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CHAPTER 1:
INTRODUCTION

1.1 BACKGROUND

The identification of appropriate correlations between operating speed, roadway geometry, and
traffic exposure can significantly contribute to the enhancement of roadway safety. A
comprehensive understanding and characterization of these associations has the potential to
advance existing safety improvement procedures leading to a reduction in both the frequency and
severity of crashes. Therefore, it is imperative to employ data-driven methodologies to gain a
better comprehension of these relationships. Traditional assessments primarily rely on corridor
traffic volume and physical site characteristics. However, the lack of reliable data on operating
speeds has been a major obstacle in developing robust models that depict this relationship,
particularly for urban roadways.

Despite the significance of including speed in safety evaluations, it is noteworthy that the first
edition of the Highway Safety Manual (HSM) (as well as the upcoming second edition) does not
directly employ speed as a measure in the safety performance functions (SPFs) for various types
of road facilities (AASHTO, 2010). This omission mainly arises from the intricate interplay
between roadway geometry, speed, and crash frequency. Furthermore, research findings have not
provided conclusive evidence in determining appropriate speed measures. While some studies
indicate that higher operating speeds result in more frequent and severe crashes, other studies
have observed the opposite effect. Overall, it is evident that the existing models may not
adequately account for the interconnectedness between speed measures, roadway factors, and
safety.

Traditional crash risk analysis methods often overlook crucial factors such as real-time speed,
real-time volume, and weather conditions, resulting in limited effectiveness in predicting safety
risks. To address this research gap, it is proposed to enhance existing state-specific traffic crash
data by incorporating three national databases:

= The NPMRDS: This database contains comprehensive travel time data for both passenger
and freight vehicles, encompassing the National Highway System (NHS) as well as other
roadways. By integrating NPMRDS data, researchers can gain valuable insights into the
performance of transportation networks. INRIX XD data provides additional details on non-
NHS roadways.

= The Travel Monitoring Analysis System (TMAS): TMAS provides traffic volume data
through temporary traffic counting and continuous traffic counting programs. By
incorporating TMAS data, researchers can access information regarding the flow of vehicles,
enabling a more comprehensive analysis of crash risks.



Real-time weather data from the National Oceanic and Atmospheric Administration
(NOAA): Weather conditions significantly influence road safety, and the inclusion of real-
time weather data from NOAA enhances the accuracy of crash risk analysis. Factors such as
precipitation, temperature, and visibility can now be considered, enabling a more holistic
assessment.

The 0-7144 research project aims to address these limitations by developing updated SPFs
specifically tailored for urban roadways. Additionally, a decision support tool was developed to
facilitate the exploration of segment-based crash risks for various types of urban roadway
facilities. By leveraging these integrated datasets and tools, transportation professionals will have
access to improved methodologies for assessing crash risks, allowing for more effective safety
planning and decision-making processes.

1.2 PROJECT GOAL AND RESEARCH TASKS

The objective of this study is to develop annual and short duration SPF development for urban
facilities. This project aims to answer the following three research questions:

= To what extent can operational speed and weather variables be interpreted as directly
affecting crash risk or crash severity on urban roadways?

= To what extent can the decision criteria be developed in assigning the risk measures of
the urban roadways for the decision support tool?

=  (Can the decision support tool provide updated risk scores based on the new influx of
data?

To achieve the project goals, the Project Team has conducted five major tasks, and they are
summarized as follows:

Task 2 — Literature Review: The Project Team conducted a broader overview of speed and
safety on urban roadway networks.
Task 3 — Data Collection and Data Preparation: The Project Team conflated several data
sources to develop the database for the safety evaluation of urban roadways. For traffic crash
data, the Project Team used five years (2018-2022) of traffic crash data from Crash Records
Information System (CRIS).
Task 4 — Safety Evaluation of Urban Roadway Networks: The Project Team conducted a
safety evaluation of different urban facility types in this task. The Project Team developed
models at two temporal levels:

o Long duration analysis (e.g., multi-year, annual).

o Short duration analysis (e.g., daily, hourly).
Task 5 — Urban Decision Support Tool Development: The Project Team developed an
interactive map-based web application to analyze and visualize the risk on the urban roadway



network. The risk predicted using modeling for each segment of the roadway network was
illustrated on interactive GIS maps. The decision support tool platform has three major
components, a cloud-based data warehouse, a cloud-based computational platform, and a
web server. The Project Team developed a dynamic version of the tool in which risk scores
will be updated with the influx of new data.

