.2 Core Functionalities

The Forecast Module operates as a service-oriented subsystem that connects the
backend data sources, machine learning framework, and visualization layer. It integrates all
stages of predictive modeling—training, management, execution, and result delivery (e.g.,
Figure 9 shows the Forecast module of the i-BM tool). The core functionalities include the

following:

2.3.2.1 Model Management and Training
eThe module handles model training, registration, and version control through MLflow,
which tracks configurations, hyperparameters, performance metrics, and model

artifacts for each experiment.
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eMachine learning and Deep learning algorithms such as LSTM, Bi-LSTM, GRU, CNN, CNN-
BiLSTM, Multi-channel CNN, TCN, and Linear Regression, along with their physics-guided
extensions (detailed in Chapter 3. Physics-guided Bridge Deterioration Forecasting), are
supported for forecasting future bridge element condition ratings—deck,
superstructure, substructure, and culvert.

eUsers can define training parameters such as input features, training range, model, and
Iterations directly through the i-BM interface.

eAll trained models are recorded in the backend tables trained_models and
registered_models, ensuring complete traceability and reproducibility.

eEach model entry includes metadata such as model_name, data_source, structure_group,
run_id, and evaluation metrics (e.g., RMSE), enabling comprehensive version tracking

and auditability.
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Figure 9. Bridge/Culvert Forecasting Interface in the i-BM Tool

2.3.2.2 Forecast Execution and Result Generation

eThe service dynamically loads trained models from the MLflow registry and executes them
on user-selected datasets drawn from:

=SQL Server — for static bridge inventory, geometry, and categorical data, and
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=TimescaleDB — for dynamic, time-series data such as annual inspection ratings, traffic
volume, and environmental parameters.
eThe forecasting workflow computes multi-year condition predictions for the selected
structure category (bridge or culvert) and structural components (deck, superstructure,
substructure).
eUsers can define forecasting parameters such as groups, models, and prediction horizons
directly through the i-BM interface.
eForecast results can be:
oStored in the database for visualization, monitoring, and analysis, or

oExported as structured files (CSV/Excel) for documentation and external analysis.

2.4 Anomaly Detection Module
The Anomaly Detection Module in the Intelligent Bridge Management (i-BM) system is

designed to automatically identify abnormal deterioration patterns and inconsistencies within
bridge and culvert condition data. It supports data validation, model reliability assessment, and
decision-making by ensuring that forecasting and analysis are performed on accurate and

trustworthy datasets.

2.4.1 Anomaly Detection Service Architecture

The anomaly detection framework in the i-BM system is designed based on the label-
efficient interactive time series anomaly detection (LEIAD) architecture [59] (Detail in Chapter
4. Bridge Anomaly Detection) that integrates unsupervised anomaly detection (UAD), weak
supervision, and active learning. The goal is to reduce manual labeling effort while improving
the accuracy of bridge performance anomaly identification. The workflow, illustrated in Figure

10, operates through the following key components:

1.UAD Methods (Unsupervised Anomaly Detection): The process begins with a set of
unsupervised algorithms that identify abnormal temporal patterns in bridge condition
data without relying on pre-labeled samples. These algorithms (e.g., Isolation Forest,
Spectral Residual, STL, RC-Forest, and Luminol) serve as the foundation for generating

initial anomaly candidates.
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2.Labeling Functions (LF): A set of rule-based or model-based labeling functions is applied to
the UAD outputs. Each labeling function encodes heuristic knowledge or statistical
criteria (e.g., sudden condition drop, deviation from trend) to automatically assign weak

labels to time-series data points.

3.Weak Supervision Layer: The weakly labeled data are aggregated and combined to
produce weak labels, which serve as the initial pseudo-ground truth for model training.

This allows the model to learn general anomaly patterns without manual annotation.

4.End Model Training: A discriminative anomaly detection model (e.g., LightGBM) is trained
on the weakly labeled dataset to distinguish between normal and abnormal
deterioration behaviors. The trained model produces refined anomaly scores and binary

predictions.

5.Active Learning: Following the initial training, the system identifies samples with high
uncertainty or model disagreement and presents them to the user through an
interactive labeling interface. This human-in-the-loop feedback mechanism enhances

model accuracy where it is most uncertain.

6.Golden Label Generation: Verified user feedback is incorporated to create golden labels—
trusted, high-confidence annotations that improve model precision and provide a

reliable benchmark for retraining.

7.Label Function Generator (LF Generator): Using insights from the newly generated golden
labels, the system automatically creates new or refined labeling functions. These
functions are added back into the LF pool, reinforcing the weak supervision process and

enabling continual improvement.

8.lterative Refinement: The framework operates as a closed feedback loop, where new
labeling functions and retrained models iteratively enhance anomaly detection accuracy

over time, achieving progressive improvement with minimal human supervision.
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Figure 10. Architecture of the Anomaly Detection Framework [59]

2.4.2 Core Functionalities
The Anomaly Detection Module provides two principal backend modules: Model Management

and Detection Execution.

2.4.2.1 Model Management

eHandles model training, tracking, and lifecycle management through MLflow, which
records configurations, hyperparameters, thresholds, and performance metrics.

eEach trained model and its run metadata are stored in SQL Server tables
(trained_models, registered_models) to ensure full version control, traceability, and
reproducibility.

eThe model metadata include parameters such as model_name, component,
data_source, structure_group, and run_id, ensuring complete transparency and

traceability across all detection experiments.
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2.4.2.2 Detection Service

eLoads trained models from MLflow and applies them to time-series condition data
retrieved from TimescaleDB to identify anomalous data points for individual bridge
components' time series sequence (Deck, Superstructure, Substructure, and
Culvert).

eSupports both bridge and culvert datasets using inspection data from NBI.

eThe detection results include yearly anomaly labels (O = normal (blue), 1 = anomaly
(red)) with associated timestamps and structure IDs.

eResults can be either:
e Stored in the database for visualization and analysis, or

e Exported as structured files for external validation and reporting.

2.5 Functional Workflow of the i-BM System

Figure 11 illustrates the functional workflow of the Intelligent Bridge Management (i-
BM) system, showing how users interact with different modules such as data management,
forecasting, model training, and anomaly detection. The diagram outlines the logical sequence
of actions within the application—from data import and exploration to model training,
prediction, and anomaly detection—demonstrating how the system integrates analytical tasks

through an intuitive, user-centered interface.
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Chapter 3. Physics-guided Bridge Deterioration Forecasting

In this section, we delve into physics-guided bridge deterioration forecasting. We begin
with the problem definition, followed by a review of relevant literature, methodology, and
finally conclude with a comprehensive experimental evaluation of the models and i-BM tool

results.

3.1 Problem Definition

The focus of this work is on effective multivariate time-series forecasting of bridge
condition ratings over time using physics guidance. Given a set of consecutive time steps t,
each of which contains multiple variables of length m, the objective is to predict N future time
steps.

The input for this problem can be represented as:

X =

X}l X}Z X}n
Xm1 Xm2 an] ,

where n denotes the total number of input time steps, and m represents the total
number of variables for each time step. Each variable Xj; corresponds to the condition rating or
supplementary feature associated with that time and component. A multivariate time-series
forecasting model, denoted as fe predicts one future multivariate time step based on the past n
time steps, where both the input and prediction steps contain m features. The input and output
variables share the same structure. In addition to this, the model is conditioned using some
form of physics-based grounding, which is embedded into the model architecture or training
process to incorporate domain-specific physics-based knowledge. To accommodate sequences
of varying lengths during training, a masking layer with zero-padding can be employed within
the model. Furthermore, a sliding-window technique is used during prediction to generate
multiple future time steps, as shown in Figure 12. The figure also demonstrates how variables
of interest can be selectively extracted from the predicted output vector.

The success of the forecasting model is evaluated using the Root Mean Squared Error

(RMSE), defined as:
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RMSE = (1)

where:
Xi (x sub i) represents the ground truth value,
Xi (x hat sub i) denotes the predicted value, and
N is the total number of data points.

The evaluation process measures the error in the produced outputs during the
evaluation of the test split of the data after model training. Each sample in the test split of the
data is used to obtain an RMSE score for each rating. An average of RMSE scores is taken over
all test split samples to obtain an aggregate RMSE measure. An example of this is shown in

Figure 13, with a test split size of 2215 data samples, 21 total time steps, and 3 variables.

Figure 12. lllustration of Model Prediction Process

RMSE SCORES FOR EACH
INDIVIDUAL CONDITION
RATING

el avERAGE OF
2215x 21 x3 _ }

Figure 13. RMSE Measurement Process
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To reiterate, we wish to train a multivariate time-series forecasting model fg such that it
generates a single time step output with length m representing the number of variables in the
output time step. This model is to be conditioned on the input matrix X, where its dimensions
are n and m, where n is the total number of input time steps, and m is the number of variables
in each time step. This model also needs to be conditioned using some form of physical
grounding via the physics-informed neural network approaches. The success of this model will

be evaluated using RMSE as the metric.

3.2 Literature Review

In this section, we review the literature on bridge and culvert deterioration forecasting.
In the current literature, existing deterioration forecasting models are either mechanistic or
data-driven, such as deterministic, stochastic, or artificial intelligence (Al)-based. Toward this
end, we categorize the literature into three key areas: (1) physics-based methods which
account for mechanistic insights (2) data-driven approaches, which leverage statistical, artificial
intelligence (Al), machine learning (ML), and deep learning (DL) techniques for predictive
modeling, and (3) physics-guided neural network, which are hybrid solutions that integrate
engineering principles and physics-based parameters to enhance model accuracy. The following

subsections discuss these approaches in detail.

3.2.1 Physics-based Bridge Deterioration Forecasting

Physics-based approaches represent traditional systematic efforts to forecast bridge
deterioration by modeling the material and environmental mechanisms that drive structural
degradation. Before the emergence of data-driven methods, researchers developed
mechanistic formulations that mathematically describe deterioration as a function of material
properties, stress conditions, and exposure environments. These models—also referred to as
mechanistic or simulation-based—derive from engineering mechanics and material science
principles, focusing primarily on corrosion-induced degradation of reinforced concrete (RC)
bridge decks.

One of the earliest mechanistic frameworks was proposed by Tuutti [60], who divided

the corrosion process into two distinct stages: initiation, governed by chloride ingress and
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carbonation, and propagation, driven by electrochemical reactions and cracking. This
conceptual model became the foundation for later service-life prediction tools such as Life-365.

The Life-365 Service Life Prediction Model [61-62] introduced a diffusion-based
approach for estimating the time to corrosion initiation in RC structures exposed to deicing salts
or marine environments. By utilizing measurable parameters such as chloride diffusion
coefficient, surface concentration, and concrete cover depth, the model provided engineers
with a practical means to forecast deterioration over a structure’s life cycle. Its integration into
engineering practice and industry standards marked a major advancement in durability design
for reinforced concrete bridges.

Building on this foundation, Hu et al. [63] reviewed several prominent commercial
mechanistic modeling tools—STADIUM, CONCLIFE, and Life-365—each offering distinct physical
formulations for predicting deterioration. STADIUM and Life-365 primarily simulate chloride-
induced corrosion using ion-diffusion models, while CONCLIFE extends its analysis to sulfate
attack and freeze—thaw damage. These frameworks collectively illustrate the state of practice in
physics-based durability modeling for RC bridge systems. Although these models have
demonstrated substantial predictive power, they are generally limited by simplified
assumptions, reliance on laboratory-calibrated parameters, and computational complexity
when applied at the network scale.

