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Executive Summary

Bridge engineers in governmental transportation agencies need to regularly forecast the 

deterioration condition of the bridges under their supervision in order to develop bridge 

maintenance plans, and even more importantly, identify anomalous bridge deterioration that 

can result in bridge accidents. Since 1970’s, several U.S. Acts have mandated all local and state 

transportation agencies across the nation to perform regular inspections of the bridges (and 

culverts) in the regions under their jurisdiction. These inspections have generated valuable 

historical databases of bridge performance data, which have remained considerably 

underutilized to date. In this project, with the advent of machine learning and data mining 

methods, we envisioned data-driven solutions that could derive valuable hidden knowledge 

from these databases, the knowledge that could be effectively utilized for enhanced bridge 

management. Toward this end,  with this study we have developed a hybrid deep learning 

methodology that combines advanced data-driven artificial intelligence (AI) models (namely, 

deep learning model) with traditional mechanistic models (namely, physics-based models) to 

accelerate model learning and improved performance that can leverage the existing historical 

bridge (and culvert) performance data, as well as weather data and traffic data, to enable (1) 

accurate bridge deterioration forecasting (i.e., predictive analytics), and (2)  An interactive 

bridge anomaly detection framework that identifies abnormal deterioration patterns and 

potential inspection or reporting inconsistencies to enable early detection of bridge (and 

culvert) performance anomalies. With extensive experimental evaluation using multi-modal 

real datasets, including bridge performance data, traffic data, and weather data for all bridges 

in Colorado, we have demonstrated that a selection of our proposed models significantly 

outperforms existing models for the deterioration forecasting.

Accordingly, we have turned the deep learning models along with their physics-guided 

extension developed under this project into an software system dubbed Intelligent Bridge 

Management (i-BM), an advanced, data-driven artificial intelligence (AI) tool that can facilitate 

effective bridge management for Colorado Department of Transportation (CDOT) bridge 

engineers. Unlike existing bridge management tools such as BrM (i.e., the AASHTO sponsored 
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Bridge Management software) used by most of the bridge engineers across the nation, to the 

best of our knowledge, our proposed tool is the first to make accurate deterioration 

forecasts/predictions based on historical data, in a similar way weather forecasts are 

generated. This tool is developed as a standalone, web-based, and user-friendly software 

application.

Implementation Statement

We have developed and delivered a tool for bridge deterioration forecasting and bridge 

anomaly detection that can make accurate deterioration forecasts/predictions based on 

historical data. We have demonstrated accuracy of our proposed advanced physics-guided 

data-driven AI models (namely, physics-guided deep learning models) that enable this tool via 

extensive and rigorous experimental evaluation using multi-modal real datasets including 

bridge performance data, traffic data and weather data for all bridges in Colorado, and shown 

that a selection of our proposed models significantly outperform existing models for bridge 

deterioration forecasting and bridge anomaly detection.

We recommend the adoption of the developed tool by bridge engineers in state and 

local transportation agencies to enable further accurate and enhanced bridge deterioration 

forecasting, which in turn can improve the ability of these agencies for more cost-effective and 

efficient bridge management and maintenance planning.
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Chapter 1. Introduction
Bridges deteriorate with time and use. The deterioration process is affected by several 

factors, such as materials, structural design and behavior, daily traffic, freeze and thaw cycles, 

climate, pollution, and temperature variation [24-26]. After a certain period of time has 

elapsed, the deterioration processes accelerate, and in a relatively short time interval, the 

components can lose the capacity to carry the loads they were designed to support.

To address this national issue, several US Acts [27] mandate the state and local 

governmental agencies (including cities, state transportation agencies, etc.) to perform regular 

bridge inspections. These Acts define the requirements, periodicity, and procedures for such 

inspections in the US. Inspections are required to assess the extension, implications, and 

current state of deterioration processes that may exist, and they need to be performed at 

regular time intervals, typically every 2 years. A bridge report is generated after each 

inspection. All bridge reports collect and offer specific data about the health of the inspected 

bridge, including condition rating, structure identification, year built, average daily traffic, and 

average daily truck traffic. For example, condition ratings (aka condition indexes) are 

quantitative descriptors of the state of structural parts that can be used in the assessment for 

the structure's maintenance [26, 27]. By associating a deteriorated state with a number, instead 

of using a qualitative description of the state, much more flexibility can be achieved in 

monitoring groups of similar structures [28-33]. The adoption of condition ratings in the 

evaluation of structures allows consistency and uniformity, making it possible to compare 

structural performance, establish priorities, and also prevent failures and accidents. 

The aforementioned inspections across the nation, which have been conducted since 

the 1970s (including our region), have generated valuable historic databases of bridge data 

based in local and state governmental agencies. While these agencies currently use these 

inspections to prevent failure and to administrate the national bridge network by setting 

priorities and establishing criteria to allocate available resources to the structures in the most 

critical conditions, we believe these databases are heavily underutilized. In particular, with the 

advent of machine learning and data mining methods, we envision data-driven solutions that 
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can derive much more valuable hidden knowledge that can be utilized for enhanced bridge 

management. 

While in the past, various data-driven deterioration models, including Bayesian models, 

Probit models, and Markov chains, were proposed in the literature to model bridge 

deterioration [24, 25, 34-38], these models either suffer from low accuracy or are too complex 

to be applicable. Moreover, they only address the problem of deterioration forecasting. 

Recently, deep learning has been shown to significantly outperform other analytical modeling 

methodologies in a variety of application domains, such as computational biology, Electronic 

Health Record (EHR) data analysis, activity detection, scene labeling, image captioning, and 

object detection [39-47]. In the past, we have introduced and deployed various deep learning-

based models, e.g., for sleep stage classification using brain signals [48, 49], mobility monitoring

[50, 51], and activity classification [52]. In our previous study, we proposed to develop deep 

learning models for enhanced bridge management. In particular, we focused on the two 

problems of bridge subtyping (descriptive analysis) and data-driven bridge deterioration 

forecasting (predictive analysis) [53]. 

Traditionally, many researchers have introduced mechanistic physics-based methods, 

such as simulation-based [54] and finite element modeling, to explore and predict signs of 

deterioration such as corrosion, fatigue, and cracking [55]. Because data-driven models 

overlook physics-based mechanisms and rely solely on data patterns, while physics-based 

models disregard real historical data and depend only on equations and parameters, a 

persistent gap remains in deterioration forecasting. In many other domains, in order to bridge 

the similar research gap, researchers have introduced the so-called physics-informed neural 

networks (PINN) [56-58], which integrate physics-based models with AI-driven data-driven 

models to facilitate model learning from the valuable insights of both modeling approaches. In 

this study, we extend our earlier work by developing a full-fledged, data-driven software 

platform that integrates advanced AI models for bridge monitoring and decision support in a 

user-friendly graphical user interface with enhanced operational features. This platform 

incorporates previously developed deep learning models as well as additional hybrid physics-

guided models that embed physics-based knowledge into the data-driven models. Moreover, 



11

anomalous data points can hamper model training and negatively affect model performance. 

To address this issue, we have designed an anomaly detection framework as part of this study 

to identify and manage anomalies in real-time bridge data. Effective solutions for these 

problems will significantly advance the state-of-the-art in bridge management.

Below, we summarize three contributions of this research project: 

1.Intelligent Bridge Management (i-BM) System: We have undertaken a full-phased 

software development effort to design and implement the Intelligent Bridge 

Management (i-BM) system—an integrated, user-friendly platform that unifies data 

management, forecasting, and anomaly detection modules. The i-BM software serves as 

an operational environment where bridge engineers can visualize, analyze, and manage 

bridge performance data through interactive, data-driven, and physics-informed tools.

2.Physics-Guided Bridge Deterioration Forecasting Model for Predictive Analysis: With this 

advanced deterioration forecasting model, one can perform predictive analysis of 

bridges through accurate forecasting of quantitative descriptors of structural 

deterioration (e.g., condition ratings) by integrating both data-driven learning and 

physics-based principles. The incorporation of physics-informed constraints enables the 

model to capture real-world deterioration mechanisms more accurately, ensuring 

parameter-consistent and interpretable predictions. Accurate prediction of these 

descriptors is not only crucial for establishing maintenance priorities and performing 

proactive bridge monitoring with optimized resource allocation, but also, more 

importantly, essential for failure prevention.  

3.Anomaly Detection Algorithm for Data Quality and Predictive Diagnostics: With this 

novel algorithm, one can perform automated detection of anomalous bridge 

performance, addressing issues that may lead to unexpected failures or accidents. This 

tool enables diagnostic and predictive analysis of bridge performance data by (1) 

automatically identifying anomalous or inconsistent patterns in historical and real-time 

bridge condition data abnormal deterioration trends; (2) validating and refining anomaly 

labels through an interactive active learning interface, where users can visually review 
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and confirm anomalies; and (3) continuously retraining the model using these user-

verified samples to enhance its detection capabilities across new datasets and use cases. 

This iterative learning process enables the users to perform predictive analysis of the 

bridge performance by accurate prediction of quantitative descriptors for the structure 

deterioration state (e.g., condition ratings) while proactively identifying and flagging 

possible anomalies in the deterioration pattern of the bridge structure in advance. 

Accurate prediction of such anomalies is essential not only for improving the quality and 

reliability of the data but also for failure prevention by supporting early detection of 

potential safety issues (e.g., bridge accidents), facilitating timely maintenance, and 

informed bridge management decisions.

Note that the second and third algorithmic contributions are also incorporated in i-BM to offer 

all aforementioned capabilities under a unified software platform.  

I-BM allows for enhanced bridge management by improving depth, accuracy, and 

efficiency/speed in descriptive, diagnostic, and predictive analysis of the historic bridge data 

reported by bridge inspectors. In turn, this can lead to more effective resource allocation for 

bridge monitoring, maintenance, and construction. 

In the remainder of this report, Section 2 introduces the Intelligent Bridge Management 

(i-BM) system, describing its overall architecture, software modules, and underlying 

technologies. It also details the integrated data sources and the functionalities of each major 

component, including the Forecasting and Anomaly Detection modules. Thereafter, Section 3 

presents the Physics-Guided Bridge Deterioration Forecasting approach, including related work, 

methodological framework, and model evaluation. Section 4 focuses on the Anomaly Detection 

Framework for Bridge Deterioration, reviewing relevant literature and explaining the underlying 

methods and implementation strategy, respectively. Finally, in Section 5, we will conclude and 

briefly discuss future directions for this research and system enhancement.
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Chapter 2. Intelligent Bridge Management (i-BM) System
The Intelligent Bridge Management (i-BM) system is a user-friendly, data-driven web-

based software platform equipped with a graphical user interface and advanced analytical 

capabilities. It is designed to assist CDOT bridge engineers in making accurate, data-informed 

predictions of bridge and culvert deterioration and to support proactive maintenance planning. 

The i-BM system integrates multiple data sources—such as the National Bridge Inventory (NBI) 

and weather datasets—along with several artificial intelligence (AI) modules, including baseline 

deep learning forecasting models, physics-guided forecasting models, and anomaly detection 

frameworks, into a unified operational environment for intelligent decision-making. Its 

interconnected architecture enables seamless communication among components, ensuring 

efficient data processing, model execution, and visualization through an interactive interface. 

This section presents the overall system design, architecture, software modules, and core 

technologies that comprehensively enable the i-BM system’s intelligent bridge management 

capabilities. The subsequent sections—2.1 (System Architecture), 2.2 (Data Module), 2.3 

(Forecast Module), and 2.4 (Anomaly Detection Module)—describe these components and 

their workflows in detail.

2.1 System Architecture

The Intelligent Bridge Management (i-BM) system follows a modular, web-based, cloud-

hosted architecture that integrates data management, model development, model registry, and 

deployment components within a uniform structure. The system is designed for scalability, 

interoperability, and efficient execution of AI-driven bridge management tasks, enabling 

smooth interaction between server-side data processing and client-side visualization. The 

overall system architecture of the i-BM platform is illustrated in Figure 1, which depicts the 

interaction among key components and the data flow across different layers—from data 

ingestion and preprocessing to model training, registry, deployment, and visualization through 

the user interface.
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Figure 1. Overall Architecture of the Intelligent Bridge Management (i-BM) System

2.1.1 Server-Side Architecture

The i-BM backend is hosted on an Amazon EC2 instance within the Colorado 

Department of Transportation (CDOT) cloud infrastructure. The system adopts microservices-

based architecture, where multiple backend services—such as Data Management, Forecasting, 

Anomaly Detection, Family Generation, and Model Registry—are deployed as independent 

Docker containers or system-level services. This containerized structure ensures modularity, 

scalability, and ease of maintenance across the platform. All services are integrated under a 

single secure public interface, accessible via https://intelligencebmtool.codot.gov, which is 

routed through an AWS Application Load Balancer (ALB). The ALB dynamically manages web 

traffic across services, ensuring high availability, fault tolerance, and optimized performance. 

This deployment strategy allows each service to be updated or scaled independently without 

system downtime, providing a robust and flexible operational environment for intelligent 
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bridge management. The different layers of the architecture are described in detail in the 

following subsections.

2.1.1.1 Data Source Layer

The system integrates data from multiple authoritative sources, including the National 

Bridge Inventory (NBI), the National Oceanic and Atmospheric Administration (NOAA) Weather 

Database, and CDOT’s repair datasets. These serve as foundational inputs for both predictive 

and diagnostic modeling.

2.1.1.2 Data Management Layer

The Data Management Layer handles data ingestion, preprocessing, transformation, and 

storage. Raw datasets from multiple sources introduced in the previous section are collected, 

cleaned, and standardized through automated ETL (Extract, Transform, Load) pipelines. The 

system employs a TimescaleDB (PostgreSQL-based) time-series database to manage and query 

temporal datasets—such as bridge condition histories, traffic volumes, and weather records, 

while Microsoft SQL Server is used to store static datasets, including bridge inventory and 

structural attributes. This dual-database configuration enables efficient handling of both 

dynamic and static data, ensuring high performance and data consistency across the forecasting 

and anomaly detection modules.