= Task 6 — Guideline and Workshop Presentation File Development: The Project Team
developed a guidance document on the tool usage and developed workshop-ready
presentation slides.

1.3 REPORT ORGANIZATION

The remaining chapters of this report include the following:

= Chapter 2: Literature Review: This chapter provides an overview of the methods that can
be used to perform highway safety evaluations.

= Chapter 3: Data Preparation: This chapter provides a brief overview of the data and the
data conflation framework

= Chapter 4: Model Development: This chapter presents the development of annual and
short-duration safety performance functions, including model specification, estimation
results, and interpretation of key covariates across facility types.

= Chapter 5: Decision Support Tool: This chapter presents the safety decision tool that the
research group developed for this study.

= Chapter 6: Conclusions and Recommendations: This chapter summarizes the most
important research findings and provides a list of implementation recommendations
stemming from the work performed and lessons learned throughout this project.



CHAPTER 2:
LITERATURE REVIEW

2.1 INTRODUCTION

This chapter provides a synthesis of methods that will help readers gain a better understanding of
key aspects related to urban safety. These aspects include predictive methods for urban facilities,
the consideration of non-motorists in overall safety calculations, the relationship among
operating speed, geometric variables, posted speed limits, and crash outcomes, as well as the
impact of weather on urban safety. To develop this synthesis, the Project Team gathered and
reviewed relevant documentation, such as journal articles, research reports, guidebooks, and
handbooks.

2.2 MODELING FRAMEWORKS

2.2.1 HSM Predictive Methods for Urban Non-Freeway Segments

The HSM AASHTO (2010), as described in Chapter 12, provides useful predictive methods for
evaluating urban and suburban arterial systems. This document provides a well-organized
technique for calculating the typical crash frequency, crash severity, and collision types
anticipated in facilities with given characteristics. Except for collisions between bicycles and
pedestrians, it covers all kinds of crashes involving automobiles, bicycles, and pedestrians. This
predictive technique may be used for a variety of scenarios, such as current sites, design choices
for existing sites, new sites, or alternate traffic volume forecasts.

Definition of Facility Types

The HSM provides precise definitions for facility types as well as prediction models for each
facility type. The manual classifies facility types into two main categories: roadway segments
and intersections. For this literature review, the Project Team solely focused on the facility types
related to roadway segments. Below is a list of the specific site types related to roadway
segments as presented in the HSM (AASHTO, 2010):

= Two-lane undivided arterial (2U): This refers to a road with two lanes that share a
continuous cross-section, allowing for travel in two directions without any physical
separation or barriers between the lanes.

= Three-lane arterials (3T): This depicts a road that has three lanes and a continuous cross-
section that allows for two-way traffic. In this arrangement, the middle lane functions as a
two-way left-turn lane (TWLTL).

* Four-lane undivided arterials (4U): This pertains to a road consisting of four lanes, without
any physical separation or barriers between them, enabling travel in two directions on a
continuous cross-section.



* Four-lane divided arterials (4D): This describes a continuous cross-sectional roadway with
two lanes in each direction. Physical barriers, such as a raised or depressed median, are used
to physically divide the lanes.

* Five-lane arterials including a center TWLTL (5T): This designates a two-way highway
with five lanes that share a continuous cross-section. In this arrangement, the middle lane
functions as a TWLTL.