Several analytical studies have also contributed to understanding specific deterioration
mechanisms in reinforced concrete. Bazant et al. [64] developed a model to describe freeze—
thaw damage in concrete, while Isgor and Razaqpur [65] formulated a carbonation-based
corrosion model linking CO, diffusion and environmental exposure to steel-corrosion initiation.
Bazant and Baweja [66] further extended this analytical work to include creep and shrinkage
models, enhancing understanding of time-dependent concrete behavior. Collectively, these
analytical formulations form the theoretical backbone for many of the deterioration
mechanisms represented in later service-life prediction models.

A key contribution to corrosion modeling came from Liu and Weyers [67], whose
experimental study established relationships between corrosion rate, temperature, chloride

concentration, concrete resistivity, and exposure duration. Balafas and Burgoyne [68]
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subsequently developed a mathematical model to predict internal pressure buildup from
corrosion products leading to concrete cover cracking. These submodels were later
incorporated into the comprehensive time-to-failure framework developed by Hu et al. [63] for
RC bridge decks, which captured both corrosion and carbonation processes under realistic
environmental and design conditions. While this model provided an important step toward
integrating mechanistic modeling in bridge-asset management, it still omitted several modern
aspects of bridge design and maintenance practice.

To address these constraints, Nickless [54] conducted one of the most comprehensive
applications of mechanistic modeling for predicting bridge deterioration. The study, carried out
for the Office of Applied Research(OAR) of the Colorado Department of Transportation (CDOT),
developed a multi-stage mechanistic model for corrosion-induced cracking in reinforced
concrete bridge decks. The model estimated the time to corrosion initiation, cracking onset,
and crack propagation by integrating sub-models for corrosion rate, concrete resistivity, and
cracking pressure. It also considered practical bridge-specific factors such as epoxy-coated
rebar, waterproofing membranes, asphalt overlays, joint deterioration, and deck maintenance.
By combining laboratory-based parameterized formulations (see Figure 14) with realistic
environmental data, the study demonstrated how physics-based deterioration modeling can
guide bridge design and maintenance planning. However, these models often face
development complexities and are typically focused on straightforward result generation rather
than accounting for actual structural conditions, which are susceptible to environmental noise
and estimation errors. For this reason, they are generally considered more appropriate for
project-level analysis or as complementary tools alongside other deterioration-modeling
approaches, for example, serving as supportive components within data-driven or ML/DL

models.
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Figure 14. Multi-Level Model Process for Predicting Concrete Failure [53]

3.2.2 Data-Driven Bridge Deterioration Forecasting

Over the past three decades, bridge deterioration forecasting has shifted from
traditional mechanistic approaches to increasingly data-driven and learning-based models. A
wide range of deterministic, stochastic, and Al-based methods have been explored, from early
research stages to recent years. Deterministic models assume that the tendency of bridge
deterioration processes is certain and are based on regression analysis of condition data [69—
71]. Stochastic models consider the bridge deterioration process as one or more random

variables [72] and employ probabilistic techniques such as the Markov-chain model to capture
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uncertainty [73—-76]. However, deterministic and stochastic models often fail to include all of
the influential factors directly, except for dependence on engineering judgments and
assumptions.

In this regard, researchers have focused on demonstrating that artificial intelligence (Al)
techniques can mimic deterioration trends directly from inspection data, moving beyond rigid
statistical formulations. The first use of Artificial Neural Networks (ANN) in bridge deterioration
forecasting was explored by Sobanjo [77]. Early Al models demonstrated the potential of data-
driven learning to capture nonlinear deterioration patterns. Building on this idea, Tokdemir et
al. [78] compared ANN and Genetic Algorithms (GA) for predicting bridge sufficiency ratings
using explanatory variables such as geometrical attributes, structure age, traffic volume, and
structural attributes. This work found that ANNs outperformed genetic algorithms when
different models were constructed for varying levels of sufficiency ratings, and genetic
algorithms outperformed ANNs when using the entire dataset. Morcous [79] further compared
ANNs with case-based reasoning for predicting future bridge conditions. The study highlighted
that case-based reasoning achieved high accuracy but was difficult to calibrate and ineffective
for unseen data, while ANNs were more adaptable but required greater initial effort for model
development and updates.

While the artificial intelligence—based models, particularly neural networks, show strong
potential to overcome the limitations of existing methods, their application in Bridge
Management Systems (BMS) remains in the nascent stage [80]. These foundational efforts
defined the promise of data-driven learning but also exposed key barriers—small datasets, high
tuning effort, and weak temporal reasoning. Bridge and culvert deterioration forecasting is
challenging because the deterioration process is influenced by multiple factors such as
materials, design, daily traffic, freeze and thaw cycles, and climate conditions [25-26, 81].
Although transportation agencies collect diverse datasets—such as NBl and NBE records,
structural attributes, traffic volumes, and weather data—these data sources are often
fragmented and inconsistent, making comprehensive modeling difficult. Structured bridge
inventory data, particularly the NBI dataset, remains the primary data source used in most

existing studies on bridge deterioration forecasting. Researchers began to test a range of
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statistical and data mining models—Ilinear regression, decision trees, and neural network
algorithms—to identify the most influential features in NBI inspection records, thereby
improving predictive ability. Studies such as Contreras-Nieto et al. [82] and Jonnalagadda et al.
[83] demonstrated that machine learning can analyze the effects of factors and capture
regional deterioration trends for steel and concrete bridges. Mia and Kameshwar [84] further
showed that Random-Forest-based ensembles could produce highly accurate short-term
forecasts with quantified uncertainty, while Rashidi and Elzarka [85] revealed that feature
optimization plays a decisive role in prediction quality.

Regardless of these advances, most machine learning models remain constrained by
region-specific datasets, short-term prediction horizons, and oracle-identified or a limited set of
feature representations, as well as applicability restricted to specific bridge types. That hinders
their ability to generalize or capture nonlinear and temporal deterioration behaviors. Recent
studies have focused on Deep Learning architectures capable of capturing spatial and temporal
dependencies in bridge deterioration. Liu et al. [86, 87] developed deep learning—based
approaches for forecasting bridge component conditions. In two back-to-back studies, they
showcased CNN-based deterioration forecasting that incorporated historical condition data and
uncertainty quantification through stochastic Markov integration. Subsequent efforts by Zhu
and Wang [88] and Rajkumar et al. [89] demonstrated that hybrid models—combining CNN-
RNN architectures and autoencoders with random forest (RF) algorithms—can effectively
capture sequential deterioration dynamics with improved performance. These works broadly
represent a transition from static to spatiotemporal modeling, where deterioration is treated as
a continuous sequence influenced by both structure and environment. In addition, recent
works by Jing et al. [90], Miao et al. [91], and Abu Dabous et al. [92] have further advanced this
direction by employing other sequential architectures integrating with LSTMs to capture long-
term temporal dependencies and sequential deterioration patterns in bridge components with
accuracies exceeding 90% for near-term forecasts. Despite the importance of dealing with
advanced deep learning architectures and achieving promising results, limitations such as
reliance on single-source data, focus on individual components, exclusion of maintenance

effects, and insufficient consideration of environmental, spatial, and temporal dependencies
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are limiting the ability of existing studies [88-92] to be effectively used in long-term bridge
deterioration forecasting.

Beyond single-source sequential deep learning models, Liu and El-Gohary [86] proposed
a multisource deep learning framework that integrates both structured and unstructured
bridge data using a recurrent neural network enhanced with manifold and cost-sensitive
learning. While the approach effectively leveraged heterogeneous data to improve
deterioration prediction accuracy, its unidirectional architecture predicted only one component
type at a time, limiting scalability and bidirectional temporal learning capacity.

Gleaned from the literature, it is evident that DL-based models remain highly data-
dependent, requiring comprehensive and high-quality multisource datasets, reliable feature
selection, and explicit treatment of repair events to achieve robust predictive performance and
overcome existing limitations. Moreover, they often lack explicit physics-based learning and
transferability across bridge types and deterioration mechanisms, motivating the integration of

domain knowledge into data-driven modeling.

3.2.3 Physics-Guided Neural Networks

In recent years, in other domains, physics-guided approaches have been introduced to
enhance the learning capabilities of ML/DL models by integrating physics-based principles,
thereby reducing dependence on purely historical data. To the best of our knowledge, this
research direction has not yet been explored within the field of bridge deterioration
forecasting. Toward this end, we examine the emerging domain of Physics-Guided Neural
Networks (PGNNs), an interdisciplinary framework that fuses the computational power of
neural networks with mechanistic modeling grounded in physics-based laws and domain
knowledge to improve model intelligibility and predictive performance.

A key area within this field is the design and application of physics-guided loss functions,
which incorporate behavioral physics laws directly into neural network training. These loss
functions improve the predictive accuracy and generalization capabilities of the neural
networks by aligning the learning objectives with known physics-based principles. For instance,
Huang et al. [56] introduced a Physics-Guided Deep Neural Network (PGDNN) for structural

damage identification by integrating finite element (FE) model outputs with measured vibration
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data through a cross-domain physics-based loss function. This approach significantly improved
damage localization accuracy and robustness against modeling noise. Similarly, Yousefpour and
Wang [58] developed Scour Physics-Inspired Neural Networks (SPINNs), a hybrid framework
that couples empirical scour equations with LSTM and CNN architectures. Their models reduced
prediction errors by up to 70% compared to purely data-driven methods, highlighting the value
of incorporating governing physics into learning. However, none of these studies directly
address bridge or culvert deterioration forecasting, leaving a clear gap in the current research
scope. Building on the identified research gap and inspired by the demonstrated success of
Physics-Guided Neural Networks (PGNNs), we explore the landscape of this research domain
and provide a taxonomy of the three primary areas of focus within physics-guided neural
networks: (1) Physics-guided loss functions, (2) Physics-guided architecture, (3) Extended
physics-guided machine learning [93]. The following subsection reviews the focus areas in

detail.

3.2.3.1 Physics-Guided Loss Functions

One widely used approach for implementing physics-guided neural networks (PGNNs) is
to introduce an additional term into the loss function of a data-driven model. This term
incorporates a physics-based penalty, guiding the deep learning model to learn patterns that
are consistent with established physical laws and normal system behavior [93].

The general form of a physics-guided loss function can be expressed as:

arg min [Loss(Y,Y) + AR(H  + Apyy Loss.PHY(Y)] )

et e e
Empirical Error  Structural Error Physical Inconsistency

Here:
The Empirical Error represents the difference between predicted and observed
values.
The Structural Error regularizes the model to prevent overfitting.
The Physical Inconsistency term penalizes outputs that violate known physical
relationships.
Karpatne et al. [57] demonstrated this principle by leveraging the relationship between

lake depth, temperature, and density to ensure that the model predictions adhere to known
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physical laws. They enforced a penalty whenever predicted water density values violated the
physical constraint that density increases with depth.

The physical relationship is expressed as:
p[d];t] - p[d,_v,t] <0if d] < d.z (3)

For any pair of consecutive depth values di and di:1, where di< di+1, the model computes

the difference between predicted densities as:
Ald;, t] = p[di, t] — pldi+1,t] (4)

A positive value of A[d;, t] represents a violation of the above constraint.

To penalize such violations, a rectified linear function (ReLU) is applied:
ReLU(A[d;, t]) = max (0,A[d;, t]) (5)
The total physics-based loss across all samples and time steps is then formulated as:
Loss.PHY(Y) = ﬁZ:lzf‘jl‘l ReLU(A[d;, t]) (6)

This additional loss term ensures that the network learns outputs that obey physical
consistency while minimizing empirical error. The approach has been shown to improve both

interpretability and robustness in lake temperature modeling tasks.