2.1.1.3 Model Development Layer

Three major AI components are implemented in this layer:

•Bridge Deterioration Forecasting – incorporates both baseline deep learning and 

physics-guided models to predict bridge and culvert condition deterioration over 

time.

•Bridge Family Generation – currently implemented using a clustering algorithm 

that groups newly added bridges with similar existing structures. This facilitates 

smoother forecasting for bridges with limited historical data, providing 

foundational support for future enhancement into a full descriptive analytics 

module.
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•Anomaly Detection – identifies and flags abnormal deterioration trends or data 

inconsistencies using an interactive active learning framework to improve data 

quality and model reliability.

2.1.1.4 Model Registry Layer

Trained models and their metadata are tracked and version-controlled using MLflow, 

which serves as the centralized Model Registry for managing the lifecycle of each experiment 

and trained models. The registry uses a Microsoft SQL Server database as the backend store to 

maintain model configurations, parameters, metrics, and version history, while model artifacts 

are saved locally within the /mlruns directory on the EC2 instance. This configuration ensures 

reproducibility, transparency, and efficient management of model versions. Models can be 

smoothly loaded, registered, retrieved, and deployed within the i-BM system for real-time 

forecasting and anomaly detection tasks.

2.1.1.5 Deployment Layer

The Deployment Layer manages the delivery and operation of all i-BM services through 

a hybrid environment hosted on an Amazon EC2 instance. Core analytical services—such as 

data management, forecasting, family generation, and anomaly detection—run as persistent 

background processes managed via system-level services, while supporting services such as 

databases and authentication are containerized using Docker to allow modular updates and 

isolated operation. The frontend (React-based) interface is built and served using npm, while 

the backend services (Node.js/Express and Python APIs) run continuously on the same EC2 

instance. All web traffic is routed through an AWS Application Load Balancer (ALB), which 

performs path-based routing to direct user requests to the corresponding service. This setup 

ensures reliable load distribution, high availability, and flawless integration between the 

analytical backend and the user-facing dashboard, supporting continuous and uninterrupted 

operation of the i-BM platform.

2.1.2 Client-Side Architecture

The client interface consists of a web-based interactive visualization dashboards 

developed using React.js, allowing CDOT bridge engineers to generate and access analysis 
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results, visualize model outputs, and interact with bridge data in real time. The web interface 

communicates securely with the backend services through a Flask-based API layer, ensuring 

efficient data exchange between the analytical engine and the user interface.

2.1.3 Technological Stack

The i-BM system is developed using a robust stack of technologies, including Python, 

Pandas, TensorFlow, Scikit-learn, React.js, Flask, MLflow, TimescaleDB, and Microsoft SQL 

Server. Development and experimentation are supported through Jupyter Notebook, Visual 

Studio Code, and PyCharm, while Git and Azure DevOps are used for version control, 

collaborative development, and codebase management. Deployment is managed on an 

Amazon EC2 instance using Docker-based containerization and path-based routing through an 

AWS Application Load Balancer (ALB).

2.2 Data Module

The Data Module in the Intelligent Bridge Management (i-BM) system serves as the 

foundation for all data-driven operations, enabling the import, organization, exploration, and 

export of bridge-related datasets. It provides a combined interface that connects multiple data 

sources, backend databases, and analytical modules, ensuring smooth data exchange across the 

i-BM platform. Additional details are discussed in the following subsections.

2.2.1 Data Sources

The i-BM platform integrates multiple authoritative data sources that provide the 

foundation for its analytical and predictive capabilities. These datasets inclusively capture 

structural, traffic, and environmental characteristics of bridges and culverts across Colorado.

•National Bridge Inventory (NBI):

For the bridge evaluation and traffic data, we utilized publicly available data from the 

National Bridge Inventory (NBI) [1] database. This dataset contains national bridge 

inspection/evaluation data collected over the years 1992-current for different bridge 

structures all over the USA. Figure 2 illustrates a map of bridges within Colorado. We 

extracted 32 primary-level features - Year Built, ADT, Traffic Lanes on, Traffic Lanes 
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Under, Design Load, Structure Type, Main Unit Spans, Approach Unit Spans, Horizontal 

Clearance Measurement, Maximum Span Length Measurement, Structure Length 

Measurement, Roadway Width Measurement, Deck Width Measurement, Deck 

Condition Rating, Superstructure Condition Rating, Substructure Condition Rating, 

Culvert Condition Rating, Channel Condition Rating, Operating Rating, Inventory Rating, 

Structural Evaluation, Deck Geometry Evaluation, Under Clearance Evaluation, Posting 

Evaluation, Waterway Evaluation, Approach Road Evaluation, Traffic Direction, Deck 

Structure Type, Surface Type, Deck Protection, Percent ADT Truck, Future ADT - detailed 

in Table 1, from this dataset with the help of a bridge engineering expert which served 

as inputs into our model for each year’s worth of evaluations.

Figure 2. Map of Bridges (Blue Markers) Within Colorado State

Table 1. NBI Bridge and Culvert Features (Gold Indicates Traffic Input Data, Sky Blue Indicates Bridge 
Evaluation Input Data, And Blue with Red Border Indicates Bridge Condition Rating Input/Output Data)

Feature NBI Item 
No. Description Data Type Target Forecasting 

Condition

Year Built 027 The construction year of the 
structure Datetime Deck, Superstructure, 

Substructure, Culvert 

ADT 029 Average daily traffic volume of 
a bridge Number Deck, Superstructure, 

Substructure, Culvert 

Traffic Lanes on 028A Number of traffic lanes on a 
bridge structure Number Deck, Superstructure, 

Substructure, Culvert 

Traffic Lanes Under 028B Number of traffic lanes under a 
bridge structure Number Deck, Superstructure, 

Substructure, Culvert 
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Design Load 031 The live load for which the 
structure was designed Number Deck, Superstructure, 

Substructure, Culvert 

Structure Type 043B Type of structural design of the 
construction Number Deck, Superstructure, 

Substructure, Culvert 

Main Unit Spans 045 Number of spans in the main 
unit Number Deck, Superstructure, 

Substructure, Culvert 

Appr Unit Spans 046 Number of approach spans in 
the major bridge Number Deck, Superstructure, 

Substructure, Culvert 
Horizontal 
Clearance 
Measurement 

047 Largest available horizontal 
clearance for wide loads Number Deck, Superstructure, 

Substructure, Culvert 

Maximum Span 
Length 
Measurement 

048 Length of the maximum span Number Deck, Superstructure, 
Substructure, Culvert 

Structure Length 
Measurement 049 Total length of the structure Number Deck, Superstructure, 

Substructure, Culvert 
Roadway Width 
Measurement 051 Distance between curbs or rails 

on the structure roadway Number Deck, Superstructure, 
Substructure, Culvert 

Deck Width 
Measurement 052 Out-to-out width of the deck Number Deck, Superstructure, 

Substructure 
Deck Condition 
Rating 058 Overall condition rating of the 

bridge deck (1 to 9) Number Deck, Superstructure, 
Substructure 

Superstructure 
Condition Rating 059 Physical condition of all 

structural members (1 to 9) Number Deck, Superstructure, 
Substructure 

Substructure 
Condition Rating 060 

Physical condition of piers, 
abutments, and other elements 
(1 to 9) 

Number Deck, Superstructure, 
Substructure 

Culvert Condition 
Rating 062 Evaluates alignment, 

settlement, joints, scour, etc. Number Culvert 

Channel Condition 
Rating 061 

Physical condition related to 
the water flow through the 
bridge 

Number Deck, Superstructure, 
Substructure, Culvert 

Operating Rating 064 Numeric value indicating the 
structure's service sufficiency Number Deck, Superstructure, 

Substructure, Culvert 

Inventory Rating 066 Load level for safe, indefinite 
use Number Deck, Superstructure, 

Substructure, Culvert 
Structural 
Evaluation 067 Evaluation score of the 

structure Number Deck, Superstructure, 
Substructure, Culvert 

Deck Geometry 
Evaluation 068 Evaluation score for deck 

geometry Number Deck, Superstructure, 
Substructure 

Under Clearance 
Evaluation 069 Measures vertical and 

horizontal under clearances Number Deck, Superstructure, 
Substructure 

Posting Evaluation 070 
Load limit postings when the 
legal load exceeds the 
operating rating 

Number Deck, Superstructure, 
Substructure, Culvert 

Waterway 
Evaluation 071 Likelihood of bridge 

overtopping Number Deck, Superstructure, 
Substructure, Culvert 

Approach Road 
Evaluation 072 Evaluation of the approach 

roadway alignment Number Deck, Superstructure, 
Substructure, Culvert 

Traffic Direction 102 Direction of traffic flow Number Deck, Superstructure, 
Substructure, Culvert 
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Deck Structure Type 107 Type of deck structure Number Deck, Superstructure, 
Substructure 

Surface Type 108A Type of wearing surface on the 
deck Number Deck, Superstructure, 

Substructure 

Deck Protection 108C Protective system on the bridge 
deck Number Deck, Superstructure, 

Substructure 

Percent ADT Truck 109 Percentage of daily truck traffic Number Deck, Superstructure, 
Substructure, Culvert 

Future ADT 114 Projected average daily traffic Number Deck, Superstructure, 
Substructure, Culvert

Note: Background colors are used to visually distinguish categories of input data. Gold indicates average 

daily traffic (ADT)–related variables. Sky blue indicates bridge or culvert evaluation variables, such as 

structural evaluation, deck geometry evaluation, etc., and Blue with a red border indicates bridge condition rating 

input or output variables (e.g., deck condition rating, culvert condition rating, etc.) used in forecasting.

•National Oceanic and Atmospheric Administration (NOAA):

For the weather data, we utilized another publicly available dataset from the National 

Oceanic and Atmospheric Administration’s (NOAA) online weather database, the 

dataset is the Normals Daily dataset [2]. This dataset contains daily precipitation and 

snow records over global land areas. The following five features from this data were 

used: Precipitation, snowfall,  snow depth and maximum temperature, Average 

temperature, and Minimum Temperature. Once again, domain experts were consulted 

to determine relevant features for the task of bridge deterioration forecasting. There 

was an emphasis on the importance of precipitation in predicting bridge deterioration 

forecasting. This is because protective epoxy coatings may be affected negatively when 

moisture is introduced to a bridge structure. In addition to this, there was also an 

importance in considering snowfall and snow depth since the freeze/thaw cycles of 

bridge structures contribute to how bridges may deteriorate, as well as how 

maintenance strategies are scheduled. Finally, the daily temperature has an effect on 

the bridge deck over time.

•Traffic and Repair Data (CDOT):

The Colorado Department of Transportation (CDOT) provides supplemental datasets 

containing traffic statistics and repair histories. These data are linked with the NBI and 

NOAA records within the i-BM databases to support forecasting analyses.
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All external data sources (e.g., NOAA and NBI datasets) are preprocessed and 

synchronized through the i-BM Data Source Service. The service integrates datasets based on 

latitude and longitude coordinates and aligns them before storing them in the databases. 

Figure 3 illustrates the preprocessing approach where bridge and weather station data are 

matched by geographic coordinates and standardized for forecasting.

Figure 3. Illustration of NOAA and NBI Datasets Showing Coordinates used for Localization
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2.2.2 Data Source Service Architecture

The Data Source Service operates as the backend engine that connects the i-BM 

frontend with the system’s two core databases:

•Microsoft SQL Server, which stores static data tables such as StructureStaticTbl, 

GroupStructureMapping, and GroupTable containing bridge inventory and 

metadata.

•TimescaleDB (PostgreSQL-based), which stores dynamic and temporal datasets 

including bridge condition ratings (structuredynamictbl) and weather 

observations (noaadatatbl).

The Data Source Service processes API requests from the frontend, queries both 

databases through the appropriate data connectors, and returns structured responses to the 

user interface. This dual-database configuration enables efficient querying of both static and 

time-series data, ensuring fast access and synchronization across analytical modules. Figure 4 

illustrates the backend data source architecture connecting the frontend interface to the SQL 

Server and TimescaleDB environments.

Figure 4. Data Source Service Backend Architecture
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2.2.3 Database and Data Table Design

The i-BM system connects both relational and time-series databases to manage bridge, 

culvert, and weather datasets efficiently. The details database schema is explained in the next 

subsections.

2.2.3.1 Backend Schema and Relationships

The database architecture follows a modular and relational schema that connects multiple 

functional tables to maintain organized data flow across the system. The design incorporates 

three major categories of tables:

1.Static Data Tables – store non-changing bridge inventory attributes derived from the 

National Bridge Inventory (NBI). These include:

•StructureStaticTbl – contains location (LAT_016, LONG_017), construction 

(YEAR_BUILT_027), and geometric attributes (TRAFFIC_LANES_ON_028A, 

DESIGN_LOAD_031).

•GroupTable – stores user-defined grouping information with fields such as 

Group_Name, Construction_Year, and Structure_Category.

•GroupStructureMapping – serves as a bridge between GroupTable and 

StructureStaticTbl, linking each structure to one or more analysis groups.

2.Dynamic Data Tables – store annual, time-varying bridge and environmental data 

retrieved from NBI and NOAA. These include:

•structuredynamictbl – records yearly measurements such as Average Daily Traffic 

(ADT), deck and substructure condition ratings, roadway width, and operating 

ratings.

•noaadatatbl – contains environmental parameters such as precipitation, snowfall, 

and temperature averages corresponding to each bridge location and year.

3.Analytical and Support Tables – store model and analysis-related information generated 

within the i-BM system. These include:

•registered_models and trained_models – maintain model registry, configurations, 

and training metadata.
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•condition_ratings – stores forecasted condition outputs.

•repairlisttbl – records repair history and condition updates.

Both static and dynamic tables are linked through the primary key Structure_number_008, 

ensuring that static bridge identifiers are synchronized with yearly inspection and weather 

datasets. This relational integrity allows data queries to be joined appropriately between SQL 

Server and TimescaleDB.