Overview of the Predictive Method

The HSM uses a technique to calculate the expected average crash frequency for a particular
location, and these calculations may be used to get the frequency for an entire facility or
network. This estimation is done for a predetermined amount of time (in years), during which the
geometric layout and traffic-controlling characteristics remain the same and the traffic volumes
are either known or anticipated. Predictive models are used to provide these estimations, and the
Empirical Bayes (EB) Method is used to integrate the results of the models with the data from
the observed crashes. HSM’s SPFs focus on two primary crash severity levels: crashes involving
fatalities and injuries and crashes involving merely property damage. The term ‘fatal-and-injury
crashes’ refers to collisions that result in injuries of any severity, including fatalities,
incapacitating injuries, non-incapacitating injuries, and potential injuries. Equation (1) lists the
prediction models used in the HSM for arterial facilities in urban and suburban areas to
anticipate the average crash frequency (AASHTO, 2010).

Npredicted = (Nspfx X (CMle X CMFZx XX CMFyx) + Npedx + Nbikex) X Cx (1)
Where,
Npredictea = Projected annual average crash frequency for site type x;

N, x = projected average crash frequency as estimated by the SPF generated for site type

x under base circumstances;

Npeqx = anticipated annual average number of crashes between a vehicle and a pedestrian
for site type x;

Npikex = €xpected annual average number of vehicle-bicycle crashes for site type x;

CME,,

C, = the calibration factor to modify SPF for the site type x's local circumstances.

= crash modification factor (CMF) unique to site type x; and

Predictive Method Framework

Predictive models can be used to anticipate the average frequency of certain crash severity
categories or types, or to estimate the total average crashes across all severities and crash types.
The predictive model includes the SPF, CMFs, and a calibration factor when applied to a specific
highway segment or junction. The predictive models are created to assess the predicted average
crash frequency for crashes unrelated to junctions in the setting of highway segments. This
covers crashes that take place near a junction but are unrelated to the intersection itself. In other



words, estimates of crashes that would occur regardless of whether an intersection is present are
given by the predictive models for roadway segments. Equations (2) and (3) outline the specific
predictive models for roadway segments (AASHTO, 2010).

Npredicted rs — Cr X (Nbr + Npedr + Nbiker) (2)
Npredicted = Nspfrs X (CMFlr X CMFZr XX CMFnr) (3)
Where,

Npredictea rs = Projected average crash frequency of a specific roadway segment for the chosen
year;

Ny, = projected average crash frequency of a specific roadway segment;

Ny, rs = projected total average crash frequency of a specific roadway segment for baseline
conditions;

Npeqr = projected average crash frequency of vehicle-pedestrian collisions;

Npiker = projected average crash frequency of car-bicycle crashes;

CMF,, ...CME,,= CMFs for roadway segments; and

C, = calibration factor for a particular kind of road segment that was created for usage in a
certain region.

Equation (2) demonstrates that the estimation of crash frequency for roadway segments
comprises three components: Ny, Npegr, Npiker- Moreover, the SPF portion of Nj,., denoted as
Nspf rs, can be broken down into three components based on collision type, as depicted in
Equation (4).

Nspf rs = Nprmy + Nppsy + Nbrdwy 4)
Where,

Nprmv = projected average crash frequency of multiple vehicle non-driveway collisions for base
conditions;

Ny.-s, = projected average crash frequency of single vehicle crashes for base conditions; and
Nprawy = projected average multiple-vehicle driveway crash frequency.

Predictive Method Steps

The prediction approach consists of eighteen phases as listed in the HSM. For an urban or
suburban arterial facility, the predictive method's application results in an estimate of the
predicted average crash frequency. Steps 9, 10, and 11 of the predictive technique involve
determining and applying the elements of the HSM predictive models. In some circumstances,
some actions won't even be necessary. For instance, a new facility won't have observed crash
data, therefore the EB method procedures don't need to be taken. The prediction techniques' steps
are mentioned below (AASHTO, 2010).

= Step 1: Establish the borders of the different types of facilities and roads that make up the
research network, site, or facility where we need to calculate the predicted average crash
frequency, severity, and collision types.