3.2.3.2 Physics-Guided Architecture

Due to the modularity of neural networks, these architectures can be customized to
encode physical properties directly into their structure. This allows for the design of physics-
guided neural network architectures that can impose hard constraints, whereas physics-guided
loss functions generally impose soft constraints.

An example of such an architecture is the Turbulent-Flow Net proposed by Wang et al.
[94], a physics-guided neural network developed for turbulent flow prediction. The model is
inspired by the RANS—LES coupling method but replaces fixed spectral filters with trainable
convolutional layers. The turbulent flow input is decomposed into three components, each
processed by a specialized convolutional U-Net to preserve multiscale flow features. A shared

decoder learns interactions among these components to produce the final prediction.
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While architectures like Turbulent-Flow Net have demonstrated strong performance in
fluid dynamics, their use in bridge deterioration forecasting remains limited. This gap
underscores the need for domain-specific adaptations of physics-guided architectures in

structural engineering, especially for long-term condition prediction under physical constraints.

3.2.3.3 Extended Physics-Guided Machine Learning
Extended physics-guided machine learning leverages both pure physics-based models as
well as pure deep learning models by developing them independently and combining them

separately (see Figure 15).

In essence, we have a neural network model which takes as input data D and outputs Y
(fan: D = Y) and a physics model which does the same (fpry: D = Y). In this case of extended
physics-guided machine learning, the output from fpuy is used as an additional feature input to

fun in addition to the original data input D. This is formalized as, fupp: X = [D, Ypuy] > ¥

Drivelrs (D)

~

fPHY

|

Ypuy

Figure 15. High-Level Diagram of Extended Physics-Guided Machine Learning [57]

DeepGLEAM is a piece of work that focuses on a type of extended modeling called
residual learning, where a neural network learns to predict the errors or residuals made by pure
physics-based models [95]. This work uses a mechanistic epidemic simulation model, Global
Epidemic and Mobility Model (GLEAM), with deep learning. It uses a Diffusion Convolutional
Recurrent Neural Network (DCRNN) to learn the correction terms from GLEAM, leading to

improved performance.

3.3 Methodology
In this section, we present the proposed methodology for bridge deterioration
forecasting using a physics-guided deep learning framework. The overall approach combines

data-driven learning with domain knowledge of structural behavior to enhance the
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interpretability and physical consistency of the predictions. The methodology integrates three
major components: (1) the development of Physics-Guided Neural Networks (PGNNs) that
embed physical constraints through physics-guided loss functions, (2) Input selection for the
deep learning models using feature importance analysis and (3) a Repair-Agnostic Forecasting
Framework designed to separate normal deterioration trends from maintenance-induced
anomalies in bridge condition ratings. Together, these components provide a robust and
generalizable strategy for forecasting structural performance while maintaining fidelity to real-

world physical behavior.

3.3.1 Physics-Guided Neural Networks (PGNN) for Bridge Deterioration Forecasting

In this section, we present physics-guided neural networks for bridge deterioration
forecasting. The key concept of the Physics-Guided Neural Network (PGNN) builds upon prior
work by Karpatne et al. [57] as explained in Section 3.3.2.3, which integrates domain physics
with data-driven modeling. To incorporate bridge-specific domain knowledge into the physics-
guided modeling, the foundational idea in this study is derived from the mechanistic
deterioration modeling approach proposed by Nickless et al. [54], which simulated bridge deck
deterioration using physics-based equations that describe chloride diffusion and adhesion loss.
While the original model was purely physics-driven and did not incorporate machine learning,
its simulation framework provides the conceptual basis for generating physics-informed

features, as shown in Figure 16.

47



Drivers (D):
Bridge Lvaluation Time-serics

Chloride Adhesion e Condition Rating
Extended Tiine-seriss

series Output Time-series Output

Concentration Loss
Model Model Bt Prediction
7 J—
]
i 1
: i
i 1 Drivers (D)
i 1
' ! 1
' i
] 1 -
Lo fray Y
Chloride Concentration  Adhesion Loss : i |
N .. . e —_— . %t A i :
Condition Rating Time- Condition Rating . Youy
i
1
1

Figure 16. Hybrid physics-guided deep learning forecast model

In our work, this foundation is adapted within a physics-guided learning context, where
physical consistency is introduced into the machine learning process through a physics-guided
loss function that minimizes empirical loss during model training. The following subsection
focuses on the implementation of this physics-guided loss function to enhance physical

consistency in the deterioration patterns of prediction.

3.3.1.1 Physics-Guided Loss Functions in Bridge Deterioration Forecasting

The physics-guided loss function used in this work will be detailed in this section. First, a
formalization of the idea will be presented. Following the formalization, the physics property of
interest as well as how it was incorporated into the loss function of our neural networks will be

examined.

3.3.1.1.1 Formalization

The goal of introducing a physics-guided loss term into the learning objective is to
determine whether including a physically consistent penalty improves prediction accuracy for
deterioration forecasting. Specifically, the objective is to assess whether embedding a physical
constraint directly in the optimization function enables the model to generate more realistic

deterioration forecasts.
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Recall, the general structure of a physics-guided loss function is expressed as:

arg m%n [Loss(Y,Y) + AR(f) + Apyy Loss.PHY(Y)] @)

el et et
Empirical Error Structural Error Physical Inconsistency

In the case of this work, only an empirical error and physical inconsistency were used
from (6). For the empirical error, Mean Squared Error (MSE) was used, and for the physical
inconsistency, a relationship pertaining to the ground truth and predictions for three condition
ratings in the bridge evaluation data: Deck Condition, Superstructure Condition, and

Substructure Condition, as shown in (8).
RelLU(x) = max (0,x) (8)

3.3.1.1.2 Physics Property in Loss Function

First, we introduce some notation:
5} = [}?decka }?super‘str‘ucture» _‘J}\substructure](pre{iiCtEd values) (9)

y= [Ydecka Ysuper'str‘uctur‘e: ysubstr‘uctur‘e](ground truth values) (10)

We formulate the relationship between (9) and (10) as described in the previous section
(see equation 11):
Aly,yl =y -y (11)
A positive value of A[Y, y] indicates a violation of the physical constraint, as it implies
that the predicted rating y exceeds the true (observed) rating y. The result of this function
can be fed into a ReLU (Rectified Linear Unit) as such, to capture the penalty. ReLU (Rectified
Linear Unit) is a simple, fast, and well-worked function to train deep neural networks. As

shown in equation (12), this violation is penalized using the function:

ReLU(A[, y]) = max (0, A[y,y]) (12)

The physics-based loss we incorporate into our loss function, in addition to Mean
Squared Error (MSE) is the following, where N represents the total number of samples. Note
that the loss is calculated across all samples to obtain an aggregate calculation of loss for the

model:
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a 1 ’“
Loss.PHY(¥) = XL, ReLU(A[F;, yi]) (13)
The final loss, including both empirical loss and physical inconsistency, which is

optimized using backpropagation, is as follows:

Loss(9) = = 31 (v — 97 + + X,_, ReLU(A[,, 1)) (14)

3.3.1.2 Physics-Guided Neural Network Specifications
This subsection presents the neural network architecture employed in the physics-
guided framework. A total of eight models were implemented and trained using the physics-

informed loss function:

eConvolutional Neural Network (CNN)

eTemporal Convolutional Network (TCN)

eLong Short-Term Memory (LSTM)

eBidirectional LSTM (BiLSTM)

eGated Recurrent Unit (GRU)

¢CNN-BIiLSTM hybrid

eMulti-channel CNN

eLinear regression model

These architectures were selected to capture both spatial and temporal patterns in the

bridge condition data. While all models benefit from the integration of the physics-guided loss
function, their internal mechanisms differ in their ability to learn long-term deterioration

patterns.

3.3.1.3 Physics-Guided Model Input Selection Using Feature Importance Analysis

Before directly diving into the deep-learning and physics-guided deterioration
forecasting models training, a detailed feature importance analysis (FIA) was performed to
identify the most relevant predictors for each structural component—deck, superstructure,
substructure, and culvert. This preparatory step ensured that model inputs reflected the most
physically meaningful and statistically significant variables derived from the National Bridge

Inventory (NBI) and National Oceanic and Atmospheric Administration (NOAA) datasets.
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We employed the SHapley Additive exPlanations (SHAP) methodology to quantify the
relative influence of input features on the model output. SHAP, a model-agnostic and game-
theoretic framework, assigns each feature a Shapley value representing its marginal
contribution to the model’s prediction. By averaging these contributions across all possible

feature combinations, SHAP provides fair, consistent, and interpretable importance scores.

For bridge-specific modeling, SHAP values were computed for 37 domain-informed
features for the deck, superstructure, and substructure components and 26 features for the
culvert models. A threshold was applied to filter the most impactful features for each structure
type. Features exceeding this threshold—such as Structural Evaluation, Approach Road
Evaluation, Channel Condition, Traffic Lanes On, and Design Load—were retained as the final

model inputs for subsequent training.

This systematic feature-selection process reduced redundancy, improved computational
efficiency, and ensured that the models captured the dominant physical drivers of bridge
deterioration. The effectiveness of SHAP-based feature selection and its quantitative impact on
model performance are further analyzed in Section 3.4 (Experimental Evaluation) in ablation

analysis.
Component-Wise Feature Importance

Figures 17 through 20 visualize the top-ranked features for each component. These
summary plots reveal the most influential predictors associated with deterioration patterns.
Several common features—such as structural evaluations, approach road evaluations, and
geometric attributes—appear across multiple components, indicating their remarkable impact

on the structural condition ratings prediction.
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Figure 17. SHAP-based feature importance plot showing the relative influence of input variables on
deck condition prediction
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Superstructure Condition Rating: SHAP Summary Plot for Top Fﬁ_a%ures
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Figure 18. SHAP-based feature importance plot showing the relative influence of input variables on
superstructure condition prediction

To streamline the modeling process, we applied a SHAP value threshold of 0.002 for the
deck, superstructure, and substructure models, and 0.04 for the culvert model, to identify the
most impactful features for each structure type. For instance, in the case of the culvert
component (Figure 18), the most influential predictors—Structural Evaluation (067), Approach

Road Evaluation (072), Channel Condition (061), Traffic Lanes On (028A), and Design Load
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(031)—all exceeded the streamline threshold. A similar selection strategy was employed for the

other components using their respective SHAP-based thresholds.

Substructure Condition Rating: SHAP Summary Plot for Top Fﬁ_at#res
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Figure 19. SHAP-based feature importance plot showing the relative influence of input variables on
substructure condition prediction

Table 2 presents the top SHAP-identified features for each structural component,
representing the most influential predictors of deterioration. These selected features form the
optimized input set used for developing and evaluating all subsequent forecasting and physics-

guided models.
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Culvert Condition Rating: SHAP Summary Plot for Top Features
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Figure 20. SHAP-based feature importance plot showing the relative influence of input variables on

culvert condition prediction

Table 2. Most Impactful SHAP-Selected Features for Each Structural Component

Component Top Features Identified by SHAP Analysis Description / Influence on Deterioration

Deck Deck Geometry Evaluation (068); Deck These features capture geometric adequacy,
Protection (108C); Substructure Condition material protection, and structural
Rating (060); Waterway Evaluation (071); configuration affecting deck performance.
Superstructure Condition Rating (059); Deck geometry and protection control
Deck Structure Type (107); Maximum Span | drainage and corrosion resistance, while span
Length (048); Structural Evaluation (067); length and structure type influence load
Main Unit Spans (045); Structure Length distribution and stress propagation across
(049) connected elements.