Figure 5 illustrates the complete backend database schema, including relationships among 

static, dynamic, and analytical tables that support the forecasting and anomaly detection 

modules.

Figure 5. i-BM Backend Database Design

2.2.3.2 Bridge and Culvert Distinction

A key backend function in the Data Source Service is automatic structure categorization, 

which determines whether a record belongs to a bridge or a culvert. The classification logic uses 

the field structure_type_043B from the static table:
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This conditional logic is applied during data import and retrieval, ensuring consistent 

filtering across all modules. It also allows users to manage datasets separately for bridges and 

culverts while maintaining shared architecture and the same backend code.

The logic operates at the service layer, immediately after querying the SQL Server and 

before sending structured responses to the frontend or analytical modules such as Forecasting 

or Anomaly Detection. Figure 6 shows the flow of structure classification and data filtering logic 

within the Data Source Service.

2.2.4 Data Module Functionalities

The Data Module provides four primary functionalities accessible through the user 

dashboard.

if structure_type_043B == 19:
 set Structure := "Culvert"

else:
 set Structure := "Bridge"

Figure 6. Bridge and Culvert Classification and Filtering Logic 
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2.2.4.1 Data Import

Enables users to import bridge and weather datasets directly from NBI and NOAA. Users 

can select between two update options:

•Update—adds missing data entries.

•Overwrite—replaces existing records completely.

The import interface ensures that data is validated and stored in the correct database 

(SQL Server for static data and TimescaleDB for dynamic data).

2.2.4.2 Data Grouping

Allows users to create, edit, or delete structure groups individually for bridges and 

culverts. Users can select structures directly from an interactive map interface using rectangle, 

circle, or point tools, or upload a list of structures via CSV. Group mapping tables link each 

structure to its assigned group for downstream analysis.

2.2.4.3 Data Exploration

Provides visualization and tabular access to both historical and non-historical bridge 

data. Users can view bridge condition trends over time, examine structure attributes, and 

compare performance across selected groups. Historical data are presented through time-

series plots, while non-historical data appear in an interactive grid view.

2.2.4.4 Data Export

Enables users to export selected datasets—including bridge evaluation, traffic, and 

weather data—to standard formats such as .csv or .xlsx. Users can specify the desired time 

range, select relevant attributes, and choose to export all structures or grouped subsets. This 

ensures flexible reporting and integration with external analysis tools.

Figure 7 shows the key data management functionalities developed in the i-BM tool, 

which allow users to import, export, and explore the bridge dataset.
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Figure 7 Data Management Module of the i-BM Tool

2.3 Forecast Module

The Forecast Module in the Intelligent Bridge Management (i-BM) system is designed to 

perform predictive analysis of bridge and culvert condition ratings by utilizing both data-driven 

and physics-informed machine learning models. This module enables CDOT engineers to 

proactively estimate future deterioration states and plan maintenance interventions based on 

quantitative evidence.

2.3.1 Forecast Service Architecture

The Forecast Service provides the functionality to train, manage, and deploy predictive 

models that estimate future bridge condition ratings (deck, superstructure, substructure, and 

culvert). It interacts directly with the backend data sources—SQL Server and TimescaleDB—to 

retrieve structural, traffic, and weather data required for model training and inference. 

Users can configure forecasting parameters, such as input features, time range, and prediction 

horizon, directly from the i-BM user interface. The forecast results can then be stored in the 

system database for further analysis or exported as external files for reporting purposes. Figure 
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8 illustrates the overall backend architecture of the forecasting workflow, showing the 

interaction between the data sources, model management system, and user interface.

2.3.2 Core Functionalities

The Forecast Module operates as a service-oriented subsystem that connects the 

backend data sources, machine learning framework, and visualization layer. It integrates all 

stages of predictive modeling—training, management, execution, and result delivery (e.g., 

Figure 9 shows the Forecast module of the i-BM tool). The core functionalities include the 

following:

2.3.2.1 Model Management and Training

•The module handles model training, registration, and version control through MLflow, 

which tracks configurations, hyperparameters, performance metrics, and model 

artifacts for each experiment. 

Figure 8. Forecast Service Back-end Architecture 
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•Machine learning and Deep learning algorithms such as LSTM, Bi-LSTM, GRU, CNN, CNN-

BiLSTM, Multi-channel CNN, TCN, and Linear Regression, along with their physics-guided 

extensions (detailed in Chapter 3. Physics-guided Bridge Deterioration Forecasting), are 

supported for forecasting future bridge element condition ratings—deck, 

superstructure, substructure, and culvert. 

•Users can define training parameters such as input features, training range, model, and

Iterations directly through the i-BM interface.

•All trained models are recorded in the backend tables trained_models and

registered_models, ensuring complete traceability and reproducibility. 

•Each model entry includes metadata such as model_name, data_source, structure_group,

run_id, and evaluation metrics (e.g., RMSE), enabling comprehensive version tracking 

and auditability.

Figure 9. Bridge/Culvert Forecasting Interface in the i-BM Tool

2.3.2.2 Forecast Execution and Result Generation

•The service dynamically loads trained models from the MLflow registry and executes them

on user-selected datasets drawn from:

▪SQL Server – for static bridge inventory, geometry, and categorical data, and
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▪TimescaleDB – for dynamic, time-series data such as annual inspection ratings, traffic

volume, and environmental parameters.

•The forecasting workflow computes multi-year condition predictions for the selected

structure category (bridge or culvert) and structural components (deck, superstructure, 

substructure).

•Users can define forecasting parameters such as groups, models, and prediction horizons

directly through the i-BM interface.

•Forecast results can be:

oStored in the database for visualization, monitoring, and analysis, or

oExported as structured files (CSV/Excel) for documentation and external analysis.

2.4 Anomaly Detection Module

The Anomaly Detection Module in the Intelligent Bridge Management (i-BM) system is 

designed to automatically identify abnormal deterioration patterns and inconsistencies within 

bridge and culvert condition data. It supports data validation, model reliability assessment, and 

decision-making by ensuring that forecasting and analysis are performed on accurate and 

trustworthy datasets.

2.4.1 Anomaly Detection Service Architecture

The anomaly detection framework in the i-BM system is designed based on the label-

efficient interactive time series anomaly detection (LEIAD) architecture [59] (Detail in Chapter 

4. Bridge Anomaly Detection) that integrates unsupervised anomaly detection (UAD), weak

supervision, and active learning. The goal is to reduce manual labeling effort while improving 

the accuracy of bridge performance anomaly identification. The workflow, illustrated in Figure 

10, operates through the following key components:

1.UAD Methods (Unsupervised Anomaly Detection): The process begins with a set of

unsupervised algorithms that identify abnormal temporal patterns in bridge condition

data without relying on pre-labeled samples. These algorithms (e.g., Isolation Forest, 

Spectral Residual, STL, RC-Forest, and Luminol) serve as the foundation for generating 

initial anomaly candidates.
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2.Labeling Functions (LF): A set of rule-based or model-based labeling functions is applied to

the UAD outputs. Each labeling function encodes heuristic knowledge or statistical

criteria (e.g., sudden condition drop, deviation from trend) to automatically assign weak 

labels to time-series data points.

3.Weak Supervision Layer: The weakly labeled data are aggregated and combined to

produce weak labels, which serve as the initial pseudo-ground truth for model training.

This allows the model to learn general anomaly patterns without manual annotation.

4.End Model Training: A discriminative anomaly detection model (e.g., LightGBM) is trained

on the weakly labeled dataset to distinguish between normal and abnormal

deterioration behaviors. The trained model produces refined anomaly scores and binary 

predictions.

5.Active Learning: Following the initial training, the system identifies samples with high

uncertainty or model disagreement and presents them to the user through an

interactive labeling interface. This human-in-the-loop feedback mechanism enhances 

model accuracy where it is most uncertain.

6.Golden Label Generation: Verified user feedback is incorporated to create golden labels—

trusted, high-confidence annotations that improve model precision and provide a

reliable benchmark for retraining.

7.Label Function Generator (LF Generator): Using insights from the newly generated golden

labels, the system automatically creates new or refined labeling functions. These

functions are added back into the LF pool, reinforcing the weak supervision process and 

enabling continual improvement.

8.Iterative Refinement: The framework operates as a closed feedback loop, where new

labeling functions and retrained models iteratively enhance anomaly detection accuracy

over time, achieving progressive improvement with minimal human supervision.
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Figure 10. Architecture of the Anomaly Detection Framework [59]

2.4.2 Core Functionalities

The Anomaly Detection Module provides two principal backend modules: Model Management 

and Detection Execution.

2.4.2.1 Model Management 

•Handles model training, tracking, and lifecycle management through MLflow, which

records configurations, hyperparameters, thresholds, and performance metrics.

•Each trained model and its run metadata are stored in SQL Server tables

(trained_models, registered_models) to ensure full version control, traceability, and 

reproducibility.

•The model metadata include parameters such as model_name, component,

data_source, structure_group, and run_id, ensuring complete transparency and 

traceability across all detection experiments.
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2.4.2.2 Detection Service

•Loads trained models from MLflow and applies them to time-series condition data

retrieved from TimescaleDB to identify anomalous data points for individual bridge 

components' time series sequence (Deck, Superstructure, Substructure, and 

Culvert).

•Supports both bridge and culvert datasets using inspection data from NBI.

•The detection results include yearly anomaly labels (0 = normal (blue), 1 = anomaly

(red)) with associated timestamps and structure IDs.

•Results can be either:

• Stored in the database for visualization and analysis, or

• Exported as structured files for external validation and reporting.

2.5 Functional Workflow of the i-BM System

Figure 11 illustrates the functional workflow of the Intelligent Bridge Management (i-

BM) system, showing how users interact with different modules such as data management, 

forecasting, model training, and anomaly detection. The diagram outlines the logical sequence 

of actions within the application—from data import and exploration to model training, 

prediction, and anomaly detection—demonstrating how the system integrates analytical tasks 

through an intuitive, user-centered interface.
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Figure 11. Functional Workflow of the Intelligent Bridge Management (i-BM) System
Different colors highlight key system functionalities: user management (light blue), data 
exploration, import, and grouping (dark magenta to light pink), model management and 

forecasting (dark to light orange), and anomaly training and detection (dark to light green) 
workflows.
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Chapter 3. Physics-guided Bridge Deterioration Forecasting

In this section, we delve into physics-guided bridge deterioration forecasting. We begin 

with the problem definition, followed by a review of relevant literature, methodology, and 

finally conclude with a comprehensive experimental evaluation of the models and i-BM tool 

results.

3.1 Problem Definition

The focus of this work is on effective multivariate time-series forecasting of bridge 

condition ratings over time using physics guidance. Given a set of consecutive time steps t, 

each of which contains multiple variables of length m, the objective is to predict N future time 

steps.

The input for this problem can be represented as:

where n denotes the total number of input time steps, and m represents the total 

number of variables for each time step. Each variable Xij corresponds to the condition rating or 

supplementary feature associated with that time and component. A multivariate time-series 

forecasting model, denoted as fƟ predicts one future multivariate time step based on the past n 

time steps, where both the input and prediction steps contain m features. The input and output 

variables share the same structure. In addition to this, the model is conditioned using some 

form of physics-based grounding, which is embedded into the model architecture or training 

process to incorporate domain-specific physics-based knowledge. To accommodate sequences 

of varying lengths during training, a masking layer with zero-padding can be employed within 

the model. Furthermore, a sliding-window technique is used during prediction to generate 

multiple future time steps, as shown in Figure 12. The figure also demonstrates how variables 

of interest can be selectively extracted from the predicted output vector.

The success of the forecasting model is evaluated using the Root Mean Squared Error 

(RMSE), defined as:
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(1)

where:

xi (x sub i) represents the ground truth value,

x̂i  (x hat sub i) denotes the predicted value, and

N is the total number of data points.

The evaluation process measures the error in the produced outputs during the 

evaluation of the test split of the data after model training. Each sample in the test split of the 

data is used to obtain an RMSE score for each rating. An average of RMSE scores is taken over 

all test split samples to obtain an aggregate RMSE measure. An example of this is shown in 

Figure 13, with a test split size of 2215 data samples, 21 total time steps, and 3 variables. 

Figure 12. Illustration of Model Prediction Process

Figure 13. RMSE Measurement Process
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To reiterate, we wish to train a multivariate time-series forecasting model fƟ such that it 

generates a single time step output with length m representing the number of variables in the 

output time step. This model is to be conditioned on the input matrix X, where its dimensions 

are n and m, where n is the total number of input time steps, and m is the number of variables 

in each time step. This model also needs to be conditioned using some form of physical 

grounding via the physics-informed neural network approaches. The success of this model will 

be evaluated using RMSE as the metric.

3.2 Literature Review

In this section, we review the literature on bridge and culvert deterioration forecasting. 

In the current literature, existing deterioration forecasting models are either mechanistic or 

data-driven, such as deterministic, stochastic, or artificial intelligence (AI)-based. Toward this 

end, we categorize the literature into three key areas: (1) physics-based methods which 

account for mechanistic insights (2) data-driven approaches, which leverage statistical, artificial 

intelligence (AI), machine learning (ML), and deep learning (DL) techniques for predictive 

modeling, and (3) physics-guided neural network, which are hybrid solutions that integrate 

engineering principles and physics-based parameters to enhance model accuracy. The following 

subsections discuss these approaches in detail.

3.2.1 Physics-based Bridge Deterioration Forecasting

Physics-based approaches represent traditional systematic efforts to forecast bridge 

deterioration by modeling the material and environmental mechanisms that drive structural 

degradation. Before the emergence of data-driven methods, researchers developed 

mechanistic formulations that mathematically describe deterioration as a function of material 

properties, stress conditions, and exposure environments. These models—also referred to as 

mechanistic or simulation-based—derive from engineering mechanics and material science 

principles, focusing primarily on corrosion-induced degradation of reinforced concrete (RC) 

bridge decks.