= Step 2: Select the time frame.

= Step 3: Evaluate the availability of yearly average daily traffic volumes, pedestrian crossing
volumes, and, if appropriate, witnessed collision data for an existing highway network.

= Step 4: List the geometric design aspects, traffic control features, and site characteristics for
each site in the network of interest.

= Step 5: Segment the roadway network or facility into distinct uniform roadway sections and
intersections, known as sites.

= Step 6: Allocate any observed collisions to the corresponding individual sites (if applicable).

= Step 7: Initiate the process with the first or subsequent individual site in the study network. If
no further sites require assessment, proceed to Step 15.

= Step 8: Choose the first or subsequent year within the specified period of interest for the
selected site. If there are no more years to evaluate that site, proceed to Step 14.

= Step 9: Determine and implement the suitable SPF for the type of facility and traffic control
characteristics at the selected site.

= Step 10: Adjust the outcome from Step 9 by multiplying it with the relevant CMFs to account
for specific geometric design and traffic control features of the site.

= Step 11: Multiply the result from Step 10 by the appropriate calibration factor.

= Step 12: If there are additional years to evaluate the chosen site within the study period,
return to Step 8. Otherwise, proceed to Step 13.

= Step 13: Employ the site-specific EB Method if applicable.

= Step 14: If there are more sites to assess, return to Step 7. Otherwise, proceed to Step 15.

= Step 15: Utilize the project-level EB Method if the site-specific EB Method is not applicable.

= Step 16: Calculate the total collision frequency by aggregating all sites and years in the study.

= Step 17: Determine if there are alternative designs, treatments, or projected annual average
daily traffic (AADT) to assess.

= Step 18: Evaluate and compare the results obtained.

Definition of Roadway Segments

The roadway is separated into discrete sites in step 5 of the predictive technique, comprising
homogeneous roadway segments and junctions. The collection of these locations is referred to as
a facility, and a highway network is made up of several facilities. A road segment begins at the
center of an intersection and ends either at the center of the next junction or at the point where it
changes to another homogeneous segment. The length of a highway segment that starts or ends at
a junction is calculated from the intersection's center.

The approach of segmenting involves dividing the roadway network or facility into distinct road
sections and intersections that share common characteristics, such as traffic volumes, important
aspects of highway design, and traffic control measures. It is important to note that between two
intersections, there may be multiple road segments that exhibit uniformity. A new and separate
segment is initiated at each intersection or whenever there is a change in factors such as the



AADT, number of through lanes, presence of medians, the existence of TWLTL, type of on-
street parking, density of roadside fixed objects, presence of lighting, speed category based on
actual traffic speed or posted speed limit, and implementation of automated enforcement
measures. Table 1 provides the recommended rounded widths for medians without barriers,
which should be considered when determining ‘homogeneous’ segments (AASHTO, 2010).

Table 1. Rounded Widths for Medians, Reproduced from the HSM (AASHTO, 2010).

Measured Median Width Rounded Median Width
1 ftto 14 ft 10 ft
15 ftto 24 ft 20 ft
25 ftto 34 ft 30 ft
35 ft to 44 ft 40 ft
45 ft to 54 ft 50 ft
55 ft to 64 ft 60 ft
65 ft to 74 ft 70 ft
75 ftto 84 ft 80 ft
85 ft to 94 ft 90 ft
95 ft or more 100 ft

SPFs for Urban Non-Freeway Segments

During Step 9 of the predictive approach, SPFs are employed to anticipate the frequency of
crashes under specific baseline conditions. SPFs are regression models designed to estimate the
average predicted crash frequency for individual roadway segments. These SPFs are constructed
using observed crash data collected from comparable sites. Similar to other regression models,
SPFs estimate the value of a dependent variable based on a set of independent variables. In the
SPFs developed for the HSM, the dependent variable estimated is the average predicted crash
frequency for a roadway segment or intersection under baseline conditions, while the
independent variables are the AADT values for the roadway segment or intersection legs. This
literature review primarily focuses on the SPFs relevant to roadway segments. Additionally, each
SPF is accompanied by an overdispersion parameter, denoted as k, which indicates the statistical
reliability of the SPF. A lower value of the overdispersion parameter signifies a greater level of
statistical reliability. The SPFs in HSM for roadway segments are summarized in Table 2.