Superstructure | Approach Road Evaluation (072); Deck These features represent load transfer,
Condition Rating (058); Structure Type geometry, and material interactions governing
(043B); Maximum Span Length (048); superstructure performance. Approach road

55




Substructure Condition Rating (060); Deck
Geometry Evaluation (068); Traffic
Direction (102); Inventory Load Rating
(066); Surface Type (108A); Structure
Length (049)

and traffic direction affect dynamic loading,
while span length and structure type influence
bending and fatigue. Condition ratings and
surface type capture environmental and

drainage effects that accelerate deterioration

Evaluation (072); Channel Condition (061);
Traffic Lanes On (028A); Design Load (031);
Main Unit Spans (045); Maximum Span
Length (048); Horizontal Clearance (047);
Average Daily Traffic (029); Inventory Load
Rating (066)

Substructure Traffic Direction (102); Maximum Span These features reflect hydraulic and load-
Length (048); Inventory Rating (066); related factors influencing foundation
Surface Type (108A); Structure Type (043B); | performance. Traffic direction and span length
Deck Condition Rating (058); govern load transfer, while surface type and
Superstructure Condition Rating (059); clearance affect moisture and scour. Condition
Horizontal Clearance (047); Deck Structure | ratings indicate deterioration transmission
Type (107); Structure Length (049) from upper structural elements.

Culvert Structural Evaluation (067); Approach Road | These features capture hydraulic, structural,

and traffic-driven effects on culvert
performance. Structural and approach
evaluations represent overall stability, while
channel condition and design load define
hydraulic and load capacity. Traffic, span
geometry, and clearance contribute to wear

and deformation.

3.3.2 Repair-Agnostic Methodology for Bridge Condition Forecasting

This subsection introduces a repair-agnostic methodology for forecasting bridge

condition ratings. Unlike conventional approaches that rely on labeled repair data, this method

identifies and segments repair-like events (see Figure 21) directly from condition rating trends,

allowing forecasting to proceed without explicit repair annotations.

Repairs are identified by detecting significant increases (“bumps”) in component

condition ratings, which indicate maintenance or rehabilitation actions.

3.3.2.1 Repair-Aware Segmentation: Identification and Integration of Repair Events

Let:

Xi = {Xi1, Xi2, -, XiT}
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represent the condition rating time series for bridge i, where xi is the condition rating at time t.
A repair event occurs at time t = r if:

Xi(r) — Xir—1) = &

Where 6 > 0 is a predefined threshold representing a significant improvement in the

condition rating.

Each time series is then segmented at the identified repair points as follows:
X, = (x®,x®, .., x0)

where, each segment X;! represents a continuous period of deterioration between two
successive repairs. This segmentation enables focused modeling of natural deterioration while

isolating maintenance-driven improvements.
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Figure 21. Segmentation process applied to bridge condition ratings, showing how repair years divide
the series into continuous deterioration segments.

3.3.2.2 Repair-Aware Modeling: Training and Prediction

Each segment is treated as an independent training sample to capture distinct
deterioration patterns. For forecasting, the model uses the most recent segment of each

bridge’s time series:
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" k
Ricr+1) = fo (Xf )) (15)

where fg represents the forecasting model (e.g., LSTM, TCN), and Xi¥ denotes the latest
available segment. This design ensures that predictions reflect current deterioration conditions

while being unaffected by earlier repair discontinuities.

3.3.2.3 Handling Variable-Length Sequences: Masking and Zero Padding
To accommodate variable sequence lengths caused by segmentation, zero padding and
masking are implemented:
eZero Padding: Each sequence is padded with zeros to match the maximum length
in the dataset, enabling uniform batch processing.
eMasking: During computation, padded values are ignored to ensure that the model

only processes valid data points.

This approach allows efficient training of deep learning models while maintaining
accuracy across sequences of differing lengths. It was applied consistently across all models,

including LSTM, BiLSTM, CNN—-BiLSTM, CNN, GRU, Multi-channel CNN, and TCN.

3.4 Experimental Evaluation

In this section, we will go into experimental evaluation of the bridge and culvert
deterioration forecasting models specified above, how they were used in this specific problem,
and how the added complexity when moving from traditional regression-based models to novel
physics-guided neural networks did indeed allow for better performance. The analysis is
structured into two key components: (1) a comparative analysis of baseline data-driven models
against enhanced physics-guided models and repair agnostics models; and (2) an ablation study
examining the incremental contributions of physics-based loss functions and repair data
integration. These evaluations use Root Mean Square Error (RMSE) as the primary performance
metric to ensure consistent and interpretable comparisons across models and configurations.
Overall, this evaluation provides critical insights into how physical constraints and maintenance

interventions enhance deterioration forecasting models' robustness, accuracy, and reliability.
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3.4.1 Experimental Setup and Baseline Definition

Our experimental framework evaluates baseline data-driven models, physics-guided
models, and repair-aware variants. All experiments are implemented in Python 3.9, using
TensorFlow for neural network models and Scikit-Learn for linear baselines. We benchmark
eight architectures: LSTM, BiLSTM, GRU, CNN, CNN-BiLSTM, Multi-channel CNN, TCN, and
Linear Regression. Neural networks are trained on an NVIDIA GeForce RTX 2070 Super GPU.

Training details:

eOptimizer: Adam

eBatch size: 64

eMax epochs: 300 with early stopping (patience = 50)

eObjective (baseline): minimize Mean Squared Error (MSE)

oPhysics-guided models: add a physical-inconsistency penalty to the loss (Section 3)
Performance is reported as RMSE (see Equation 1) on a held-out 30% test split (70%

training). Table 3 summarizes key hyperparameters for the evaluated models.

Table 3. Training Hyperparameters for Evaluated Models

Model Training Parameters / Hyperparameters
Units = 32; Return Sequence = False; Dense Units = out_steps x num_features;
ST™ Loss = MSE; Optimizer = Adam
Units = 32; Return Sequence = False; Dense Units = out_steps x num_features;
GRU Loss = MSE; Optimizer = Adam
Filters = variable; Dropout = [0.0—0.8]; Return Sequence = False;
TeN Dense Units = out_steps x num_features
Bidirectional Units = 32; Return Sequence = False;
BiLSTM
Dense Units = out_steps x num_features; Loss = MSE; Optimizer = Adam
ConvilD Filters = 64; Activation = ReLU; Dropout = 0.2;
NN Dense Units = out_steps x num_features
CNN-BiLSTM CNN layer followed by BiLSTM; tuned similar to CNN and BiLSTM individually
Convl: Filters = 8, Kernel =5, Activation = ReLU; MaxPool = 2; Conv2: Filters = 4,
Multi-Channel CNN
Kernel = 5; Dense Units = 732
Linear Regression Scikit-Learn LinearRegression (default parameters)
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Finally, we trained the above models with four different combinations (see Figure 22) to

conduct a comparative analysis. The models are as follows:

|.Data-Driven Models
[I.Physics-Guided Models (i.e., Data Driven + Physics-based)
[Il.Repair Agnostic Models (i.e., Data-Driven models that are Repair Agnostic)

IV.Repair Agnostic Physics-Guided Models (i.e., Physics-Guided models that are Repair

Agnostic)
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Figure 22. Overview of the four model categories used in bridge deterioration forecasting
The framework illustrates the relationships between (1) the Data-Driven Model (Red box), which learns
deterioration patterns directly from inspection data; (2) the Physics-Guided Model (Blue box), which
augments data-driven predictions with mechanistic constraints using a physics-based loss term; (3) the
Repair-Agnostic Model (Orange box), which learns deterioration behavior with consideration of
maintenance events; and (4) the Repair-Agnostic Physics-Guided Model (Green box), which integrates
both physics-based constraints and repair-agnostic learning. Together, these models progressively
combine empirical learning, domain knowledge, and maintenance-independent representations to
enhance predictive performance and interpretability in bridge condition forecasting.
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3.4.2 Comparative Analysis
In this section, we perform a detailed comparative analysis involving four model types—
data-driven, physics-guided, repair-agnostic, and repair-agnostic physics-guided—organized

into three distinct comparative studies.

3.4.2.1 Comparative Study I: Data-Driven Models vs. Physics-Guided Models

This subsection presents a detailed comparative analysis between purely data-driven
models and their extended equivalent models incorporating physics-guided loss functions. The
objective is to evaluate the impact of integrating physics-informed constraints on model

performance across four structural components: deck, superstructure, substructure, and

culvert.
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Figure 23. Deck Results for Physics-guided vs Purely Data-driven Models
In the baseline setup, models are trained using standard data-driven learning, while the
amended versions incorporate domain-specific physical knowledge into the loss function.
Model performance is evaluated using Root Mean Square Error (RMSE), where lower values

indicate higher predictive accuracy. Figures 23 to 26 summarize the RMSE results for each
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model under both configurations. As shown in the figures, physics-guided models consistently
outperform their data-driven peers across nearly all architectures.

For deck deterioration forecasting, the LSTM model achieves the lowest RMSE among
the data-driven models (0.3501). When the physics-guided loss function is introduced, the GRU
model obtains the best performance, reducing RMSE to 0.3319. The LSTM model also shows an
RMSE drop to 0.3368 —very close to the GRU’s score. These results suggest that both GRU and
LSTM architectures are particularly effective in incorporating physical constraints during

training.
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Figure 24. Superstructure Results for Physics-guided vs Purely Data-driven Models

Among the superstructure models, the data-driven LSTM achieves a winning RMSE of
0.2826. With physics guidance, the same model reduces its RMSE to 0.2482, beating all others
in this category. The Physics-Guided BiLSTM also performs competitively, attaining an RMSE of
0.2583, confirming its effectiveness under physics-aware configurations.

In substructure condition prediction, the Physics-Guided BiLSTM model demonstrates

the most observable improvement, reducing RMSE from 0.2712 to 0.2516 when trained with
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knowledge-informed loss functions. This reflects the model's capacity to capture long-term

temporal patterns influenced by physical degradation behavior.

Substructure Condition Rating: Model Results for Best Features Only
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Figure 25. Substructure Results for Physics-guided vs Purely Data-driven Models

In culvert condition forecasting, the Linear Regression model initially performs best
among traditional approaches (RMSE = 0.7102). However, with physics-guided loss, the CNN
model significantly improves performance, achieving a lower RMSE of 0.6802, outperforming all
other model variants. The GRU model follows closely with an RMSE of 0.6855, further
demonstrating its effectiveness.

Among all evaluated configurations, the LSTM, GRU, and BiLSTM models show the
greatest performance improvements, with RMSE reductions of up to 0.3 when transitioning
from purely data-driven to physics-guided learning. These results confirm the advantage of
embedding physical knowledge into the model's training objective to improve accuracy and

real-world explainability.
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Figure 26. Culvert Results for Physics-guided vs Purely Data-driven Models

Comparative Result Summary:

Physics-guided models consistently outperform their data-driven counterparts across all

structural components. These results highlight the importance of integrating domain

knowledge into the learning process and identify physics-guided GRU, BiLSTM, and LSTM as

promising candidates for further evaluation. A comparative result analysis of data-driven and

physics-guided models is presented in Table 4. The subsequent subsection extends this

investigation by assessing the impact of incorporating real-world repair data on model

performance.