One of the earliest mechanistic frameworks was proposed by Tuutti [60], who divided 

the corrosion process into two distinct stages: initiation, governed by chloride ingress and 
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carbonation, and propagation, driven by electrochemical reactions and cracking. This 

conceptual model became the foundation for later service-life prediction tools such as Life-365.

The Life-365 Service Life Prediction Model [61–62] introduced a diffusion-based 

approach for estimating the time to corrosion initiation in RC structures exposed to deicing salts 

or marine environments. By utilizing measurable parameters such as chloride diffusion 

coefficient, surface concentration, and concrete cover depth, the model provided engineers 

with a practical means to forecast deterioration over a structure’s life cycle. Its integration into 

engineering practice and industry standards marked a major advancement in durability design 

for reinforced concrete bridges.

Building on this foundation, Hu et al. [63] reviewed several prominent commercial 

mechanistic modeling tools—STADIUM, CONCLIFE, and Life-365—each offering distinct physical 

formulations for predicting deterioration. STADIUM and Life-365 primarily simulate chloride-

induced corrosion using ion-diffusion models, while CONCLIFE extends its analysis to sulfate 

attack and freeze–thaw damage. These frameworks collectively illustrate the state of practice in 

physics-based durability modeling for RC bridge systems. Although these models have 

demonstrated substantial predictive power, they are generally limited by simplified 

assumptions, reliance on laboratory-calibrated parameters, and computational complexity 

when applied at the network scale.

Several analytical studies have also contributed to understanding specific deterioration 

mechanisms in reinforced concrete. Bažant et al. [64] developed a model to describe freeze–

thaw damage in concrete, while Isgor and Razaqpur [65] formulated a carbonation-based 

corrosion model linking CO₂ diffusion and environmental exposure to steel-corrosion initiation. 

Bažant and Baweja [66] further extended this analytical work to include creep and shrinkage 

models, enhancing understanding of time-dependent concrete behavior. Collectively, these 

analytical formulations form the theoretical backbone for many of the deterioration 

mechanisms represented in later service-life prediction models. 

A key contribution to corrosion modeling came from Liu and Weyers [67], whose 

experimental study established relationships between corrosion rate, temperature, chloride 

concentration, concrete resistivity, and exposure duration. Balafas and Burgoyne [68] 



39

subsequently developed a mathematical model to predict internal pressure buildup from 

corrosion products leading to concrete cover cracking. These submodels were later 

incorporated into the comprehensive time-to-failure framework developed by Hu et al. [63] for 

RC bridge decks, which captured both corrosion and carbonation processes under realistic 

environmental and design conditions. While this model provided an important step toward 

integrating mechanistic modeling in bridge-asset management, it still omitted several modern 

aspects of bridge design and maintenance practice.

To address these constraints, Nickless [54] conducted one of the most comprehensive 

applications of mechanistic modeling for predicting bridge deterioration. The study, carried out 

for the Office of Applied Research(OAR) of the Colorado Department of Transportation (CDOT), 

developed a multi-stage mechanistic model for corrosion-induced cracking in reinforced 

concrete bridge decks. The model estimated the time to corrosion initiation, cracking onset, 

and crack propagation by integrating sub-models for corrosion rate, concrete resistivity, and 

cracking pressure. It also considered practical bridge-specific factors such as epoxy-coated 

rebar, waterproofing membranes, asphalt overlays, joint deterioration, and deck maintenance. 

By combining laboratory-based parameterized formulations (see Figure 14) with realistic 

environmental data, the study demonstrated how physics-based deterioration modeling can 

guide bridge design and maintenance planning. However, these models often face 

development complexities and are typically focused on straightforward result generation rather 

than accounting for actual structural conditions, which are susceptible to environmental noise 

and estimation errors. For this reason, they are generally considered more appropriate for 

project-level analysis or as complementary tools alongside other deterioration-modeling 

approaches, for example, serving as supportive components within data-driven or ML/DL 

models.
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Figure 14.  Multi-Level Model Process for Predicting Concrete Failure [53]

3.2.2 Data-Driven Bridge Deterioration Forecasting

Over the past three decades, bridge deterioration forecasting has shifted from 

traditional mechanistic approaches to increasingly data-driven and learning-based models. A 

wide range of deterministic, stochastic, and AI-based methods have been explored, from early 

research stages to recent years. Deterministic models assume that the tendency of bridge 

deterioration processes is certain and are based on regression analysis of condition data [69–

71]. Stochastic models consider the bridge deterioration process as one or more random 

variables [72] and employ probabilistic techniques such as the Markov-chain model to capture 



41

uncertainty [73–76]. However, deterministic and stochastic models often fail to include all of 

the influential factors directly, except for dependence on engineering judgments and 

assumptions.

In this regard, researchers have focused on demonstrating that artificial intelligence (AI) 

techniques can mimic deterioration trends directly from inspection data, moving beyond rigid 

statistical formulations. The first use of Artificial Neural Networks (ANN) in bridge deterioration 

forecasting was explored by Sobanjo [77]. Early AI models demonstrated the potential of data-

driven learning to capture nonlinear deterioration patterns. Building on this idea, Tokdemir et 

al. [78] compared ANN and Genetic Algorithms (GA) for predicting bridge sufficiency ratings 

using explanatory variables such as geometrical attributes, structure age, traffic volume, and 

structural attributes. This work found that ANNs outperformed genetic algorithms when 

different models were constructed for varying levels of sufficiency ratings, and genetic 

algorithms outperformed ANNs when using the entire dataset. Morcous [79] further compared 

ANNs with case-based reasoning for predicting future bridge conditions. The study highlighted 

that case-based reasoning achieved high accuracy but was difficult to calibrate and ineffective 

for unseen data, while ANNs were more adaptable but required greater initial effort for model 

development and updates.

While the artificial intelligence–based models, particularly neural networks, show strong 

potential to overcome the limitations of existing methods, their application in Bridge 

Management Systems (BMS) remains in the nascent stage [80]. These foundational efforts 

defined the promise of data-driven learning but also exposed key barriers—small datasets, high 

tuning effort, and weak temporal reasoning. Bridge and culvert deterioration forecasting is 

challenging because the deterioration process is influenced by multiple factors such as 

materials, design, daily traffic, freeze and thaw cycles, and climate conditions [25-26, 81]. 

Although transportation agencies collect diverse datasets—such as NBI and NBE records, 

structural attributes, traffic volumes, and weather data—these data sources are often 

fragmented and inconsistent, making comprehensive modeling difficult. Structured bridge 

inventory data, particularly the NBI dataset, remains the primary data source used in most 

existing studies on bridge deterioration forecasting. Researchers began to test a range of 
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statistical and data mining models—linear regression, decision trees, and neural network 

algorithms—to identify the most influential features in NBI inspection records, thereby 

improving predictive ability. Studies such as Contreras-Nieto et al. [82] and Jonnalagadda et al. 

[83] demonstrated that machine learning can analyze the effects of factors and capture 

regional deterioration trends for steel and concrete bridges. Mia and Kameshwar [84] further 

showed that Random-Forest-based ensembles could produce highly accurate short-term 

forecasts with quantified uncertainty, while Rashidi and Elzarka [85] revealed that feature 

optimization plays a decisive role in prediction quality.

Regardless of these advances, most machine learning models remain constrained by 

region-specific datasets, short-term prediction horizons, and oracle-identified or a limited set of 

feature representations, as well as applicability restricted to specific bridge types. That hinders 

their ability to generalize or capture nonlinear and temporal deterioration behaviors. Recent 

studies have focused on Deep Learning architectures capable of capturing spatial and temporal 

dependencies in bridge deterioration. Liu et al. [86, 87] developed deep learning–based 

approaches for forecasting bridge component conditions. In two back-to-back studies, they 

showcased CNN-based deterioration forecasting that incorporated historical condition data and 

uncertainty quantification through stochastic Markov integration. Subsequent efforts by Zhu 

and Wang [88] and Rajkumar et al. [89] demonstrated that hybrid models—combining CNN-

RNN architectures and autoencoders with random forest (RF) algorithms—can effectively 

capture sequential deterioration dynamics with improved performance. These works broadly 

represent a transition from static to spatiotemporal modeling, where deterioration is treated as 

a continuous sequence influenced by both structure and environment. In addition, recent 

works by Jing et al. [90], Miao et al. [91], and Abu Dabous et al. [92] have further advanced this 

direction by employing other sequential architectures integrating with LSTMs to capture long-

term temporal dependencies and sequential deterioration patterns in bridge components with 

accuracies exceeding 90% for near-term forecasts. Despite the importance of dealing with 

advanced deep learning architectures and achieving promising results, limitations such as 

reliance on single-source data, focus on individual components, exclusion of maintenance 

effects, and insufficient consideration of environmental, spatial, and temporal dependencies 
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are limiting the ability of existing studies [88–92] to be effectively used in long-term bridge 

deterioration forecasting.

Beyond single-source sequential deep learning models, Liu and El-Gohary [86] proposed 

a multisource deep learning framework that integrates both structured and unstructured 

bridge data using a recurrent neural network enhanced with manifold and cost-sensitive 

learning. While the approach effectively leveraged heterogeneous data to improve 

deterioration prediction accuracy, its unidirectional architecture predicted only one component 

type at a time, limiting scalability and bidirectional temporal learning capacity.

Gleaned from the literature, it is evident that DL-based models remain highly data-

dependent, requiring comprehensive and high-quality multisource datasets, reliable feature 

selection, and explicit treatment of repair events to achieve robust predictive performance and 

overcome existing limitations. Moreover, they often lack explicit physics-based learning and 

transferability across bridge types and deterioration mechanisms, motivating the integration of 

domain knowledge into data-driven modeling.

3.2.3 Physics-Guided Neural Networks

In recent years, in other domains, physics-guided approaches have been introduced to 

enhance the learning capabilities of ML/DL models by integrating physics-based principles, 

thereby reducing dependence on purely historical data. To the best of our knowledge, this 

research direction has not yet been explored within the field of bridge deterioration 

forecasting. Toward this end, we examine the emerging domain of Physics-Guided Neural 

Networks (PGNNs), an interdisciplinary framework that fuses the computational power of 

neural networks with mechanistic modeling grounded in physics-based laws and domain 

knowledge to improve model intelligibility and predictive performance. 

A key area within this field is the design and application of physics-guided loss functions, 

which incorporate behavioral physics laws directly into neural network training. These loss 

functions improve the predictive accuracy and generalization capabilities of the neural 

networks by aligning the learning objectives with known physics-based principles. For instance, 

Huang et al. [56] introduced a Physics-Guided Deep Neural Network (PGDNN) for structural 

damage identification by integrating finite element (FE) model outputs with measured vibration 
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data through a cross-domain physics-based loss function. This approach significantly improved 

damage localization accuracy and robustness against modeling noise. Similarly, Yousefpour and 

Wang [58] developed Scour Physics-Inspired Neural Networks (SPINNs), a hybrid framework 

that couples empirical scour equations with LSTM and CNN architectures. Their models reduced 

prediction errors by up to 70% compared to purely data-driven methods, highlighting the value 

of incorporating governing physics into learning.  However, none of these studies directly 

address bridge or culvert deterioration forecasting, leaving a clear gap in the current research 

scope. Building on the identified research gap and inspired by the demonstrated success of 

Physics-Guided Neural Networks (PGNNs), we explore the landscape of this research domain 

and provide a taxonomy of the three primary areas of focus within physics-guided neural 

networks: (1) Physics-guided loss functions, (2) Physics-guided architecture, (3) Extended 

physics-guided machine learning [93]. The following subsection reviews the focus areas in 

detail.

3.2.3.1 Physics-Guided Loss Functions

One widely used approach for implementing physics-guided neural networks (PGNNs) is 

to introduce an additional term into the loss function of a data-driven model. This term 

incorporates a physics-based penalty, guiding the deep learning model to learn patterns that 

are consistent with established physical laws and normal system behavior [93].

The general form of a physics-guided loss function can be expressed as:

(2)

Here:

The Empirical Error represents the difference between predicted and observed 

values.

The Structural Error regularizes the model to prevent overfitting.

The Physical Inconsistency term penalizes outputs that violate known physical 

relationships.

Karpatne et al. [57] demonstrated this principle by leveraging the relationship between 

lake depth, temperature, and density to ensure that the model predictions adhere to known 
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physical laws. They enforced a penalty whenever predicted water density values violated the 

physical constraint that density increases with depth.

The physical relationship is expressed as:

(3)

For any pair of consecutive depth values di and di+1, where di < di+1, the model computes 

the difference between predicted densities as:

(4)

A positive value of Δ[di, t] represents a violation of the above constraint. 

To penalize such violations, a rectified linear function (ReLU) is applied:

(5)

The total physics-based loss across all samples and time steps is then formulated as:

(6)

This additional loss term ensures that the network learns outputs that obey physical 

consistency while minimizing empirical error. The approach has been shown to improve both 

interpretability and robustness in lake temperature modeling tasks.

3.2.3.2 Physics-Guided Architecture 

Due to the modularity of neural networks, these architectures can be customized to 

encode physical properties directly into their structure. This allows for the design of physics-

guided neural network architectures that can impose hard constraints, whereas physics-guided 

loss functions generally impose soft constraints.

An example of such an architecture is the Turbulent-Flow Net proposed by Wang et al. 

[94], a physics-guided neural network developed for turbulent flow prediction. The model is 

inspired by the RANS–LES coupling method but replaces fixed spectral filters with trainable 

convolutional layers. The turbulent flow input is decomposed into three components, each 

processed by a specialized convolutional U-Net to preserve multiscale flow features. A shared 

decoder learns interactions among these components to produce the final prediction.
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While architectures like Turbulent-Flow Net have demonstrated strong performance in 

fluid dynamics, their use in bridge deterioration forecasting remains limited. This gap 

underscores the need for domain-specific adaptations of physics-guided architectures in 

structural engineering, especially for long-term condition prediction under physical constraints.