Table 2. SPFs for Urban and Suburban Arterials, Reproduced from the HSM (AASHTO,
2010).

SPFs for Urban and Suburban Arterials SPF Components by Collision Type

multiple-vehicle nondriveway collisions

single-vehicle crashes

Roadway segments (Non-Freeway)




multiple-vehicle driveway-related collisions
vehicle-pedestrian collisions
vehicle-bicycle collisions

According to the HSM, the method for calculating the average collision frequency for a certain
urban or suburban arterial route section is described in Equation (2) of the predictive model.
While the influence of geometric design and traffic control elements is taken into account using
CMFs, the impact of AADT on crash frequency is taken into consideration by incorporating the
SPF. On urban and suburban arterials, five different types of highway segments have SPFs and
adjustment factors available (AASHTO, 2010):

=  Two-lane undivided arterials (referred to as 2U)

= Three-lane arterials with a center TWLTL (referred to as 3T)

* Four-lane undivided arterials (referred to as 4U)

= Four-lane divided arterials, which have a raised or depressed median (referred to as 4D)
= Five-lane arterials with a center TWLTL (referred to as 5T)

In the third step of the prediction method, the calculation of traffic volumes for the road
segments included in the SPFs is explained. These SPFs are specifically developed for individual
road segments on urban and suburban arterials, and they are designed to be applicable within
certain ranges of AADT. However, it is important to note that deviating significantly from these
defined AADT ranges, as indicated in the HSM, may result in inaccurate. The AADT ranges for
each arterial type are as follows (AASHTO, 2010):

= 2U have an AADT range of 0 to 32,600 vehicles per day.

= 3T can accommodate traffic volumes ranging from 0 to 32,900 vehicles per day.

= 4U have an AADT range of 0 to 40,100 vehicles per day.

= 4D, which include a raised or depressed median, can handle traffic volumes ranging from 0
to 66,000 vehicles per day.

= 5Ts have an AADT range of 0 to 53,800 vehicles per day.

Multiple-Vehicle Nondriveway Collisions

The SPF for multiple-vehicle nondriveway collisions can be developed using Equation (5).
Nprmp = exp(a + b X In(AADT) + In L) ®)
Where,

AADT = average annual daily traffic volume (vehicles/day) on roadway segment;

L = length of roadway segment (mi); and

a, b = regression coefficients.

Table 3 displays the coefficients a and b, as well as the overdispersion parameter k, used in the
application of the Equation (5).




Table 3. SPF Coefficients for Multiple-Vehicle Nondriveway Collisions on Roadway
Segments, Reproduced from the HSM (AASHTO, 2010).

Coefficients Used in Equation (5) Overdispersion
Road Type Intercept AADT Parameter
(a) (b) ®©
Total crashes
2U 15.22 1.68 0.84
3T 12.40 1.41 0.66
4U 11.63 1.33 1.01
4D 12.34 1.36 1.32
Fatal-and-injury crashes
2U 16.22 1.66 0.65
3T 16.45 1.69 0.59
4U 12.08 1.25 0.99
4D 12.76 1.28 1.31
5T 10.47 1.12 0.62
Property-damage-only crashes
2U 15.62 1.69 0.87
3T 11.95 1.33 0.59
4U 12.53 1.38 1.08
4D 12.81 1.38 1.34
5T 9.97 1.17 0.88

First, Equation (5) is utilized to calculate Ny,.,,,,, using the coefficients provided in Table 3 for
total crashes. Ny, 1s then dividied into two components based on severity, Npmq, () for fatal
and injury (FI) crashes and Np;-my(ppo) for property damage only (PDO) crashes. These
preliminary values of Ny, ) and Nppmy(ppo), desiganatec as ngrmv(m and Nl;rmv( ppo) 1N
Equation (6), are determined with Equation (5) using the coefficients for FI and PDO crashes,
respectively, in Table 3. To ensure that Nyypy(pry and Nprmpppo) add up to Ny, the following
Equations (6) and (7) are used. The ratios provided in Table 4 are utilized to divide Nppmy(rr)
and Np,-my(ppo) into various collision categories (AASHTO, 2010) (see Table 4.