Table 4. Comparison of Experimental results (RMSE) for Data-Driven Models vs. Physics-Guided Models

Across Structural Components

Model

Deck
Data-

Driven

Deck
Physics-
Guided

Super-
structure
Data-

Driven

Super-
structure
Physics-
Guided

Sub-
structure
Data-

Driven

Sub-
structure
Physics-
Guided

Culvert
Data-

Driven

Culvert
Physics-
Guided
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LSTM 0.3501* | 0.3368 | 0.2826* 0.2482* 0.2652* 0.2519 0.8461 0.7117
GRU 0.365 0.3319* | 0.3097 0.2741 0.3418 0.2635 0.9898 0.6855
BiLSTM 0.3793 0.3457 0.2914 0.2583 0.2712 0.2516* 0.8129 0.7845
Linear 0.4155 0.3862 0.8685 0.2757 0.4493 0.3123 0.7102* | 0.741
CNN 0.6968 0.4383 0.8949 0.3374 0.7842 0.3772 0.7286 0.6802*
CNN-BiLSTM 0.481 0.4242 0.6041 0.3503 0.4873 0.3602 0.9057 0.9125
TCN 0.5203 0.35 0.6831 0.7565 0.702 0.3073 0.8979 1.02
Multi-Channel-

CNN 0.6831 0.5311 0.7229 0.413 0.5232 0.5224 0.7788 0.7683

Note: The rows represent the different machine- and deep-learning models. The columns are organized in pairs
for side-by-side comparison: the first column in each pair shows the data-driven model results, and the second
column shows the physics-guided model results. Highlighted Bold values (marked with an asterisk) indicate the
lowest RMSE within each component. Lower RMSE values correspond to better predictive performance. For
example, in the deck column, the physics-guided GRU model achieves the winning RMSE of 0.3319 (cyan with an
asterisk ). Colors are provided only for visual emphasis; all results can be interpreted directly from the numerical
values.

3.4.2.2 Comparative Study Il: Data-Driven Models vs. Repair-Agnostic Models

In this analysis, we compare the baseline data-driven models that were trained without
considering repair cases with models trained using repair-agnostic data, which consider real-
world maintenance events. This setup evaluates the benefit of using historical repair
information in model training. Figures 27 to 30 summarize the RMSE results for each model

under both configurations.

For deck condition rating, the data-driven LSTM reports an RMSE of 0.3501, while the
repair-agnostic LSTM achieves a reduced RMSE of 0.3414, confirming the lowest score among
all other models. A similar pattern is observed for GRU, BiLSTM, and TCN models. In the
superstructure domain, the repair-agnostic BiLSTM model achieves the best performance, and
other models also show impressive RMSE reductions under the repair-agnostic setting.
Substructure condition ratings prediction models follow the same trend, with models like TCN
reducing RMSE from 0.702 to 0.4254, and repair-agnostic LSTM as the winner model. Culvert
prediction also benefited from repair-agnostic model training, with the best-performing model,

LSTM, improving its RMSE from 0.8461 to 0.5929.
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Figure 28. Superstructure Results for Repair Events vs Non-Repair
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These results confirm that incorporating bridge and culvert maintenance information in
the training procedure can optimize the models' performance and reduce overfitting, and allow
the network to generalize better from available data.

Comparative Result Summary:

Repair-agnostic models consistently outperform their data-driven versions across all
structural components, as shown in Table 5. Incorporating real-world repair events during the
training process leads to reduced RMSE values, indicating that models trained with repair-
agnostic data are less prone to overfitting and better at capturing underlying deterioration
trends. More specifically, LSTM and BiLSTM models exhibit substantial gains in deck,

superstructure, substructure, and culvert prediction, while models like TCN and GRU show

marked improvement in all categories. These results emphasize the value of using clean,

intervention-considered datasets to enhance the generalization capability of condition rating

models.

Table 5. Comparison of experimental results (RMSE) for Data-Driven vs. Repair-Agnostic models across structural

components

Model Deck Deck Super- Super- Sub- Sub- Culvert

Data-Driven Repair- structure structure | structure | structure | Data- Repair-

Agnostic | Data- Repair- Data- Repair- Driven Agnostic
Driven Agnostic | Driven Agnostic

LSTM 0.3501* 0.3414* | 0.2826* 0.3001 0.2652* 0.2623* 0.8461 0.5929
GRU 0.365 0.3435 0.3097 0.2997 0.3418 0.2902 0.9898 0.671
BiLSTM 0.3793 0.3573 0.2914 0.2739* 0.2712 0.2652 0.8129 0.6624
Linear 0.4155 0.4443 0.8685 0.3551 0.4493 0.4099 0.7102* | 0.5361*
CNN 0.6968 0.7724 0.8949 0.6973 0.7842 0.7498 0.7286 0.67
CNN-BiLSTM 0.481 0.5983 0.6041 0.4981 0.4873 0.5696 0.9057 0.8744
TCN 0.5203 0.3618 0.6831 0.3389 0.702 0.4254 0.8979 0.7215
Multi-Channel-
CNN 0.6831 0.6955 0.7229 0.564 0.5232 0.8402 0.7788 0.7948

Note: The rows represent the different machine- and deep-learning models. The columns are organized in pairs for
side-by-side comparison: the first column in each pair shows the data-driven model results, and the second column
shows the repair-agnostic model results. Highlighted Bold values (marked with an asterisk) indicate the lowest RMSE
within each component. Lower RMSE values correspond to better predictive performance. For example, in the deck
column, the repair-agnostic LSTM model achieves the winning RMSE of 0.3414 (gray with an asterisk). Colors are
provided only for visual emphasis; all results can be interpreted directly from the numerical values.
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3.4.2.3 Comparative Study lll: Physics-Guided Models vs. Repair-Agnostic Physics-Guided (RAPG)
Models

This comparative analysis evaluates the added value of integrating repair-agnostic
training strategies into physics-guided deep learning models. These models already benefit
from physical constraints in the loss function; the addition of repair-agnostic data helps

determine whether further generalization is achievable by considering repair history.

In the deck component, LSTM improves from 0.3319 to 0.3267, and GRU from 0.3319 to
0.3241, showing consistent enhancement in predictive accuracy. BiLSTM improves slightly from
0.3457 to 0.3355. For superstructure condition forecasting, GRU improves from 0.2741 to
0.2565, and CNN from 0.3374 to 0.3167. Substructure models follow a similar trend, where
LSTM improves from 0.2519 to 0.2472, and BiLSTM from 0.2516 to 0.2472. Culvert predictions
show the most dramatic improvement in LSTM, with RMSE dropping from 0.7117 to 0.5057.

Comparative Result Summary:

Across all components, repair-agnostic physics-guided models consistently outperform
their physics-only equivalent, as shown in Table 6. This configuration leverages both domain
knowledge and robust generalization from repair-agnostic data, leading to the most reliable
and physically consistent condition rating forecasts. These results affirm that the repair-
agnostic physics-based approach is the most effective strategy among all evaluated

configurations.

Table 6. Comparison of experimental results (RMSE) for Physics-Guided (PG) vs. Repair-Agnostic Physics-Guided
(RAPG) models across structural components

Model Deck Deck Super- Super- Sub- Sub- Culvert Culver
PG RAPG structure structur | structur structure | PG RAPG
PG RAPG PG RAPG
LSTM 0.3368 0.3267 | 0.2482* 0.2689 0.2519 0.2472* 0.7117 0.5057*
GRU 0.3319* | 0.3241* | 0.2741 0.2565 | 0.2635 0.2534 0.6855 0.6698
BiLSTM 0.3457 0.3355 | 0.2583 0.2679 0.2516* 0.2472* 0.7845 0.6134
Linear 0.3862 0.4093 | 0.2757 0.2791 0.3123 0.2555 0.741 0.5509
CNN 0.4383 0.4603 | 0.3374 0.3167 0.3772 0.3581 0.6802* 0.6092
CNN-BiLSTM 0.4242 0.5834 | 0.3503 0.4675 0.3602 0.5542 0.9125 0.8341
TCN 0.35 0.3822 | 0.3349 0.2787 0.3073 0.3043 1.02 0.7198
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Multi-Channel-
CNN 0.5311 0.6812 0.413 0.5331 0.5224 0.7018 0.7683 0.7814

Note: The rows represent the different machine- and deep-learning models. The columns are organized in pairs for
side-by-side comparison: the first column in each pair shows the physics-guided model results, and the second
column shows the repair-agnostic physics-guided model results. Highlighted Bold values (marked with an asterisk)
indicate the lowest RMSE within each component. Lower RMSE values correspond to better predictive performance.
For example, in the superstructure column, the physics-guided GRU model achieves the winning RMSE of 0.2482
(green highlighted with an asterisk). Colors are provided only for visual emphasis; all results can be interpreted
directly from the numerical values.

3.4.3 Ablation Analysis: Stepwise Performance Improvement from Feature Selection to Repair-
Agnostic Physics Models

To provide a comprehensive understanding of the performance evolution, this section
presents a stepwise ablation analysis demonstrating how structural condition rating predictions

progressively improve across five model stages:

1.The purely data-driven model trained with all available features,
2.The SHAP-selected data-driven model,

3.The Repair-Agnostic (RA) model,

4.The Physics-Guided (PG) model, and

5.The combined Repair-Agnostic Physics-Guided (RAPG) model.

This progressive evaluation highlights the individual and combined contributions of
feature selection, domain-informed learning, and repair-agnostic training to overall model

accuracy and generalization.
Performance Impact of Feature Selection:

As a preliminary step described in section 3.3, feature importance analysis using SHAP

identified the most influential input variables for each component.

Figure 31 and Table 7 illustrate the performance improvement patterns of models when
using all available features compared to only SHAP-selected best features. This comparison
serves as a preliminary ablation analysis, highlighting the performance gains from feature
reduction. This analysis not only improves model performance but also facilitates effective
feature selection. By prioritizing the most informative predictors, we reduce model complexity
and training time while improving generalization.
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Table 7. Improvement in Root Mean Squared Error (RMSE) Achieved by Using SHAP-Selected Best Features over
All Available Features

Model Deck (%) Superstructure (%) | Substructure (%) Culvert (%)
LSTM 66 74 76 27
GRU 65 71 68 15
BiLSTM 63 73 75 29
Linear 99 99 99 98
CNN 91 86 93 74
CNN-BiLSTM 54 45 56 22
TCN 51 52 37 74
Multi-Channel CNN 84 79 90 82

Using only the most important predictors, we achieved an average RMSE improvement
of 63% across all structural components, demonstrating the effectiveness of SHAP-based
feature selection as the foundation for subsequent model development. These optimized
feature sets were then used for all following experiments, including the Repair-Agnostic,

Physics-Guided, and RAPG configurations.
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Deck Results Comparisan: All Features vs Best Features
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Figure 31. Model Performance Using All Features vs. SHAP-Selected Best Features

Progressive Performance Improvement from Data-Driven Models to Repair-Agnostic Physics-

Guided Models

Building on the SHAP-optimized feature inputs, further enhancements were introduced

through physics-guided and repair-agnostic mechanisms.

The optimal subset of features for each component, identified using SHAP values, is
applied to all following models—from the Data-Driven to the RAPG configuration. The Data-
Driven model, built on these selected features, already demonstrates a significant RMSE
improvement compared to the All-Features data-driven models, as mentioned before. The
incorporation of physics-guided loss functions further reinforces performance by implementing
physical consistency, thereby mitigating overfitting to noisy or spurious training signals. The

most substantial improvements, however, are achieved with the RAPG model, which integrates
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both physics-based learning and repair-agnostic training. Table 8 summarizes the stepwise

RMSE improvements observed throughout the model development pipeline.