3.2.3.3 Extended Physics-Guided Machine Learning

Extended physics-guided machine learning leverages both pure physics-based models as 

well as pure deep learning models by developing them independently and combining them 

separately (see Figure 15).

In essence, we have a neural network model which takes as input data D and outputs Y 

(fNN: D → Y) and a physics model which does the same (fPHY: D → Y). In this case of extended 

physics-guided machine learning, the output from fPHY is used as an additional feature input to 

fNN in addition to the original data input D. This is formalized as, fHPD: X = [D, YPHY] → Ŷ

Figure 15. High-Level Diagram of Extended Physics-Guided Machine Learning [57]

DeepGLEAM is a piece of work that focuses on a type of extended modeling called 

residual learning, where a neural network learns to predict the errors or residuals made by pure 

physics-based models [95]. This work uses a mechanistic epidemic simulation model, Global 

Epidemic and Mobility Model (GLEAM), with deep learning. It uses a Diffusion Convolutional 

Recurrent Neural Network (DCRNN) to learn the correction terms from GLEAM, leading to 

improved performance. 

3.3 Methodology

In this section, we present the proposed methodology for bridge deterioration 

forecasting using a physics-guided deep learning framework. The overall approach combines 

data-driven learning with domain knowledge of structural behavior to enhance the 
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interpretability and physical consistency of the predictions. The methodology integrates three 

major components: (1) the development of Physics-Guided Neural Networks (PGNNs) that 

embed physical constraints through physics-guided loss functions, (2) Input selection for the 

deep learning models using feature importance analysis and (3) a Repair-Agnostic Forecasting 

Framework designed to separate normal deterioration trends from maintenance-induced 

anomalies in bridge condition ratings. Together, these components provide a robust and 

generalizable strategy for forecasting structural performance while maintaining fidelity to real-

world physical behavior.

3.3.1 Physics-Guided Neural Networks (PGNN) for Bridge Deterioration Forecasting

In this section, we present physics-guided neural networks for bridge deterioration 

forecasting. The key concept of the Physics-Guided Neural Network (PGNN) builds upon prior 

work by Karpatne et al. [57] as explained in Section 3.3.2.3, which integrates domain physics 

with data-driven modeling. To incorporate bridge-specific domain knowledge into the physics-

guided modeling, the foundational idea in this study is derived from the mechanistic 

deterioration modeling approach proposed by Nickless et al. [54], which simulated bridge deck 

deterioration using physics-based equations that describe chloride diffusion and adhesion loss. 

While the original model was purely physics-driven and did not incorporate machine learning, 

its simulation framework provides the conceptual basis for generating physics-informed 

features, as shown in Figure 16.
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Figure 16. Hybrid physics-guided deep learning forecast model

In our work, this foundation is adapted within a physics-guided learning context, where 

physical consistency is introduced into the machine learning process through a physics-guided 

loss function that minimizes empirical loss during model training. The following subsection 

focuses on the implementation of this physics-guided loss function to enhance physical 

consistency in the deterioration patterns of prediction.

3.3.1.1 Physics-Guided Loss Functions in Bridge Deterioration Forecasting

The physics-guided loss function used in this work will be detailed in this section. First, a 

formalization of the idea will be presented. Following the formalization, the physics property of 

interest as well as how it was incorporated into the loss function of our neural networks will be 

examined. 

3.3.1.1.1 Formalization

The goal of introducing a physics-guided loss term into the learning objective is to 

determine whether including a physically consistent penalty improves prediction accuracy for 

deterioration forecasting. Specifically, the objective is to assess whether embedding a physical 

constraint directly in the optimization function enables the model to generate more realistic 

deterioration forecasts.
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Recall, the general structure of a physics-guided loss function is expressed as:

(7)

In the case of this work, only an empirical error and physical inconsistency were used 

from (6). For the empirical error, Mean Squared Error (MSE) was used, and for the physical 

inconsistency, a relationship pertaining to the ground truth and predictions for three condition 

ratings in the bridge evaluation data: Deck Condition, Superstructure Condition, and 

Substructure Condition, as shown in (8).

(8)

3.3.1.1.2 Physics Property in Loss Function

First, we introduce some notation:

(9)

(10)

We formulate the relationship between (9) and (10) as described in the previous section 

(see equation 11):

(11)

A positive value of Δ[ŷ, y] indicates a violation of the physical constraint, as it implies 

that the predicted rating ŷ exceeds the true (observed) rating y. The result of this function 

can be fed into a ReLU (Rectified Linear Unit) as such, to capture the penalty. ReLU (Rectified 

Linear Unit) is a simple, fast, and well-worked function to train deep neural networks. As

shown in equation (12), this violation is penalized using the function: 

(12)

The physics-based loss we incorporate into our loss function, in addition to Mean 

Squared Error (MSE) is the following, where N represents the total number of samples. Note

that the loss is calculated across all samples to obtain an aggregate calculation of loss for the 

model: 
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(13)

The final loss, including both empirical loss and physical inconsistency, which is 

optimized using backpropagation, is as follows:

(14)

3.3.1.2 Physics-Guided Neural Network Specifications

This subsection presents the neural network architecture employed in the physics-

guided framework. A total of eight models were implemented and trained using the physics-

informed loss function:

•Convolutional Neural Network (CNN)

•Temporal Convolutional Network (TCN)

•Long Short-Term Memory (LSTM)

•Bidirectional LSTM (BiLSTM)

•Gated Recurrent Unit (GRU)

•CNN–BiLSTM hybrid

•Multi-channel CNN

•Linear regression model

These architectures were selected to capture both spatial and temporal patterns in the 

bridge condition data. While all models benefit from the integration of the physics-guided loss 

function, their internal mechanisms differ in their ability to learn long-term deterioration 

patterns.

3.3.1.3 Physics-Guided Model Input Selection Using Feature Importance Analysis

Before directly diving into the deep-learning and physics-guided deterioration 

forecasting models training, a detailed feature importance analysis (FIA) was performed to 

identify the most relevant predictors for each structural component—deck, superstructure, 

substructure, and culvert. This preparatory step ensured that model inputs reflected the most 

physically meaningful and statistically significant variables derived from the National Bridge 

Inventory (NBI) and National Oceanic and Atmospheric Administration (NOAA) datasets.
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We employed the SHapley Additive exPlanations (SHAP) methodology to quantify the 

relative influence of input features on the model output. SHAP, a model-agnostic and game-

theoretic framework, assigns each feature a Shapley value representing its marginal 

contribution to the model’s prediction. By averaging these contributions across all possible 

feature combinations, SHAP provides fair, consistent, and interpretable importance scores.

For bridge-specific modeling, SHAP values were computed for 37 domain-informed 

features for the deck, superstructure, and substructure components and 26 features for the 

culvert models. A threshold was applied to filter the most impactful features for each structure 

type. Features exceeding this threshold—such as Structural Evaluation, Approach Road 

Evaluation, Channel Condition, Traffic Lanes On, and Design Load—were retained as the final 

model inputs for subsequent training.

This systematic feature-selection process reduced redundancy, improved computational 

efficiency, and ensured that the models captured the dominant physical drivers of bridge 

deterioration. The effectiveness of SHAP-based feature selection and its quantitative impact on 

model performance are further analyzed in Section 3.4 (Experimental Evaluation) in ablation 

analysis.

Component-Wise Feature Importance

Figures 17 through 20 visualize the top-ranked features for each component. These 

summary plots reveal the most influential predictors associated with deterioration patterns. 

Several common features—such as structural evaluations, approach road evaluations, and 

geometric attributes—appear across multiple components, indicating their remarkable impact 

on the structural condition ratings prediction.
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Figure 17. SHAP-based feature importance plot showing the relative influence of input variables on 
deck condition prediction
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Figure 18. SHAP-based feature importance plot showing the relative influence of input variables on 
superstructure condition prediction

To streamline the modeling process, we applied a SHAP value threshold of 0.002 for the 

deck, superstructure, and substructure models, and 0.04 for the culvert model, to identify the 

most impactful features for each structure type. For instance, in the case of the culvert 

component (Figure 18), the most influential predictors—Structural Evaluation (067), Approach 

Road Evaluation (072), Channel Condition (061), Traffic Lanes On (028A), and Design Load 
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(031)—all exceeded the streamline threshold. A similar selection strategy was employed for the 

other components using their respective SHAP-based thresholds.

Figure 19. SHAP-based feature importance plot showing the relative influence of input variables on 
substructure condition prediction

Table 2 presents the top SHAP-identified features for each structural component, 

representing the most influential predictors of deterioration. These selected features form the 

optimized input set used for developing and evaluating all subsequent forecasting and physics-

guided models.
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Figure 20. SHAP-based feature importance plot showing the relative influence of input variables on 
culvert condition prediction

Table 2. Most Impactful SHAP-Selected Features for Each Structural Component

Component Top Features Identified by SHAP Analysis Description / Influence on Deterioration

Deck Deck Geometry Evaluation (068); Deck 

Protection (108C); Substructure Condition 

Rating (060); Waterway Evaluation (071); 

Superstructure Condition Rating (059); 

Deck Structure Type (107); Maximum Span 

Length (048); Structural Evaluation (067); 

Main Unit Spans (045); Structure Length 

(049)

These features capture geometric adequacy, 

material protection, and structural 

configuration affecting deck performance. 

Deck geometry and protection control 

drainage and corrosion resistance, while span 

length and structure type influence load 

distribution and stress propagation across 

connected elements.

Superstructure Approach Road Evaluation (072); Deck 

Condition Rating (058); Structure Type 

(043B); Maximum Span Length (048); 

These features represent load transfer, 

geometry, and material interactions governing 

superstructure performance. Approach road 
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Substructure Condition Rating (060); Deck 

Geometry Evaluation (068); Traffic 

Direction (102); Inventory Load Rating 

(066); Surface Type (108A); Structure 

Length (049)

and traffic direction affect dynamic loading, 

while span length and structure type influence 

bending and fatigue. Condition ratings and 

surface type capture environmental and 

drainage effects that accelerate deterioration

Substructure Traffic Direction (102); Maximum Span 

Length (048); Inventory Rating (066); 

Surface Type (108A); Structure Type (043B); 

Deck Condition Rating (058); 

Superstructure Condition Rating (059); 

Horizontal Clearance (047); Deck Structure 

Type (107); Structure Length (049) 

These features reflect hydraulic and load-

related factors influencing foundation 

performance. Traffic direction and span length 

govern load transfer, while surface type and 

clearance affect moisture and scour. Condition 

ratings indicate deterioration transmission 

from upper structural elements.

Culvert Structural Evaluation (067); Approach Road 

Evaluation (072); Channel Condition (061); 

Traffic Lanes On (028A); Design Load (031); 

Main Unit Spans (045); Maximum Span 

Length (048); Horizontal Clearance (047); 

Average Daily Traffic (029); Inventory Load 

Rating (066)

These features capture hydraulic, structural, 

and traffic-driven effects on culvert 

performance. Structural and approach 

evaluations represent overall stability, while 

channel condition and design load define 

hydraulic and load capacity. Traffic, span 

geometry, and clearance contribute to wear 

and deformation.

3.3.2 Repair-Agnostic Methodology for Bridge Condition Forecasting

This subsection introduces a repair-agnostic methodology for forecasting bridge 

condition ratings. Unlike conventional approaches that rely on labeled repair data, this method 

identifies and segments repair-like events (see Figure 21) directly from condition rating trends, 

allowing forecasting to proceed without explicit repair annotations.

Repairs are identified by detecting significant increases (“bumps”) in component 

condition ratings, which indicate maintenance or rehabilitation actions.

3.3.2.1 Repair-Aware Segmentation: Identification and Integration of Repair Events

Let:
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represent the condition rating time series for bridge i, where xit is the condition rating at time t. 

A repair event occurs at time t = r if:

Where δ > 0 is a predefined threshold representing a significant improvement in the 

condition rating.

Each time series is then segmented at the identified repair points as follows:

where, each segment Xi(j) represents a continuous period of deterioration between two 

successive repairs. This segmentation enables focused modeling of natural deterioration while 

isolating maintenance-driven improvements.

3.3.2.2 Repair-Aware Modeling: Training and Prediction

Each segment is treated as an independent training sample to capture distinct 

deterioration patterns. For forecasting, the model uses the most recent segment of each 

bridge’s time series:

Figure 21. Segmentation process applied to bridge condition ratings, showing how repair years divide 
the series into continuous deterioration segments. 
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(15)

where fƟ represents the forecasting model (e.g., LSTM, TCN), and Xi(k) denotes the latest 

available segment. This design ensures that predictions reflect current deterioration conditions 

while being unaffected by earlier repair discontinuities.

3.3.2.3 Handling Variable-Length Sequences: Masking and Zero Padding

To accommodate variable sequence lengths caused by segmentation, zero padding and 

masking are implemented:

•Zero Padding: Each sequence is padded with zeros to match the maximum length

in the dataset, enabling uniform batch processing.

•Masking: During computation, padded values are ignored to ensure that the model

only processes valid data points.

This approach allows efficient training of deep learning models while maintaining 

accuracy across sequences of differing lengths. It was applied consistently across all models, 

including LSTM, BiLSTM, CNN–BiLSTM, CNN, GRU, Multi-channel CNN, and TCN.

3.4 Experimental Evaluation

In this section, we will go into experimental evaluation of the bridge and culvert 

deterioration forecasting models specified above, how they were used in this specific problem, 

and how the added complexity when moving from traditional regression-based models to novel 

physics-guided neural networks did indeed allow for better performance. The analysis is 

structured into two key components: (1) a comparative analysis of baseline data-driven models 

against enhanced physics-guided models and repair agnostics models; and (2) an ablation study 

examining the incremental contributions of physics-based loss functions and repair data 

integration. These evaluations use Root Mean Square Error (RMSE) as the primary performance 

metric to ensure consistent and interpretable comparisons across models and configurations. 