N l;rmv(FI ) > (6)

NI;rmv(FI) + ngrmv(PDO)

Nbrmv(FI) = Nbrmv(total) <

Nbrmv(PDO) = Nbrmv(total) - Nbrmv(FI) (7)
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Table 4. Distribution of Multiple-Vehicle Nondriveway Collisions for Roadway Segments
by Manner of Collision Type, Reproduced from the HSM (AASHTO, 2010).
Proportion of Crashes by Severity Level for Specific Road Types
2U 3T 4U 4D 5T
FI PDO FI PDO FI PDO FI PDO FI PDO
Rear-end collision 0.730 | 0.778 | 0.845 | 0.842 | 0.511 | 0.506 | 0.832 | 0.662 | 0.846 | 0.651

Collision Type

Head-on collision 0.068 | 0.004 | 0.034 | 0.020 | 0.077 | 0.004 | 0.020 | 0.007 | 0.021 | 0.004
Angle collision 0.085 | 0.079 | 0.069 | 0.020 | 0.181 | 0.130 | 0.040 | 0.036 | 0.050 | 0.059
Sideswipe, 0.015 | 0.031 | 0.001 | 0.078 | 0.093 | 0.249 | 0.050 | 0.223 | 0.061 | 0.248
same direction

Sideswipe, 0.073 | 0.055 | 0.017 | 0.020 | 0.082 | 0.031 | 0.010 | 0.001 | 0.004 | 0.009
opposite direction

Other multiple-

0.029 | 0.053 | 0.034 | 0.020 | 0.056 | 0.080 | 0.048 | 0.071 | 0.018 | 0.029

vehicle collisions

Single-Vehicle Crashes

According to the HSM, the SPF for multiple-vehicle non-driveway collisions can be developed
using Equation (8) (AASHTO, 2010).

Nprsy = exp(a + b X In(AADT) + In(L)) (8)
The coefficients and factors used in the Equation (8) for each roadway type are presented in
Table 5. Equation (8) is employed to calculate N,,.,,. Subsequently, Ny, is divided into two
components, namely Np,.q,rp) for FI crashes and Ny,;.s,,(ppo) for PDO crashes. These initial
values of Npysp(rr) and Npysy(ppo)» denoted as Ny, zpy and Ny,.o,ppoy in Equation (9), are
determined using Equation (8) with the coefficients for FI and PDO crashes. To ensure that
Nyprspcrry and Np,g,ppoy collectively add up to Ny, adjustments are made using the following
equations. The ratios provided in Table 6 are utilized to divide Ny;gp,(rr) and Npygy(ppoy int0
different components based on the type of collision (AASHTO, 2010).

N I;rsv(FI) > (9)

Nl;rsv(FI) + Nl;rsv(PDO)

Nbrsv(FI) = Nbrsv(total) (

Nbrsv(PDO) = Nbrsv(total) - Nbrsv(FI) (10)
Table 5. SPF Coefficients for Single-Vehicle Crashes on Roadway Segments, Reproduced
from the HSM (AASHTO, 2010).