Table 8. RMSE Improvement Over Training Stages from the All-Features Data-Driven Model to Repair-

Agnostic Physics-Guided (RAPG) Model

AFDDM - Data- | Data-Driven - | Data-Driven - | Data-Driven - AFDDM >
Component

Driven RA PG RAPG RAPG
Deck 66% 2% 5% 7% 69%
Superstructure | 74% 3% 12% 9% 76%
Substructure 75% 1% 5% 7% 77%
Culvert 38% 25% 4% 29% 56%
Avg.

63% 8% 7% 13% 69%
Improvement

Starting with an average 63% gain across all components from feature selection using SHAP

analysis, model performance improves by an additional 7% with the integration of a physics-

guided loss function to data-driven models with SHAP-selected features and 13% upon

incorporating repair-agnostic training data with physics loss, resulting in a total performance

gain of up to 69% (an average improvement of all components) over models trained with all

features. This configuration effectively minimizes bias introduced by historical repair

interventions while retaining the benefits of domain-aware modeling.

Table 9. Stepwise Ablation Analysis: Comparison of RMSE across Data-Driven, Repair-Agnostic, Physics-guided,
and Repair-Agnostic Physics-guided (RAPG) models

Model LSTM GRU BiLSTM | Linear | CNN CNN- TCN Multi-Channel-
BiLSTM CNN

Deck Data-Driven 0.3501 | 0.3650 | 0.3793 | 0.4155 | 0.6968 | 0.4810 | 0.5203 | 0.6831
Deck Repair-agnostic 0.3414 | 0.3435 | 0.3573 | 0.4443 | 0.7724 | 0.5983 | 0.3618 | 0.6955
Deck Physics-guided 0.3368 | 0.3319 | 0.3457 | 0.3862 | 0.4383 | 0.4242 | 0.3500 | 0.5311
Deck Repair-agnostic

0.3267 0.3355 | 0.4093 | 0.4603 | 0.5834 | 0.3822 | 0.6812
Physics-guided
Superstructure

0.2826 | 0.3097 | 0.2914 | 0.8685 | 0.8949 | 0.6041 | 0.6831 | 0.7229
Data-Driven
Superstructure 0.3001 | 0.2997 | 0.2739 | 0.3551 | 0.6973 | 0.4981 | 0.3389 | 0.5640
Repair-agnostic
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Superstructure
0.2482 | 0.2741 | 0.2583 | 0.2757 | 0.3374 | 0.3503 | 0.3349 | 0.4130
Physics-guided

Superstructure
0.2689 0.2679 | 0.2791 | 0.3167 | 0.4675 | 0.2787 | 0.5331

Repair-agnostic PG

Substructure
0.2652 | 0.3418 | 0.2712 | 0.4493 | 0.7842 | 0.4873 | 0.7020 | 0.5232
Data-Driven

Substructure
0.2623 | 0.2902 | 0.2652 | 0.4099 | 0.7498 | 0.5696 | 0.4254 | 0.8402
Repair-agnostic

Substructure
0.2519 | 0.2635 | 0.2516 | 0.3123 | 0.3772 | 0.3602 | 0.3073 | 0.5224
Physics-guided

Substructure

0.2534 0.2555 | 0.3581 | 0.5542 | 0.3043 | 0.7018
Repair-agnostic PG
Culvert Data-Driven 0.8461 | 0.9898 | 0.8129 | 0.7102 | 0.7286 | 0.9057 | 0.8979 | 0.7788

Culvert Repair-agnostic | 0.5929 | 0.6710 | 0.6624 | 0.5361 | 0.6700 | 0.8744 | 0.7215 | 0.7948

Culvert Physics-guided | 0.7117 | 0.6855 | 0.7845 | 0.7410 | 0.6802 | 0.9125 | 1.0200 | 0.7683

Culvert Repair-agnostic
0.6698 | 0.6134 | 0.5509 | 0.6092 | 0.8341 | 0.7198 | 0.7814
Physics-guided

Note: Highlighted cells indicate the lowest (best) RMSE values at each ablation step.Yellow, orange, green, and
blue denote data-driven, repair-agnostic, physics-guided, and repair-agnostic physics-guided (RAPG) models,
respectively. Highlighted cells for each component are as follows:

. Deck: LSTM (0.3501), LSTM (0.3414), GRU (0.3319), GRU (0.3241)

. Superstructure: LSTM (0.2826), BiLSTM (0.2739), LSTM (0.2482), GRU (0.2565)

. Substructure: LSTM (0.2652), LSTM (0.2623), BiLSTM (0.2516), LSTM and BiLSTM (0.2472)
o Culvert: Linear (0.7102), Linear (0.5361), CNN (0.6802), LSTM (0.5057)

Table 9 shows a detailed comparison among four category model configurations trained
with SHAP-selected features. The performance trend strongly demonstrates the effectiveness of
this layered-training strategy. For example, in deck condition prediction, the LSTM model
progressively improves from 0.3501 (Data-Driven) to 0.3414 (Repair-Agnostic), then to 0.3368
(Physics-guided), and finally achieves the best performance at 0.3267 (RAPG). Similarly, the GRU
model follows this pattern with RMSEs of 0.365, 0.3435, 0.3319, and 0.3241, respectively. This
trend is consistent across superstructure, substructure, and culvert predictions, where models
like BiLSTM and GRU demonstrate substantial performance gains under the RAPG configuration.
These findings affirm that integrating both physics-informed loss functions and repair-agnostic

data yields the most accurate and generalizable forecasts for structural condition ratings.
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Ablation Study Outcome:

This stepwise ablation clearly illustrates that the RAPG-DL models consistently

outperform both data-driven and physics-only configurations. The combination of physics-

based modeling and repair-independent training data represents the most effective strategy for

structural deterioration forecasting. The ablation analysis results, presented in Figures 32 to 35,

show that most models follow a consistent pattern of RMSE reduction, highlighting progressive

performance improvements from Data-Driven to Repair-Agnostic Physics-Guided deep learning

models.

Ablation Analysis Results: Deck Condition Rating Prediction
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Figure 32. Deck: Comparison of Ablation Analysis
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Ablation Analysis Results: Superstructure Condition Rating Prediction
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Figure 33. Superstructure: Comparison of Ablation Analysis

Ablation Analysis Results: Substructure Condition Rating Prediction
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Figure 34. Substructure: Comparison of Ablation Analysis
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Ablation Analysis Results: Culvert Condition Rating Prediction
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Figure 35. Culvert: Comparison of Ablation Analysis

3.4.4 Discussion

Our comparative and ablation analysis illustrates that LSTM, BiLSTM, and GRU are the
most prominent models for forecasting the condition of bridge components. Meanwhile, Linear
Regression remains a satisfactory choice for culvert modeling under baseline configurations, as
summarized in Table 10. The superior performance of these recurrent models can be attributed
to their recurrent gated architecture, which effectively captures complex, time-dependent
relationships. The input, forget, and output gates enable the models to dynamically retain or
discard information across time steps, making them particularly well-suited for temporal

deterioration data.

Furthermore, appending physics-based loss functions provides an inductive bias aligned
with real-world behavior, accelerating the model's learning ability. Repair data complements
this by injecting historical intervention context into the learning process. Using temporal
memory, physical constraints, and repair history significantly improves prediction accuracy and

robustness, supporting informed maintenance planning and resource allocation.

Table 10. Best-Performing Models for Structural Condition Rating by Component and Configuration

Component Data-Driven Repair-Agnostic Physics-Guided RAPG
Deck LSTM GRU GRU GRU
Superstructure LSTM BiLSTM LSTM GRU
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Substructure BiLSTM GRU BiLSTM LSTM

Culvert Linear LSTM GRU LSTM

3.5 Sample Forecasting Results

The forecasting results presented in Figures 36—38 are generated using the Make
Forecast functionality of the i-BM platform. This functionality enables users to interactively
produce multi-year condition forecasts by selecting a structure, structural component, trained

model, and prediction horizon through the web-based interface.

When a user initiates the Make Forecast action, the system dynamically retrieves the
relevant historical inspection, traffic, and environmental data from the backend databases
based on the selections made through the frontend interface. The corresponding trained
forecasting model is then loaded from the MLflow model registry and executed to generate
future condition ratings over the specified prediction horizon. The forecasting workflow
supports both data-driven and physics-guided models, as well as repair-aware and non-repair
configurations, enabling flexible scenario analysis. The resulting forecasts can be examined
directly within the i-BM data explorer interface or exported as Excel files for offline analysis and

documentation.

Figure 36 illustrates sample forecasting results visualized directly within the i-BM tool
after execution. In this case, the predicted condition ratings for a selected culvert structure are
displayed as a time-series plot, where historical inspection data are shown alongside future
predictions. Forecasted values have persisted in the database, enabling interactive visualization

and comparison across years for further analysis.
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Figure 36. Sample Forecasting Results Visualized from the Database in the i-BM Tool

In addition to in-platform visualization, the i-BM system allows forecast results to be
exported as structured files for offline analysis and documentation. Figures 37 and 38 present
examples of long-term forecast results exported to files for two different modeling
configurations. Figure 37 presents long-term condition rating forecasts generated using a non-
repair, non-physics (purely data-driven) model. The figure illustrates how future condition
ratings are predicted based solely on historical deterioration patterns observed in the input
data, without explicitly accounting for repair actions or enforcing physics-based constraints. As
reflected in the tabular representation, each row corresponds to an individual bridge deck
identified by a unique Bridge_ID. The left portion of the table contains historical condition

ratings across multiple years (highlighted in yellow), which serve as model inputs, while the
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right portion shows the predicted future condition ratings along with their associated
confidence values for each forecasted year (displayed as alternating prediction and confidence
columns shaded in light blue). This visualization demonstrates how the data-driven model
extrapolates long-term deterioration trends directly from past observations. In contrast, Figure
38 demonstrates results produced using a repair-agnostic physics-guided model, which
incorporates domain knowledge to regulate deterioration trends and enforce physically

meaningful behavior over extended forecast horizons.