Overall, this evaluation provides critical insights into how physical constraints and maintenance 

interventions enhance deterioration forecasting models' robustness, accuracy, and reliability.
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3.4.1 Experimental Setup and Baseline Definition

Our experimental framework evaluates baseline data-driven models, physics-guided 

models, and repair-aware variants. All experiments are implemented in Python 3.9, using 

TensorFlow for neural network models and Scikit-Learn for linear baselines. We benchmark 

eight architectures: LSTM, BiLSTM, GRU, CNN, CNN-BiLSTM, Multi-channel CNN, TCN, and 

Linear Regression. Neural networks are trained on an NVIDIA GeForce RTX 2070 Super GPU.

Training details:

•Optimizer: Adam

•Batch size: 64

•Max epochs: 300 with early stopping (patience = 50)

•Objective (baseline): minimize Mean Squared Error (MSE)

•Physics-guided models: add a physical-inconsistency penalty to the loss (Section 3)

Performance is reported as RMSE (see Equation 1) on a held-out 30% test split (70% 

training). Table 3 summarizes key hyperparameters for the evaluated models.

Table 3. Training Hyperparameters for Evaluated Models

Model Training Parameters / Hyperparameters

LSTM
Units = 32; Return Sequence = False; Dense Units = out_steps × num_features; 

Loss = MSE; Optimizer = Adam

GRU
Units = 32; Return Sequence = False; Dense Units = out_steps × num_features; 

Loss = MSE; Optimizer = Adam

TCN
Filters = variable; Dropout = [0.0–0.8]; Return Sequence = False; 

Dense Units = out_steps × num_features

BiLSTM
Bidirectional Units = 32; Return Sequence = False; 

Dense Units = out_steps × num_features; Loss = MSE; Optimizer = Adam

CNN
Conv1D Filters = 64; Activation = ReLU; Dropout = 0.2; 

Dense Units = out_steps × num_features

CNN-BiLSTM CNN layer followed by BiLSTM; tuned similar to CNN and BiLSTM individually

Multi-Channel CNN
Conv1: Filters = 8, Kernel = 5, Activation = ReLU; MaxPool = 2; Conv2: Filters = 4, 

Kernel = 5; Dense Units = 732

Linear Regression Scikit-Learn LinearRegression (default parameters)
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Finally, we trained the above models with four different combinations (see Figure 22) to 

conduct a comparative analysis. The models are as follows:

I.Data-Driven Models

II.Physics-Guided Models (i.e., Data Driven + Physics-based)

III.Repair Agnostic Models (i.e., Data-Driven models that are Repair Agnostic)

IV.Repair Agnostic Physics-Guided Models (i.e., Physics-Guided models that are Repair

Agnostic)

Figure 22. Overview of the four model categories used in bridge deterioration forecasting
The framework illustrates the relationships between (1) the Data-Driven Model (Red box), which learns 

deterioration patterns directly from inspection data; (2) the Physics-Guided Model (Blue box), which 
augments data-driven predictions with mechanistic constraints using a physics-based loss term; (3) the 

Repair-Agnostic Model (Orange box), which learns deterioration behavior with consideration of 
maintenance events; and (4) the Repair-Agnostic Physics-Guided Model (Green box), which integrates 

both physics-based constraints and repair-agnostic learning. Together, these models progressively 
combine empirical learning, domain knowledge, and maintenance-independent representations to 

enhance predictive performance and interpretability in bridge condition forecasting.
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3.4.2 Comparative Analysis

In this section, we perform a detailed comparative analysis involving four model types—

data-driven, physics-guided, repair-agnostic, and repair-agnostic physics-guided—organized 

into three distinct comparative studies.

3.4.2.1 Comparative Study I: Data-Driven Models vs. Physics-Guided Models

This subsection presents a detailed comparative analysis between purely data-driven 

models and their extended equivalent models incorporating physics-guided loss functions. The 

objective is to evaluate the impact of integrating physics-informed constraints on model 

performance across four structural components: deck, superstructure, substructure, and 

culvert.

Figure 23. Deck Results for Physics-guided vs Purely Data-driven Models

In the baseline setup, models are trained using standard data-driven learning, while the 

amended versions incorporate domain-specific physical knowledge into the loss function. 

Model performance is evaluated using Root Mean Square Error (RMSE), where lower values 

indicate higher predictive accuracy. Figures 23 to 26 summarize the RMSE results for each 
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model under both configurations.  As shown in the figures, physics-guided models consistently 

outperform their data-driven peers across nearly all architectures.

For deck deterioration forecasting, the LSTM model achieves the lowest RMSE among 

the data-driven models (0.3501). When the physics-guided loss function is introduced, the GRU 

model obtains the best performance, reducing RMSE to 0.3319. The LSTM model also shows an 

RMSE drop to 0.3368—very close to the GRU’s score. These results suggest that both GRU and 

LSTM architectures are particularly effective in incorporating physical constraints during 

training.

Figure 24. Superstructure Results for Physics-guided vs Purely Data-driven Models

Among the superstructure models, the data-driven LSTM achieves a winning RMSE of 

0.2826. With physics guidance, the same model reduces its RMSE to 0.2482, beating all others 

in this category. The Physics-Guided BiLSTM also performs competitively, attaining an RMSE of 

0.2583, confirming its effectiveness under physics-aware configurations.

In substructure condition prediction, the Physics-Guided BiLSTM model demonstrates 

the most observable improvement, reducing RMSE from 0.2712 to 0.2516 when trained with 
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knowledge-informed loss functions. This reflects the model's capacity to capture long-term 

temporal patterns influenced by physical degradation behavior.

Figure 25. Substructure Results for Physics-guided vs Purely Data-driven Models

In culvert condition forecasting, the Linear Regression model initially performs best 

among traditional approaches (RMSE = 0.7102). However, with physics-guided loss, the CNN 

model significantly improves performance, achieving a lower RMSE of 0.6802, outperforming all 

other model variants. The GRU model follows closely with an RMSE of 0.6855, further 

demonstrating its effectiveness.

Among all evaluated configurations, the LSTM, GRU, and BiLSTM models show the 

greatest performance improvements, with RMSE reductions of up to 0.3 when transitioning 

from purely data-driven to physics-guided learning. These results confirm the advantage of 

embedding physical knowledge into the model's training objective to improve accuracy and 

real-world explainability.
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Figure 26. Culvert Results for Physics-guided vs Purely Data-driven Models

Comparative Result Summary:

Physics-guided models consistently outperform their data-driven counterparts across all 

structural components. These results highlight the importance of integrating domain 

knowledge into the learning process and identify physics-guided GRU, BiLSTM, and LSTM as 

promising candidates for further evaluation. A comparative result analysis of data-driven and 

physics-guided models is presented in Table 4. The subsequent subsection extends this 

investigation by assessing the impact of incorporating real-world repair data on model 

performance.

Table 4. Comparison of Experimental results (RMSE) for Data-Driven Models vs. Physics-Guided Models

Across Structural Components

Model Deck

Data-

Driven

Deck

Physics-

Guided

Super-

structure

Data-

Driven

Super-

structure 

Physics-

Guided

Sub-

structure 

Data-

Driven

Sub-

structure 

Physics-

Guided

Culvert

Data-

Driven

Culvert 

Physics-

Guided
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LSTM 0.3501* 0.3368 0.2826* 0.2482* 0.2652* 0.2519 0.8461 0.7117 
GRU 0.365 0.3319* 0.3097 0.2741 0.3418 0.2635 0.9898 0.6855

BiLSTM 0.3793 0.3457 0.2914 0.2583 0.2712 0.2516* 0.8129 0.7845

Linear 0.4155 0.3862 0.8685 0.2757 0.4493 0.3123 0.7102* 0.741

CNN 0.6968 0.4383 0.8949 0.3374 0.7842 0.3772 0.7286 0.6802*

CNN-BiLSTM 0.481 0.4242 0.6041 0.3503 0.4873 0.3602 0.9057 0.9125

TCN 0.5203 0.35 0.6831 0.7565 0.702 0.3073 0.8979 1.02

Multi-Channel-

CNN 0.6831 0.5311 0.7229 0.413 0.5232 0.5224 0.7788 0.7683

Note: The rows represent the different machine- and deep-learning models. The columns are organized in pairs 
for side-by-side comparison: the first column in each pair shows the data-driven model results, and the second 
column shows the physics-guided model results. Highlighted Bold values (marked with an asterisk) indicate the 
lowest RMSE within each component. Lower RMSE values correspond to better predictive performance. For 
example, in the deck column, the physics-guided GRU model achieves the winning RMSE of 0.3319 (cyan with an 
asterisk ). Colors are provided only for visual emphasis; all results can be interpreted directly from the numerical 
values.

3.4.2.2 Comparative Study II: Data-Driven Models vs. Repair-Agnostic Models

In this analysis, we compare the baseline data-driven models that were trained without 

considering repair cases with models trained using repair-agnostic data, which consider real-

world maintenance events. This setup evaluates the benefit of using historical repair 

information in model training. Figures 27 to 30 summarize the RMSE results for each model 

under both configurations. 

For deck condition rating, the data-driven LSTM reports an RMSE of 0.3501, while the 

repair-agnostic LSTM achieves a reduced RMSE of 0.3414, confirming the lowest score among 

all other models. A similar pattern is observed for GRU, BiLSTM, and TCN models. In the 

superstructure domain, the repair-agnostic BiLSTM model achieves the best performance, and 

other models also show impressive RMSE reductions under the repair-agnostic setting. 

Substructure condition ratings prediction models follow the same trend, with models like TCN 

reducing RMSE from 0.702 to 0.4254, and repair-agnostic LSTM as the winner model. Culvert 

prediction also benefited from repair-agnostic model training, with the best-performing model, 

LSTM, improving its RMSE from 0.8461 to 0.5929. 
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Figure 27. Deck Results for Repair Events vs Non-Repair

Figure 28. Superstructure Results for Repair Events vs Non-Repair
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Figure 29. Substructure Results for Repair Events vs Non-Repair

Figure 30. Culvert Results for Repair Events vs Non-Repair
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These results confirm that incorporating bridge and culvert maintenance information in 

the training procedure can optimize the models' performance and reduce overfitting, and allow 

the network to generalize better from available data.

Comparative Result Summary:

Repair-agnostic models consistently outperform their data-driven versions across all 

structural components, as shown in Table 5. Incorporating real-world repair events during the 

training process leads to reduced RMSE values, indicating that models trained with repair-

agnostic data are less prone to overfitting and better at capturing underlying deterioration 

trends. More specifically, LSTM and BiLSTM models exhibit substantial gains in deck, 

superstructure, substructure, and culvert prediction, while models like TCN and GRU show 

marked improvement in all categories. These results emphasize the value of using clean, 

intervention-considered datasets to enhance the generalization capability of condition rating 

models.

Table 5. Comparison of experimental results (RMSE) for Data-Driven vs. Repair-Agnostic models across structural 
components

Model Deck

Data-Driven

Deck

Repair-

Agnostic

Super-

structure

Data-

Driven

Super-

structure

Repair-

Agnostic

Sub-

structure

Data-

Driven

Sub-

structure

Repair-

Agnostic

Culvert

Data-

Driven

Repair-

Agnostic

LSTM 0.3501* 0.3414* 0.2826* 0.3001 0.2652* 0.2623* 0.8461 0.5929 
GRU 0.365 0.3435 0.3097 0.2997 0.3418 0.2902 0.9898 0.671 
BiLSTM 0.3793 0.3573 0.2914 0.2739* 0.2712 0.2652 0.8129 0.6624 
Linear 0.4155 0.4443 0.8685 0.3551 0.4493 0.4099 0.7102* 0.5361*

CNN 0.6968 0.7724 0.8949 0.6973 0.7842 0.7498 0.7286 0.67 
CNN-BiLSTM 0.481 0.5983 0.6041 0.4981 0.4873 0.5696 0.9057 0.8744 
TCN 0.5203 0.3618 0.6831 0.3389 0.702 0.4254 0.8979 0.7215 
Multi-Channel-

CNN 0.6831 0.6955 0.7229 0.564 0.5232 0.8402 0.7788 0.7948 
Note: The rows represent the different machine- and deep-learning models. The columns are organized in pairs for 
side-by-side comparison: the first column in each pair shows the data-driven model results, and the second column 
shows the repair-agnostic model results. Highlighted Bold values (marked with an asterisk) indicate the lowest RMSE 
within each component. Lower RMSE values correspond to better predictive performance. For example, in the deck 
column, the repair-agnostic LSTM model achieves the winning RMSE of 0.3414 (gray with an asterisk). Colors are 
provided only for visual emphasis; all results can be interpreted directly from the numerical values.
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3.4.2.3 Comparative Study III: Physics-Guided Models vs. Repair-Agnostic Physics-Guided (RAPG) 
Models 

This comparative analysis evaluates the added value of integrating repair-agnostic 

training strategies into physics-guided deep learning models. These models already benefit 

from physical constraints in the loss function; the addition of repair-agnostic data helps 

determine whether further generalization is achievable by considering repair history. 

In the deck component, LSTM improves from 0.3319 to 0.3267, and GRU from 0.3319 to 

0.3241, showing consistent enhancement in predictive accuracy. BiLSTM improves slightly from 

0.3457 to 0.3355. For superstructure condition forecasting, GRU improves from 0.2741 to 

0.2565, and CNN from 0.3374 to 0.3167. Substructure models follow a similar trend, where 

LSTM improves from 0.2519 to 0.2472, and BiLSTM from 0.2516 to 0.2472. Culvert predictions 

show the most dramatic improvement in LSTM, with RMSE dropping from 0.7117 to 0.5057. 

Comparative Result Summary: 

Across all components, repair-agnostic physics-guided models consistently outperform 

their physics-only equivalent, as shown in Table 6. This configuration leverages both domain 

knowledge and robust generalization from repair-agnostic data, leading to the most reliable 

and physically consistent condition rating forecasts. These results affirm that the repair-

agnostic physics-based approach is the most effective strategy among all evaluated 

configurations. 