Coefficients Used in Equation 12-11 Overdispersion
Road Type Intercept AADT Parameter
(a) () (k)
Total crashes
2U -5.47 0.56 0.81
3T -5.74 0.54 1.37
4U -7.99 0.81 0.91
4D -5.05 0.47 0.86
5T -4.82 0.54 0.52
Fatal-and-injury crashes
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Coefficients Used in Equation 12-11 Overdispersion
Road Type Intercept AADT Parameter

(a) (b) (%)

2U -3.96 0.23 0.50

3T -6.37 0.47 1.06

4U -7.37 0.61 0.54

4D -8.71 0.66 0.28

5T -4.43 0.35 0.36
Property-damage-only crashes

2U -6.51 0.64 0.87

3T -6.29 0.56 1.93

4U -8.50 0.84 0.97

4D -5.04 0.45 1.06

5T -5.83 0.61 0.55

Table 6. Distribution of Single-Vehicle Crashes for Roadway Segments by Collision Type,
Reproduced from the HSM (AASHTO, 2010).
Proportion of Crashes by Severity Level for Specific Road Types

Collision Type

2U 3T 4U 4D 5T
FI | PDO| FI |PDO | FI |PDO| FI |PDO | FI | PDO
Collision with animals 0.026 | 0.066 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.063 | 0.016 | 0.049

Collision with fixed objects | 0.723 | 0.759 | 0.688 | 0.963 | 0.612 | 0.809 | 0.500 | 0.813 | 0.398 | 0.768
Collision with other objects | 0.010 | 0.013 | 0.001 | 0.001 | 0.020 | 0.029 | 0.028 | 0.016 | 0.005 | 0.061

Other single-vehicle
collision

0.241]0.162 | 0.310 | 0.035| 0.367 | 0.161 | 0.471 | 0.108 | 0.581 | 0.122

Multiple-Vehicle Driveway-Related Collisions

The prior model described collisions involving numerous vehicles but did not include those
involving driveways. Due to the number and kind of driveways, crashes involving several cars
that are caused by driveways are handled differently. Equation (11) may be used to calculate the
total number of multiple-vehicle driveway-related crashes on a route stretch.

AADT\® (11)
(15,000)

Nbrdwy = Z n; X N] X

all driveway ypes

Where N represents the annual number of collisions per driveway for a specific driveway type,
denoted as j. n; corresponds to the count of driveways within the roadway segment of the same
driveway type, encompassing both sides of the road. The coefficient t is utilized for adjusting the
impact of traffic volume.

To compute the quantity n;, which represents the number of driveways of a specific type, the
count is obtained by summing the number of driveways of that type of present on both sides of
the road. The calculation of driveway counts is performed independently for each side of the
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road, and the results are combined. In the modeling process, the HSM considers seven different
types of driveways, as outlined in Table 7 (AASHTO, 2010).

Table 7. SPF Coefficients for Multiple-Vehicle Driveway Related Collisions, Reproduced
from the HSM (AASHTO, 2010).

) , Coefficients for Specific Roadway Types
Driveway Type (/) 20 | 3T | 4U | 4D | 5T
Number of Driveway-Related Collisions per Driveway per Year (N;)

Major commercial 0.158 0.102 0.182 0.033 0.165

Minor commercial 0.050 0.032 0.058 0.011 0.053

Major industrial/institutional 0.172 0.110 0.198 0.036 0.181

Minor industrial/institutional 0.023 0.015 0.026 0.005 0.024

Major residential 0.083 0.053 0.096 0.018 0.087

Minor residential 0.016 0.010 0.018 0.003 0.016

Other 0.025 0.016 0.029 0.005 0.027

Regression Coefficient for AADT (t)

All driveways | 1.000 | 1.000 | 1172 | 1.106 | 1172

Overdispersion Parameter (k)

All driveways | 0.81 | 1.10 | 0.81 [ 1.39 | 0.10
Proportion of Fatal-and-Injury Crashes (f,, )

All driveways | 0.323  0.243 | 0.342 | 0.284 | 0.269
Proportion of Property-Damage-Only Crashes

All driveways | 0.677  0.757 | 0.658 [ 0.716 | 0.731

Vehicle-Pedestrian Collisions

According to the HSM, Equation 14 can be utilized to estimate the annual count of vehicle-
pedestrian collisions for a roadway segment (AASHTO, 2010).