Rating Tyjinput inpuinput|inpyinput inpu| lnpjlnpdlnpg inpipudlnlgi:nnﬁd redictif :nnﬁd-ipmdi:jcmﬁpudl:ﬂo¢unﬁd-dpr-dinﬂcunﬂd-|prﬂdld:nnﬂdipr-dlc :unﬁdd prudldcunﬁd- pmdg:nnﬁd-d pndldmnﬁd-m

D-01-CC-070  |deck 5 5 5 5 6 [3 6 6] 6 6 6|0.997 6]0.997 6]0.996 5/0.996 5/0.995 5/0.995 75 0.994 5|0.993 5|0.992 5|0.991
D-01-CC-080 |deck B 7 7 7 B 6| 13 6| 6 6 6]0.997 6]0.997 6]0.997 6/0.997 £/0.997 6/0.996 £5]0.996 5|0.996 5]0.995 5|0.995
D-01-CC-083  |deck 6 6| 6 6| 6 13 6 6] 6 6 6]0.997 6]0.996 6]0.996 6/0.996 6/0.996 6/0.996 6]0.996 6]0.996 6]0.996 6|0.996
D-01-CC-100 |deck B 7 7 7 7 7 7 7l 77 7]0.999 7]0.999 7]0.999 7]0.999 £/0.998 6/0.998 £5]0.998 6)0.997 6)0.997 6]0.996
D-01-CC-110A |deck 7 B 8 8 7 7 7] 71 7 7 7|0.999 7|0.999 7|0.999 7|0.999 7/0.999 7|0.999 7/0.999 7|0.999 7|0.999 7|0.999
D-01-CC-140  |deck B 7 7 7 5 5 5 5| 5 5 5]0.993 5]0.993 5]0.993 5|0.992 5/0.991 5/0.991 5]0.990 5|0.989 410.988 4|0.987
D-01-CC-150  |deck 7 7 7 7 B 6| 13 6| 6 6 6]0.997 6]0.996 5]0.996 5/0.995 5/0.995 5]0.995 5]0.994 5]0.994 5]0.994 5|0.994
D-01-CC-160  |deck 7 7 7 7 6 6| 6] 6] 6 5 5|0.993 5|0.993 5|0.993 5/0.993 5/0.993 5|0.993 5]0.993 5|0.993 5]0.993 5|0.994
D-01-CC-168  |deck 7 8 8 8| B 7| 7 7 77 710.999 710.999 7]0.999 7]0.999 7/0.999 710.999 7]0.999 7]0.999 710.999 710.999
D-01-CC-170A |deck 8 8 3 7 7] 7 7 77 7|0.999 710.999 7|0.999 7|0.999 7/0.999 6/0.998 6]0.998 6)0.998 6]0.998 6]0.998
D-01-CC-172  |deck 7] 8| 8| 8| 77 N 77 7|0.999 7]|0.999 7]0.999 7/0.999 7]0.999 7]0.999 7]0.999 7]0.999 6]0.998 6]0.998
D-01-CC-180A |deck 7 7 77 6 6| 6] 6| 6 6 6(0.998 6(0.998 6[0.998 6)0.998 60.998 6(0.908 60.998 6[0.998 7[0.999 7[0.999
D-01-CC-190 |deck 7 7 77 6] 6 6] 6] B 6 6]0.997 6]0.997 6]0.997 6]0.997 6/0.996 5]0.996 5]0.995 5]0.995 5]0.994 5|0.994
D-01-CC-200  |deck 6 7 7 7 6 6 [ 6 6 6 6(0.997 6[0.997 6[0.996 5/0.996 5/0.995 5(0.994 5/0.993 5[0.993 5(0.992 5[0.991
D-01-CC-210A |deck 7] 8| 8 7 6l 7 71 7 7 7 7|0.999 7|0.999 7]0.999 7/0.999 8(0.999 8|1.000 8(1.000 8|1.000 8|1.000 8|1.000
D-01-CC-220A |deck 7 7 7| 8 7 7] 7 7l 77 7(0.999 7[0.999 7[0.999 7|0.999 7/0.999 7[0.909 7|0.999 7[0.999 7[0.999 7(0.999
D-01-CC-230A |deck 77 77 6 6 6 6 6 6 60.997 6|0.997 6|0.997 6/0.996 5/0.995 5|0.995 5]0.995 5|0.995 5|0.994 5/0.994
D-01-CC-240A |deck 7 7 7l 7 7| 7 71 71 7| 6 60.998 6)0.998 6)0.998 6/0.998 6]0.998 6]0.998 6]0.998 6|0.998 6]0.998 6]0.998
D-01-CC-250 |deck B 7 7 7 7 7| 7 7l 7 7 710.999 710.999 7]0.999 7/0.999 7(0.999 710.999 7]0.999 6]0.998 6]0.998 6]0.998
D-01-CC-260A |deck 7 7 7 7 6 [3 6] 6] 6 6 6]0.998 6]0.998 6]0.998 7/0.999 7/0.999 7|0.999 7]0.999 7|0.939 710.999 7|0.999
D-01-CC-270  |deck B [3 6 6| B 13 6] 6| 6 6 wﬂ? &JHQ? 6]0.996 5]0.996 5/0.995 5|0.994 5]0.993 5]0.992 5]0.991 5|0.990

Figure 37. Sample Long-Term Forecast Results Using a Non-Repair, Non-Physics Model (Exported to

File)

W'm"' ij' . . . . PSS PR P . P P ﬁr . . predi . predi b
D-01-CC-070 deck 5 50 5 5 5|55 5 5 77 77 6[0.997 6]0.997 6]0.997 6/0.996 6]0.996 5]0.996 5/0.995] 510.995 510.995 5]0.995
D-01-CC-080 deck 6l 7| 7 7?6l 77 7 77 EID.B'!? 6[0.997 6[0.997 60.997 6[0.997 6/0.996 6|0.996| 6(0.996 5(0.996 5|0.996
D-01-CC-083 deck 6] 6 6 6 6| 6/ 6 6] 6| 6 6 6 6 6/0.998 6]0.998 6]0.998 6/0.998 6]0.998 6/0.998 6/0.998] 6]0.998 6]0.998 6/0.998
D-01-CC-100 deck 6|l 7| 7 7?6l 77 7 7777 7/0.999 7]0.999 710.999 65/0.998 6]0.998 6/0.998 6/0.998] 6]0.998 6]0.997 6/0.997
D-01-CC-110A  |deck 7| 8 8 8 8777 7 77 77 7/0.999 6]0.998 6]0.998 6/0.998 6|0.997 6]0.996 5/0.996] 5]0.995 5]0.993 5(0.992
D-01-CC-140 deck 6| 7| 7 7 7/ 6/ 6/ 6/ B 6 6 6 & 5/0.993 5|0.993 5]0.992 5/0.992 5|0.992 5]0.991 5/0.991) 5]0.990 5]0.990 5]0.989
D-01-CC-150 deck 7 77 7 7|77 7 7 6 6 6 6 6/0.997 6|0.996 5|0.995 5/0.995 5|0.994 5/0.993 5/0.992] 5]0.991 5|0.990 4|0.989
D-01-CC-160 deck 777 7 717,68/ 6/ B 6 6 6 8 5/0.992 5/0.991 410.989 4/0.986 4|0.984 4]0.980 410.978| 3]0.971 3|0.964 3|0.957
D-01-CC-168 deck 7| B 8| B 8|78 7 7 77 77 7/0.999 6|0.998 6]0.998 6/0.997 6|0.996 5|0.996 5/0.995| 5]0.993 5|0.992 5|0.990
D-01-CC-170A |deck 8| 8 8 8 8|8 8 7 7 I N7 7/0.999 6|0.998 6]0.998 £/0.997 6|0.996 5]0.995 5/0.994| 5]0.993 5]0.991 410,989
D-01-CC-172 deck 7| B 8| B 8|7/ 8 8 B8 8 8| 8 7/0.999 6|0.998 6)|0.998 6/0.997 6|0.997 6]0.996 5/0.995| 5]0.995 5|0.993 5/0.992
D-01-CC-180A |deck 77 oA Ay £/0.997 5|0.996 5]0.994 5/0.993 5]0.991 410,988 410.986| 410.982 4]0.978 410,974
D-01-CC-190 deck 777 7 7| 7|6/ 6/ 6 6 6 6 6 6/0.997 6|0.997 6]|0.997 6/0.997 6|0.997 6]0.996 6/0.996| 5|0.996 5]0.995 5/0.995
D-01-CC-200 deck 6| 7| 7 oo e\ 6/0.997 £]0.997 6]0.997 6/0.996 £]0.996 5]0.996 5/0.996| 5]0.995 5]0.995 5]0.995
D-01-CC-210A  |deck 7| 8| 8 LN 7 7/0.999 6]0.998 6)0.998 6/0.997 6]0.997 6]0.996 5/0.995| 5]0.995 5]0.994 5(0.993
D-01-CC-220A |deck 7] 7| 7| 8 8[7 8 8| 8 8 8 7 7 7|0.999 7]0.999 6)0.998 6/0.998 6]0.998 6]0.997 6]0.997| 6]0.996 5|0.996 5]0.995
D-01-CC-230A  |deck | 7 7 7 77 6] B B 6 6 6 6[0.997 6[0.997 6[0.996 50.996 5[0.995 5|0.995 5/0.994| 5[0.994 5[0.993 5)0.992
D-01-CC-240A |deck A A O O O O A e A O O O 6/0.997 6]0.997 6]0.997 6/0.997 6|0.997 6]0.997 6]0.997| 6]0.996 6]0.996 5]0.996
D-01-CC-250 deck 6| 7| 7| 7 el 7 7 7 T 7/0.999 7(0.999 7(0.999 7/0.999 6[0.998 6/0.998 6(0.998| 6(0.998 6(0.998 6)0.998
D-01-CC-260A |deck b A O O e e e A O O 6/0.997 5|0.996 5|0.995 5/0.993 5|0.992 5]0.950 4|0.988)| 4|0.986 4|0.984 410,981
D-01-CC-270 deck 6| 6 6 6 6|/ 6/ 6/ 6/ 6 6 6 6 & 6/0.997 6[0.996 5[0.995 50.994 5(0.993 5|0.992 5/0.991 5(0.990 4(0.989 4|0.987
F-16-TR deck 0] 8 8| 8 8| 8/ 8 8 8 8| 8 8 8 7/0.999 7|0.999 710.999 7/0.999 7|0.999 7(0.999 7|0.999| 710.999 7]0.999 7(0.999
F-17-NB deck 0l 0O 0] O0f OojojDO/ O O 8 8| 8 65/0.998 6]0.998 6]0.998 £5/0.998 6]0.998 6|0.998 B % 6]0.998 6]0.998 6|0.998

Figure 38. Sample Long-Term Forecast Results Using a Repair-Agnostic Physics Model (Exported to
File)

Together, these results highlight the flexibility of the Make Forecast functionality in
supporting multiple modeling paradigms and output formats.By enabling both in-tool
visualization and file-based export, the i-BM platform facilitates detailed examination of long-
term deterioration trends and supports data-driven decision-making for infrastructure

maintenance planning and management.
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Chapter 4. Bridge Anomaly Detection

4.1 Problem Definition

Time-series anomaly detection aims to identify abnormal patterns or events that
deviate significantly from normal temporal behavior. These anomalies often correspond to
system faults, data errors, or rare operational events. While deep learning—based methods such
as CNN, LSTM, and Transformer architectures have achieved strong detection performance,
their success heavily depends on the availability of large, high-quality labeled datasets.
Unfortunately, manual labeling of time-series anomalies is costly, time-consuming, and
ambiguous, since abnormal behaviors vary in scale, duration, and semantics. Traditional
unsupervised methods (e.g., Isolation Forest, Autoencoder, LOF) require no labels but often
yield suboptimal and unstable results. Meanwhile, fully supervised models demand extensive
labeling that is impractical in industrial contexts.

To address this labeling bottleneck, Haotian Guo et al. in LEIAD [59] defined a new
research objective:

Develop a label-efficient anomaly detection framework that minimizes manual
supervision while maintaining high detection accuracy.

Accordingly, we define the anomaly detection problem as follows:

Given a multivariate time-series dataset X={x1,xz,...,x1}, detect anomalies A={a1,ay,...,at}
with minimal human-labeled samples, leveraging weak supervision, active learning, and

heuristic labeling functions.

4.2 Literature Review
In this section, we review existing methods that are commonly applied in anomaly

detection research and practice.

4.2.1 Unsupervised Anomaly Detection (UAD)

Unsupervised methods detect anomalies by modeling normal behavior and identifying
deviations. Classic UAD approaches include:
eslsolation Forest (I-Forest): builds isolation trees that separate abnormal points with
fewer splits, producing anomaly scores based on path lengths.
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eSpectral Residual (SR): applies Fourier Transform to filter frequency-domain signals
and reconstructs time-domain residuals for anomaly detection.