Table 6. Comparison of experimental results (RMSE) for Physics-Guided (PG) vs. Repair-Agnostic Physics-Guided 
(RAPG) models across structural components 

Model Deck 

PG 
Deck 

RAPG 
Super-

structure 

PG 

Super-

structur 

RAPG 

Sub-

structur 

PG 

Sub-

structure 

RAPG 

Culvert 

PG 
Culver 

RAPG 

LSTM 0.3368 0.3267 0.2482* 0.2689 0.2519 0.2472* 0.7117 0.5057*

GRU 0.3319* 0.3241* 0.2741 0.2565* 0.2635 0.2534 0.6855 0.6698 
BiLSTM 0.3457 0.3355 0.2583 0.2679 0.2516* 0.2472* 0.7845 0.6134 
Linear 0.3862 0.4093 0.2757 0.2791 0.3123 0.2555 0.741 0.5509 
CNN 0.4383 0.4603 0.3374 0.3167 0.3772 0.3581 0.6802* 0.6092 
CNN-BiLSTM 0.4242 0.5834 0.3503 0.4675 0.3602 0.5542 0.9125 0.8341 
TCN 0.35 0.3822 0.3349 0.2787 0.3073 0.3043 1.02 0.7198 
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Multi-Channel-

CNN 0.5311 0.6812 0.413 0.5331 0.5224 0.7018 0.7683 0.7814 

Note: The rows represent the different machine- and deep-learning models. The columns are organized in pairs for 
side-by-side comparison: the first column in each pair shows the physics-guided model results, and the second 
column shows the repair-agnostic physics-guided model results. Highlighted Bold values (marked with an asterisk) 
indicate the lowest RMSE within each component. Lower RMSE values correspond to better predictive performance. 
For example, in the superstructure column, the physics-guided GRU model achieves the winning RMSE of 0.2482 
(green highlighted with an asterisk). Colors are provided only for visual emphasis; all results can be interpreted 
directly from the numerical values.

3.4.3 Ablation Analysis: Stepwise Performance Improvement from Feature Selection to Repair-
Agnostic Physics Models 

To provide a comprehensive understanding of the performance evolution, this section 

presents a stepwise ablation analysis demonstrating how structural condition rating predictions 

progressively improve across five model stages: 

1.The purely data-driven model trained with all available features,

2.The SHAP-selected data-driven model,

3.The Repair-Agnostic (RA) model,

4.The Physics-Guided (PG) model, and

5.The combined Repair-Agnostic Physics-Guided (RAPG) model.

This progressive evaluation highlights the individual and combined contributions of 

feature selection, domain-informed learning, and repair-agnostic training to overall model 

accuracy and generalization. 

Performance Impact of Feature Selection: 

As a preliminary step described in section 3.3, feature importance analysis using SHAP 

identified the most influential input variables for each component. 

Figure 31 and Table 7 illustrate the performance improvement patterns of models when 

using all available features compared to only SHAP-selected best features. This comparison 

serves as a preliminary ablation analysis, highlighting the performance gains from feature 

reduction. This analysis not only improves model performance but also facilitates effective 

feature selection. By prioritizing the most informative predictors, we reduce model complexity 

and training time while improving generalization.  
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Table 7. Improvement in Root Mean Squared Error (RMSE) Achieved by Using SHAP-Selected Best Features over 
All Available Features 

Model Deck (%) Superstructure (%) Substructure (%) Culvert (%) 

LSTM 66 74 76 27 

GRU 65 71 68 15 

BiLSTM 63 73 75 29 

Linear 99 99 99 98 

CNN 91 86 93 74 

CNN–BiLSTM 54 45 56 22 

TCN 51 52 37 74 

Multi-Channel CNN 84 79 90 82 

Using only the most important predictors, we achieved an average RMSE improvement 

of 63% across all structural components, demonstrating the effectiveness of SHAP-based 

feature selection as the foundation for subsequent model development. These optimized 

feature sets were then used for all following experiments, including the Repair-Agnostic, 

Physics-Guided, and RAPG configurations. 
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Figure 31. Model Performance Using All Features vs. SHAP-Selected Best Features 

Progressive Performance Improvement from Data-Driven Models to Repair-Agnostic Physics-

Guided Models 

Building on the SHAP-optimized feature inputs, further enhancements were introduced 

through physics-guided and repair-agnostic mechanisms. 

The optimal subset of features for each component, identified using SHAP values, is 

applied to all following models—from the Data-Driven to the RAPG configuration. The Data-

Driven model, built on these selected features, already demonstrates a significant RMSE 

improvement compared to the All-Features data-driven models, as mentioned before. The 

incorporation of physics-guided loss functions further reinforces performance by implementing 

physical consistency, thereby mitigating overfitting to noisy or spurious training signals. The 

most substantial improvements, however, are achieved with the RAPG model, which integrates 
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both physics-based learning and repair-agnostic training. Table 8 summarizes the stepwise 

RMSE improvements observed throughout the model development pipeline.  

Table 8. RMSE Improvement Over Training Stages from the All-Features Data-Driven Model to Repair-

Agnostic Physics-Guided (RAPG) Model

Component
AFDDM → Data-

Driven

Data-Driven → 

RA

Data-Driven → 

PG

Data-Driven → 

RAPG

AFDDM → 

RAPG

Deck 66% 2% 5% 7% 69% 
Superstructure 74% 3% 12% 9% 76% 
Substructure 75% 1% 5% 7% 77% 
Culvert 38% 25% 4% 29% 56% 
Avg. 

Improvement
63% 8% 7% 13% 69%

Starting with an average 63% gain across all components from feature selection using SHAP 

analysis, model performance improves by an additional 7% with the integration of a physics-

guided loss function to data-driven models with SHAP-selected features and 13% upon 

incorporating repair-agnostic training data with physics loss, resulting in a total performance 

gain of up to 69% (an average improvement of all components) over models trained with all 

features. This configuration effectively minimizes bias introduced by historical repair 

interventions while retaining the benefits of domain-aware modeling. 

Table 9. Stepwise Ablation Analysis: Comparison of RMSE across Data-Driven, Repair-Agnostic, Physics-guided, 
and Repair-Agnostic Physics-guided (RAPG) models 

Model LSTM GRU BiLSTM Linear CNN CNN-

BiLSTM

TCN Multi-Channel-

CNN

Deck Data-Driven 0.3501 0.3650 0.3793 0.4155 0.6968 0.4810 0.5203 0.6831 

Deck Repair-agnostic 0.3414 0.3435 0.3573 0.4443 0.7724 0.5983 0.3618 0.6955 

Deck Physics-guided 0.3368 0.3319 0.3457 0.3862 0.4383 0.4242 0.3500 0.5311 

Deck Repair-agnostic 

Physics-guided 
0.3267 0.3241 0.3355 0.4093 0.4603 0.5834 0.3822 0.6812 

Superstructure 

Data-Driven
0.2826 0.3097 0.2914 0.8685 0.8949 0.6041 0.6831 0.7229 

Superstructure
Repair-agnostic

0.3001 0.2997 0.2739 0.3551 0.6973 0.4981 0.3389 0.5640 



Note: Highlighted cells indicate the lowest (best) RMSE values at each ablation step.Yellow, orange, green, and 
blue denote data-driven, repair-agnostic, physics-guided, and repair-agnostic physics-guided (RAPG) models, 
respectively. Highlighted cells for each component are as follows:

• Deck: LSTM (0.3501), LSTM (0.3414), GRU (0.3319), GRU (0.3241)
• Superstructure: LSTM (0.2826), BiLSTM (0.2739), LSTM (0.2482), GRU (0.2565)
• Substructure: LSTM (0.2652), LSTM (0.2623), BiLSTM (0.2516), LSTM and BiLSTM (0.2472)
• Culvert: Linear (0.7102), Linear (0.5361), CNN (0.6802), LSTM (0.5057)

Table 9 shows a detailed comparison among four category model configurations trained

with SHAP-selected features. The performance trend strongly demonstrates the effectiveness of 

this layered-training strategy. For example, in deck condition prediction, the LSTM model 

progressively improves from 0.3501 (Data-Driven) to 0.3414 (Repair-Agnostic), then to 0.3368 

(Physics-guided), and finally achieves the best performance at 0.3267 (RAPG). Similarly, the GRU 

model follows this pattern with RMSEs of 0.365, 0.3435, 0.3319, and 0.3241, respectively. This 

trend is consistent across superstructure, substructure, and culvert predictions, where models 

like BiLSTM and GRU demonstrate substantial performance gains under the RAPG configuration. 

These findings affirm that integrating both physics-informed loss functions and repair-agnostic 

data yields the most accurate and generalizable forecasts for structural condition ratings. 
74 

Superstructure 

Physics-guided 
0.2482 0.2741 0.2583 0.2757 0.3374 0.3503 0.3349 0.4130 

Superstructure 

Repair-agnostic PG 
0.2689 0.2565 0.2679 0.2791 0.3167 0.4675 0.2787 0.5331 

Substructure 

Data-Driven 
0.2652 0.3418 0.2712 0.4493 0.7842 0.4873 0.7020 0.5232 

Substructure 

Repair-agnostic 
0.2623 0.2902 0.2652 0.4099 0.7498 0.5696 0.4254 0.8402 

Substructure 

Physics-guided 
0.2519 0.2635 0.2516 0.3123 0.3772 0.3602 0.3073 0.5224 

Substructure 

Repair-agnostic PG 
0.2472 0.2534 0.2472 0.2555 0.3581 0.5542 0.3043 0.7018 

Culvert Data-Driven 0.8461 0.9898 0.8129 0.7102 0.7286 0.9057 0.8979 0.7788 

Culvert Repair-agnostic 0.5929 0.6710 0.6624 0.5361 0.6700 0.8744 0.7215 0.7948 

Culvert Physics-guided 0.7117 0.6855 0.7845 0.7410 0.6802 0.9125 1.0200 0.7683 

Culvert Repair-agnostic 

Physics-guided 
0.5057 0.6698 0.6134 0.5509 0.6092 0.8341 0.7198 0.7814 
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Ablation Study Outcome: 

This stepwise ablation clearly illustrates that the RAPG-DL models consistently 

outperform both data-driven and physics-only configurations. The combination of physics-

based modeling and repair-independent training data represents the most effective strategy for 

structural deterioration forecasting. The ablation analysis results, presented in Figures 32 to 35, 

show that most models follow a consistent pattern of RMSE reduction, highlighting progressive 

performance improvements from Data-Driven to Repair-Agnostic Physics-Guided deep learning 

models. 

Figure 32. Deck: Comparison of Ablation Analysis 
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Figure 33. Superstructure: Comparison of Ablation Analysis 

Figure 34. Substructure: Comparison of Ablation Analysis 
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Figure 35. Culvert: Comparison of Ablation Analysis 

3.4.4 Discussion 

Our comparative and ablation analysis illustrates that LSTM, BiLSTM, and GRU are the 

most prominent models for forecasting the condition of bridge components. Meanwhile, Linear 

Regression remains a satisfactory choice for culvert modeling under baseline configurations, as 

summarized in Table 10. The superior performance of these recurrent models can be attributed 

to their recurrent gated architecture, which effectively captures complex, time-dependent 

relationships. The input, forget, and output gates enable the models to dynamically retain or 

discard information across time steps, making them particularly well-suited for temporal 

deterioration data. 

Furthermore, appending physics-based loss functions provides an inductive bias aligned 

with real-world behavior, accelerating the model's learning ability. Repair data complements 

this by injecting historical intervention context into the learning process. Using temporal 

memory, physical constraints, and repair history significantly improves prediction accuracy and 

robustness, supporting informed maintenance planning and resource allocation. 

Table 10. Best-Performing Models for Structural Condition Rating by Component and Configuration 

Component Data-Driven Repair-Agnostic Physics-Guided RAPG 

Deck LSTM GRU GRU GRU 
Superstructure LSTM BiLSTM LSTM GRU 
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Substructure BiLSTM GRU BiLSTM LSTM 
Culvert Linear LSTM GRU LSTM 

3.5 Sample Forecasting Results 

The forecasting results presented in Figures 36–38 are generated using the Make 

Forecast functionality of the i-BM platform. This functionality enables users to interactively 

produce multi-year condition forecasts by selecting a structure, structural component, trained 

model, and prediction horizon through the web-based interface. 

When a user initiates the Make Forecast action, the system dynamically retrieves the 

relevant historical inspection, traffic, and environmental data from the backend databases 

based on the selections made through the frontend interface. The corresponding trained 

forecasting model is then loaded from the MLflow model registry and executed to generate 

future condition ratings over the specified prediction horizon. The forecasting workflow 

supports both data-driven and physics-guided models, as well as repair-aware and non-repair 

configurations, enabling flexible scenario analysis. The resulting forecasts can be examined 

directly within the i-BM data explorer interface or exported as Excel files for offline analysis and 

documentation. 

Figure 36 illustrates sample forecasting results visualized directly within the i-BM tool 

after execution. In this case, the predicted condition ratings for a selected culvert structure are 

displayed as a time-series plot, where historical inspection data are shown alongside future 

predictions. Forecasted values have persisted in the database, enabling interactive visualization 

and comparison across years for further analysis. 
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Figure 36. Sample Forecasting Results Visualized from the Database in the i-BM Tool 

In addition to in-platform visualization, the i-BM system allows forecast results to be 

exported as structured files for offline analysis and documentation. Figures 37 and 38 present 

examples of long-term forecast results exported to files for two different modeling 

configurations. Figure 37 presents long-term condition rating forecasts generated using a non-

repair, non-physics (purely data-driven) model. The figure illustrates how future condition 

ratings are predicted based solely on historical deterioration patterns observed in the input 

data, without explicitly accounting for repair actions or enforcing physics-based constraints. As 

reflected in the tabular representation, each row corresponds to an individual bridge deck 

identified by a unique Bridge_ID. The left portion of the table contains historical condition 

ratings across multiple years (highlighted in yellow), which serve as model inputs, while the 
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right portion shows the predicted future condition ratings along with their associated 

confidence values for each forecasted year (displayed as alternating prediction and confidence 

columns shaded in light blue). This visualization demonstrates how the data-driven model 

extrapolates long-term deterioration trends directly from past observations. In contrast, Figure 

38 demonstrates results produced using a repair-agnostic physics-guided model, which 

incorporates domain knowledge to regulate deterioration trends and enforce physically 

meaningful behavior over extended forecast horizons. 

Figure 37. Sample Long-Term Forecast Results Using a Non-Repair, Non-Physics Model (Exported to 
File) 

Figure 38. Sample Long-Term Forecast Results Using a Repair-Agnostic Physics Model (Exported to 
File) 

Together, these results highlight the flexibility of the Make Forecast functionality in 

supporting multiple modeling paradigms and output formats.By enabling both in-tool 

visualization and file-based export, the i-BM platform facilitates detailed examination of long-

term deterioration trends and supports data-driven decision-making for infrastructure 

maintenance planning and management. 
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Chapter 4. Bridge Anomaly Detection 

4.1 Problem Definition 

Time-series anomaly detection aims to identify abnormal patterns or events that 

deviate significantly from normal temporal behavior. These anomalies often correspond to 

system faults, data errors, or rare operational events. While deep learning–based methods such 

as CNN, LSTM, and Transformer architectures have achieved strong detection performance, 

their success heavily depends on the availability of large, high-quality labeled datasets. 

Unfortunately, manual labeling of time-series anomalies is costly, time-consuming, and 

ambiguous, since abnormal behaviors vary in scale, duration, and semantics. Traditional 

unsupervised methods (e.g., Isolation Forest, Autoencoder, LOF) require no labels but often 

yield suboptimal and unstable results. Meanwhile, fully supervised models demand extensive 

labeling that is impractical in industrial contexts. 

To address this labeling bottleneck, Haotian Guo et al. in LEIAD [59] defined a new 

research objective: 

Develop a label-efficient anomaly detection framework that minimizes manual 

supervision while maintaining high detection accuracy. 

Accordingly, we define the anomaly detection problem as follows: 

Given a multivariate time-series dataset X={x1,x2,…,xT}, detect anomalies A={a1,a2,…,aT} 

with minimal human-labeled samples, leveraging weak supervision, active learning, and 

heuristic labeling functions. 

4.2 Literature Review 

In this section, we review existing methods that are commonly applied in anomaly 

detection research and practice. 

4.2.1 Unsupervised Anomaly Detection (UAD) 

Unsupervised methods detect anomalies by modeling normal behavior and identifying 

deviations. Classic UAD approaches include: 

•Isolation Forest (I-Forest): builds isolation trees that separate abnormal points with
fewer splits, producing anomaly scores based on path lengths. 



83

•Spectral Residual (SR): applies Fourier Transform to filter frequency-domain signals 
and reconstructs time-domain residuals for anomaly detection. 

•STL (Seasonal-Trend Decomposition): separates trend and seasonal components, 
marking residual outliers as anomalies. 

•RC-Forest (Random Cut Forest): builds ensembles of random cut trees to isolate 
anomalies probabilistically. 

•Luminol: a lightweight library by LinkedIn used for streaming anomaly detection. 

Each of these UAD models has specific assumptions about data distribution and works 

independently. However, no single model performs optimally across diverse datasets or 

scenarios. LEIAD [59] mitigates this limitation by aggregating multiple UAD outputs to produce 

initial pseudo-labels that are then refined interactively. 

4.2.2 Active Learning 

Active learning reduces annotation cost by querying labels for only the most informative 

samples. Instead of labeling all data, a model iteratively selects uncertain points and requests 

user feedback to improve performance. 

However, existing active learning frameworks face two issues: 

1.Cold-start problem – initial labeled data are needed to bootstrap the model. 

2.Limited scalability – most approaches have not been adapted for time-series 
anomaly detection, where dependencies exist across timestamps. 

LEIAD [59] addresses these limitations by integrating weak supervision to generate 

initial pseudo-labels, providing a warm start for the active learning process. Then, active queries 

refine the model using uncertainty-based feedback from human annotators. 

4.2.3 Weak Supervision 

Weak supervision provides an efficient means of generating approximate labels using 

heuristic rules, domain knowledge, or multiple noisy sources instead of manual annotation. 

Frameworks such as Snorkel combine several labeling functions (LFs) to synthesize probabilistic 

labels. 

LEIAD [59] extends weak supervision for time-series data by using: 
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•Multiple UAD methods as initial labeling functions. 

•A label model that aggregates these weak labels into probabilistic scores. 

•Iterative refinement where new labeling functions are generated from user feedback. 

This enables learning even without explicit ground truth, reducing dependency on large-

scale manual annotation. 

4.3 Proposed Methods 

The proposed Label-Efficient Interactive Time-Series Anomaly Detection (LEIAD) [59] 

system integrates unsupervised detection, weak supervision, active learning, and automatic 

labeling-function generation into a uniform framework. Its goal is to iteratively improve 

anomaly detection performance with minimal human supervision by combining automated 

model outputs with selective expert feedback. The original LEIAD [59] framework was trained 

and tested using benchmark time-series datasets such as Yahoo, Microsoft, and KPI. In this 

study, we adapted the same framework to train and detect anomalies in the National Bridge 

Inventory (NBI) dataset. 

4.3.1 System Overview 

LEIAD [59] operates as an interactive pipeline that continuously refines its 

understanding of anomalies over time (see Figure 8 in section 2.4.1). The workflow consists of 

four main stages:  

The pipeline proceeds as follows: 

1.Initial Label Generation: Apply multiple UAD models (e.g., I-Forest, SR, STL, RC-Forest, 
Luminol) to obtain initial pseudo-labels. 

2.Weak Supervision Module: Aggregate pseudo-labels using a generative label model 
(Snorkel) that produces probabilistic soft labels. 

3.End Model Training: Train a supervised anomaly detection model (e.g., LightGBM or 
DNN) using the aggregated weak labels. 

4.Active Learning Module: Query human feedback on uncertain or conflicting segments 
to refine model predictions. 

5.Label Function Generator: Convert new feedback into additional heuristic LFs, 
expanding the weak supervision pool. 
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This loop continues until model predictions stabilize and labeling cost is minimized. 

4.3.2 Unsupervised Anomaly Detector (UAD) 

Let X={x1,x2,…,xT} denote a time-series. Each UAD method produces anomaly scores st(m), 

where m indexes different detectors. LEIAD normalizes and ensembles these outputs: 

(16) 

The ensemble score P(xt) provides initial pseudo-labels for the weak supervision 

module, enabling cross-model robustness. 

4.3.3 Weak Supervision Module 

Using Snorkel, the weak supervision model integrates multiple LFs to infer probabilistic 

labels without ground truth. 

For each time point xt, let L=[L1(xt),L2(xt),…,LM(xt)] be the LF votes. The generative model 

estimates: 

(17) 

where wj are model weights and ɸj represent label correlations. 

This step produces denoised labels that serve as training data for the end model. 

4.3.4 End Model 

The end model is a binary classifier fθ xt  predicting whether a point is anomalous. It 

minimizes: 

(18) 

where CE denotes cross-entropy loss. 

LEIAD uses LightGBM for its efficiency and robustness on tabular and time-series data. 

Input features include: 
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•Statistical metrics: mean, variance, skewness, kurtosis, etc.

•Transformations: log, trend, and seasonality components.

•Sliding window statistics: across multiple scales (10, 50, 100, 200 timesteps).

•Ratios/Differences: relative deviation from previous intervals.

4.3.5 Active Learning Module 

The active learning agent selects the most informative samples based on four metrics: 

1.Agreement of Labeling Functions

(19) 

2.Abstention Count

(20) 

3.Uncertainty of End Model

(21) 

4.Diversity

(22) 

The combined query function determining which samples to label is: 

(23) 

where coefficients α, β, γ, and δ control the trade-off among criteria. 

4.3.6 Label Function Generation 

Once human feedback is collected, LEIAD [59] automatically transforms it into new 

labeling functions using time-series embedding similarity. 

Given an annotated pair (xi,yi), similar instances are found via cosine distance in a 

learned embedding space: 

If similarity exceeds a threshold, a new LF is created to generalize that labeling rule 

across the dataset. 

This adaptive mechanism enables continual improvement of the weak supervision pool, 

enhancing scalability and reducing manual labeling costs. 
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4.3.7 Advantages of LEIAD 

•Label-efficient: minimizes human annotation through interactive learning. 

•Hybrid learning: combines unsupervised, weakly supervised, and active learning 

paradigms. 

•Adaptable: automatically generates new heuristic rules from user feedback. 

•Industrial scalability: validated on Microsoft’s monitoring datasets. 

4.5 Tool Description and Sample Results 

This section provides an overview of the implemented interface and illustrative results 

obtained from the i-BM tool. 

4.5.1 Anomaly Analysis Model Management Interface 

The Anomaly Analysis Model Management Window provides an interactive interface for 

generating datasets, configuring models, and training anomaly detection algorithms on bridge 

and culvert condition data. Users can begin by selecting the Structure Category (e.g., Bridge or 

Culvert) and the Group Name or structure selection criteria. The interface then allows 

specification of the Component to be analyzed (such as Deck, Superstructure, Substructure, or 

Culvert) under the Condition Rating Data Generation panel. 

After selecting the desired component, users can click Generate Dataset to 

automatically retrieve condition rating data for the selected structure from the database. For 

advanced configuration, the Model Configuration option allows users to optionally adjust 

training parameters such as Epoch Number, Warm or Cold Start, or others. The Start the Train 

Window button initiates the anomaly detection model training, while the Save Iteration button 

stores the current training progress for future continuation. The Restart button enables users 

to resume training from a previously saved incomplete iteration, ensuring flexibility and 

continuity during multi-stage training processes. 

During the iterative training process, one bridge time-series sequence is displayed per 

iteration. The user can visually inspect this sequence and mark potential anomalies based on 

the plotted data. Once an anomaly is identified and confirmed in the Next Iteration button, the 

model retrains in the backend using the user’s labeling feedback and then automatically 
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presents the next most likely bridge candidate for anomaly review. This iterative process 

continues until the user is satisfied with the model’s performance or when no anomalous 

patterns are detected after several consecutive iterations. 

Once the training is complete, the user can finalize and save the trained model by 

clicking End Iteration, which stores the final model parameters for future use to detect 

anomalies from unseen data using the i-BM Anomaly Detection interface. 

This module makes the anomaly detection workflow interactive, explainable, and data-

driven—empowering bridge engineers to iteratively refine and train models that can 

automatically identify abnormal performance behaviors or unexpected deterioration patterns 

across bridge components. Figure 39 shows the model management interface in the i-BM 

system. 

Figure 39. Model Management Interface to Train an Anomaly Model 

4.5.2 Anomaly Detection Interface 

The anomaly detection interface enables users to identify abnormal behavior in bridge 

component condition ratings using trained anomaly detection models. Users can begin by 

selecting the structure category (e.g., Bridge or Culvert) and choosing a group name or all 
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structures for evaluation. Components available for anomaly analysis—Deck, Superstructure, 

Substructure, and Culvert—can be selected through the Component Selection panel. 

After component selection, users can choose a trained model and click on Detect. After 

clicking Detect, the system executes the selected anomaly detection model in the backend and 

visualizes the resulting condition rating time-series on a dynamic chart. Users can choose an 

individual bridge from a dropdown list to show and analyze. 

Anomalous points are automatically highlighted in red, while normal data points are 

shown in blue, allowing bridge engineers to visually inspect periods of abnormal trends or data 

irregularities. Detected anomalies may indicate unusual deterioration patterns, measurement 

inconsistencies, or potential inspection/reporting errors that require further review. 

Once the detection process is completed, users can either save results to the database 

for further analysis or export the results to a file for external documentation or reporting. This 

streamlined interface enhances the usability of the anomaly detection module, enabling 

engineers to quickly identify, validate, and record performance anomalies in bridge and culvert 

components across multiple structures. 

4.5.3 Sample Results 

Figure 40 shows some sample results generated by the i-BM anomaly detection model.

Figure 40. Sample Results from i-BM Anomaly Detection 
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Chapter 5. Conclusions and Future Work 

In this study, we designed, developed, and deployed an end-to-end intelligent bridge 

management tool (i-BM) for bridge and culvert deterioration forecasting and anomaly 

detection to be used by CDOT bridge engineers as a tool for effective bridge management. I-BM 

integrates a series of data-driven deep learning models and their physics-guided extension DL 

models for bridge deterioration forecasting, as well as an interactive training framework for 

bridge anomaly detection. Before integrating the models into i-BM, we conducted extensive 

experimental evaluations using multimodal real-world datasets, including bridge performance, 

traffic, and weather data for all bridges in Colorado. The results demonstrated that our 

proposed physics-guided deep learning models significantly outperform existing purely data-

driven models previously developed for bridge and culvert deterioration forecasting. Moreover, 

the standalone software package allows bridge engineers to either use pre-trained models or 

train their own models by selecting from approximately 32 model configurations with different 

combinations of input features, enabling comprehensive training, forecasting, and evaluation of 

predictive performance. This tool was developed by building upon and extending our previous 

work in three key ways: 1) it integrates the deep learning models into a user-friendly software 

tool with graphical user interface and improved operational features to improve usability and 

functionality, 2) it incorporates enhanced physics-guided deep learning models that integrate 

traditional physics based bridge deterioration forecasting models with data-driven deep 

learning models for further improved performance in prediction of deterioration, and 3) it 

develops bridge performance anomaly detection that allows for accurate prediction of bridge 

performance anomalies such as those that can lead to bridge failures/accidents. 

In the future, we plan to integrate work-order optimization into the current Intelligent 

Bridge Management (i-BM) tool to enable cost-effective maintenance of bridges and culverts 

using both component-level and element-level deterioration forecasting. We also aim to extend 

this tool into a comprehensive structural management platform that serves as an intelligent 

assistant for bridge engineers, incorporating more advanced technologies. 
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