«STL (Seasonal-Trend Decomposition): separates trend and seasonal components,
marking residual outliers as anomalies.

eRC-Forest (Random Cut Forest): builds ensembles of random cut trees to isolate
anomalies probabilistically.

eLuminol: a lightweight library by LinkedIn used for streaming anomaly detection.

Each of these UAD models has specific assumptions about data distribution and works
independently. However, no single model performs optimally across diverse datasets or
scenarios. LEIAD [59] mitigates this limitation by aggregating multiple UAD outputs to produce

initial pseudo-labels that are then refined interactively.

4.2.2 Active Learning

Active learning reduces annotation cost by querying labels for only the most informative
samples. Instead of labeling all data, a model iteratively selects uncertain points and requests

user feedback to improve performance.
However, existing active learning frameworks face two issues:

1.Cold-start problem — initial labeled data are needed to bootstrap the model.

2.Limited scalability — most approaches have not been adapted for time-series
anomaly detection, where dependencies exist across timestamps.

LEIAD [59] addresses these limitations by integrating weak supervision to generate
initial pseudo-labels, providing a warm start for the active learning process. Then, active queries

refine the model using uncertainty-based feedback from human annotators.

4.2.3 Weak Supervision

Weak supervision provides an efficient means of generating approximate labels using
heuristic rules, domain knowledge, or multiple noisy sources instead of manual annotation.
Frameworks such as Snorkel combine several labeling functions (LFs) to synthesize probabilistic

labels.

LEIAD [59] extends weak supervision for time-series data by using:
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eMultiple UAD methods as initial labeling functions.

+A label model that aggregates these weak labels into probabilistic scores.

eslterative refinement where new labeling functions are generated from user feedback.
This enables learning even without explicit ground truth, reducing dependency on large-

scale manual annotation.

4.3 Proposed Methods

The proposed Label-Efficient Interactive Time-Series Anomaly Detection (LEIAD) [59]
system integrates unsupervised detection, weak supervision, active learning, and automatic
labeling-function generation into a uniform framework. Its goal is to iteratively improve
anomaly detection performance with minimal human supervision by combining automated
model outputs with selective expert feedback. The original LEIAD [59] framework was trained
and tested using benchmark time-series datasets such as Yahoo, Microsoft, and KPI. In this
study, we adapted the same framework to train and detect anomalies in the National Bridge

Inventory (NBI) dataset.

4.3.1 System Overview
LEIAD [59] operates as an interactive pipeline that continuously refines its
understanding of anomalies over time (see Figure 8 in section 2.4.1). The workflow consists of

four main stages:
The pipeline proceeds as follows:

1.Initial Label Generation: Apply multiple UAD models (e.g., I-Forest, SR, STL, RC-Forest,
Luminol) to obtain initial pseudo-labels.

2.Weak Supervision Module: Aggregate pseudo-labels using a generative label model
(Snorkel) that produces probabilistic soft labels.

3.End Model Training: Train a supervised anomaly detection model (e.g., LightGBM or
DNN) using the aggregated weak labels.

4.Active Learning Module: Query human feedback on uncertain or conflicting segments
to refine model predictions.

5.Label Function Generator: Convert new feedback into additional heuristic LFs,
expanding the weak supervision pool.
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This loop continues until model predictions stabilize and labeling cost is minimized.

4.3.2 Unsupervised Anomaly Detector (UAD)
Let X={x1,X2,...,x7} denote a time-series. Each UAD method produces anomaly scores si'™),

where m indexes different detectors. LEIAD normalizes and ensembles these outputs:
1 M
P(x,) = M Z ng) (16)
m=1

The ensemble score P(x:) provides initial pseudo-labels for the weak supervision

module, enabling cross-model robustness.

4.3.3 Weak Supervision Module
Using Snorkel, the weak supervision model integrates multiple LFs to infer probabilistic

labels without ground truth.

For each time point xi, let L=[L1(xt),L2(xt),...,Lm(Xt)] be the LF votes. The generative model

estimates:

M
Re(YIL) = zexp () - (L V) (17)
=1

where w;j are model weights and ¢; represent label correlations.

This step produces denoised labels that serve as training data for the end model.
4.3.4 End Model

The end model is a binary classifier fg(x;) predicting whether a point is anomalous. It
minimizes:

_ A
Lend = E Z{XEFyK}ELCE(fﬁ(Xt)JYt) (18)
where CE denotes cross-entropy loss.

LEIAD uses LightGBM for its efficiency and robustness on tabular and time-series data.

Input features include:
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eStatistical metrics: mean, variance, skewness, kurtosis, etc.

eTransformations: log, trend, and seasonality components.

«Sliding window statistics: across multiple scales (10, 50, 100, 200 timesteps).

eRatios/Differences: relative deviation from previous intervals.

4.3.5 Active Learning Module

The active learning agent selects the most informative samples based on four metrics:

1.Agreement of Labeling Functions

A(x) = —Z[pl(xt)log pi(x0) + (1 — pi(xe))log (1 — pi(x¢))]
1=1

2.Abstention Count
H(x:) = log (count; p(xX;) + 1)
3.Uncertainty of End Model
U(xt) = —[po(X)log pe(X¢) + (1 — po(xc))log (1 — pe(X))]

4.Diversity

1

D(x,)=1- T Zxkesl sim(Xy, Xi)

The combined query function determining which samples to label is:

Q(x¢) = aA(X¢) + BH(x¢) + YU(%¢) + 6D(x;)

where coefficients a, B, y, and 6 control the trade-off among criteria.

4.3.6 Label Function Generation

Once human feedback is collected, LEIAD [59] automatically transforms it into new

labeling functions using time-series embedding similarity.

Given an annotated pair (xi,yi), similar instances are found via cosine distance in a

learned embedding space:

sim(x;, ;) =l r(x;) — r(x;) Il

If similarity exceeds a threshold, a new LF is created to generalize that labeling rule

across the dataset.

(19)

(20)

(21)

(22)

(23)

This adaptive mechanism enables continual improvement of the weak supervision pooal,

enhancing scalability and reducing manual labeling costs.
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4.3.7 Advantages of LEIAD
eLabel-efficient: minimizes human annotation through interactive learning.
eHybrid learning: combines unsupervised, weakly supervised, and active learning
paradigms.
eAdaptable: automatically generates new heuristic rules from user feedback.

eIndustrial scalability: validated on Microsoft’s monitoring datasets.

4.5 Tool Description and Sample Results

This section provides an overview of the implemented interface and illustrative results

obtained from the i-BM tool.

4.5.1 Anomaly Analysis Model Management Interface

The Anomaly Analysis Model Management Window provides an interactive interface for
generating datasets, configuring models, and training anomaly detection algorithms on bridge
and culvert condition data. Users can begin by selecting the Structure Category (e.g., Bridge or
Culvert) and the Group Name or structure selection criteria. The interface then allows
specification of the Component to be analyzed (such as Deck, Superstructure, Substructure, or

Culvert) under the Condition Rating Data Generation panel.

After selecting the desired component, users can click Generate Dataset to
automatically retrieve condition rating data for the selected structure from the database. For
advanced configuration, the Model Configuration option allows users to optionally adjust
training parameters such as Epoch Number, Warm or Cold Start, or others. The Start the Train
Window button initiates the anomaly detection model training, while the Save Iteration button
stores the current training progress for future continuation. The Restart button enables users
to resume training from a previously saved incomplete iteration, ensuring flexibility and

continuity during multi-stage training processes.

During the iterative training process, one bridge time-series sequence is displayed per
iteration. The user can visually inspect this sequence and mark potential anomalies based on
the plotted data. Once an anomaly is identified and confirmed in the Next Iteration button, the

model retrains in the backend using the user’s labeling feedback and then automatically
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presents the next most likely bridge candidate for anomaly review. This iterative process
continues until the user is satisfied with the model’s performance or when no anomalous

patterns are detected after several consecutive iterations.

Once the training is complete, the user can finalize and save the trained model by
clicking End Iteration, which stores the final model parameters for future use to detect

anomalies from unseen data using the i-BM Anomaly Detection interface.

This module makes the anomaly detection workflow interactive, explainable, and data-
driven—empowering bridge engineers to iteratively refine and train models that can
automatically identify abnormal performance behaviors or unexpected deterioration patterns

across bridge components. Figure 39 shows the model management interface in the i-BM

system.
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Figure 39. Model Management Interface to Train an Anomaly Model

4.5.2 Anomaly Detection Interface

The anomaly detection interface enables users to identify abnormal behavior in bridge
component condition ratings using trained anomaly detection models. Users can begin by

selecting the structure category (e.g., Bridge or Culvert) and choosing a group name or all
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structures for evaluation. Components available for anomaly analysis—Deck, Superstructure,

Substructure, and Culvert—can be selected through the Component Selection panel.

After component selection, users can choose a trained model and click on Detect. After
clicking Detect, the system executes the selected anomaly detection model in the backend and
visualizes the resulting condition rating time-series on a dynamic chart. Users can choose an

individual bridge from a dropdown list to show and analyze.

Anomalous points are automatically highlighted in red, while normal data points are
shown in blue, allowing bridge engineers to visually inspect periods of abnormal trends or data
irregularities. Detected anomalies may indicate unusual deterioration patterns, measurement

inconsistencies, or potential inspection/reporting errors that require further review.

Once the detection process is completed, users can either save results to the database
for further analysis or export the results to a file for external documentation or reporting. This
streamlined interface enhances the usability of the anomaly detection module, enabling
engineers to quickly identify, validate, and record performance anomalies in bridge and culvert

components across multiple structures.

4.5.3 Sample Results

Figure 40 shows some sample results generated by the i-BM anomaly detection model.
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Figure 40. Sample Results from i-BM Anomaly Detection
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Chapter 5. Conclusions and Future Work

In this study, we designed, developed, and deployed an end-to-end intelligent bridge
management tool (i-BM) for bridge and culvert deterioration forecasting and anomaly
detection to be used by CDOT bridge engineers as a tool for effective bridge management. |-BM
integrates a series of data-driven deep learning models and their physics-guided extension DL
models for bridge deterioration forecasting, as well as an interactive training framework for
bridge anomaly detection. Before integrating the models into i-BM, we conducted extensive
experimental evaluations using multimodal real-world datasets, including bridge performance,
traffic, and weather data for all bridges in Colorado. The results demonstrated that our
proposed physics-guided deep learning models significantly outperform existing purely data-
driven models previously developed for bridge and culvert deterioration forecasting. Moreover,
the standalone software package allows bridge engineers to either use pre-trained models or
train their own models by selecting from approximately 32 model configurations with different
combinations of input features, enabling comprehensive training, forecasting, and evaluation of
predictive performance. This tool was developed by building upon and extending our previous
work in three key ways: 1) it integrates the deep learning models into a user-friendly software
tool with graphical user interface and improved operational features to improve usability and
functionality, 2) it incorporates enhanced physics-guided deep learning models that integrate
traditional physics based bridge deterioration forecasting models with data-driven deep
learning models for further improved performance in prediction of deterioration, and 3) it
develops bridge performance anomaly detection that allows for accurate prediction of bridge

performance anomalies such as those that can lead to bridge failures/accidents.

In the future, we plan to integrate work-order optimization into the current Intelligent
Bridge Management (i-BM) tool to enable cost-effective maintenance of bridges and culverts
using both component-level and element-level deterioration forecasting. We also aim to extend
this tool into a comprehensive structural management platform that serves as an intelligent

assistant for bridge engineers, incorporating more advanced technologies.
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