Npear = Npr X fpedr (12)
Where,
fpear = crash adjustment factor.

Equation (3) is applied to compute the value of Np,., which is then used in the Equation (12). The
coefficients for f,eq, utilized in Equation (12) are listed in Table 8.

Table 8. Pedestrian Crash Adjustment Factor for Roadway Segments, Reproduced from

the HSM (AASHTO, 2010).
Road type Bicycle Crash Adjustment Factor (fpixer)
Posted Speed 30 mph or Lower Posted Speed Greater than 30 mph

2U 0.036 0.005
3T 0.041 0.013
4U 0.022 0.009
4D 0.067 0.019
5T 0.030 0.023
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Vehicle-Bicycle Collisions

According to the HSM, Equation 14 can be utilized to estimate the annual count of vehicle-
bicycle collisions for a roadway segment (AASHTO, 2010).

Npiker = Npr X foiker (13)
Where,

fpiker = crash adjustment factor.

The value of Ny, utilized in Equation (13) is calculated with the Equation (3). The coefficients
for fpixer utilized in Equation (13) are listed in Table 9.

Table 9. Bicycle Crash Adjustment Factors for Roadway Segments, Reproduced from the
HSM (AASHTO, 2010).

Road type Bicycle Crash Adjustment Factor (fpixer)
Posted Speed 30 mph or Lower Posted Speed Greater than 30 mph
2U 0.018 0.004
3T 0.027 0.007
4U 0.011 0.002
4D 0.013 0.005
5T 0.050 0.012

CMFs for Roadway Segments
According to the HSM, the selected SPF chosen in Step 9 is subjected to CMFs during Step 10
of the prediction technique. CMFs are used to modify the projected average crash frequency

based on certain geometric features and traffic control factors, as stated in the general predictive
model. Each feature has a CMF of 1.00 for its base condition. The CMF of a feature exceeds
1.00 if it is linked to a higher crash frequency than the baseline condition. A feature's CMF is
smaller than 1.00 if, on the other hand, it is linked to a lower crash frequency (AASHTO, 2010)
(see Table 10).

Table 10. Summary of CMFs in HSM and the Corresponding SPFs for Roadway Segments,
Reproduced from the HSM (AASHTO, 2010).

Applicable SPF CMF CMF Description
CMF;, On-Street Parking
CMF,, Roadside Fixed Objects
Roadway Segments CMF;, Median Width
CME,, Lighting
CMFs, Automated Speed Enforcement

2.2.2 HSM Predictive Methods for Urban Freeway Segments

The supplement to HSM, published in 2014, describes the predictive methods for freeways in
Chapter 18. The following section offers a high-level overview of the freeway predictive
methods, their associated SPFs, CMFs, and the steps involved in the predictive methods.
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Overview of Predictive Methods

The HSM outlines an 18-step procedure for estimating the anticipated crash frequency of two
types of facilities: freeway segments and freeway speed change lanes. According to the HSM, a
speed-change lane is defined as an uncontrolled transition area between a ramp and a freeway.
The predictive models follow a general format described by Equation (14). It is important to note
that these predictive equations can generate estimated crash frequencies for overall crashes,

specific crash types, and different severity levels (AASHTO, 2014).

Np,w,x,y,z = Spf,w,x,y,z X (CMFl,W,x,y,Z X CMFZ,w,x,y,Z X .. X CMFm,w,x,y,Z) X Cw,x,y,z (14)
Where, w, x, y, z, and m represent the type of site, control type, crash, severity, and

traffic control features, respectively; Ny v, x5,
crash frequency; Ngpr w x,y,2 T€Presents projected average crash frequency as estimated by

, represents the projected annual average

the SPF under base circumstances; CMF,, ,, . ,, , represents CMF for specific geometric
design and traffic control features; and C,, » ,, , represents the adjustment factors for local

conditions.

Definition of Freeway Facility and Site Types

The HSM defines a freeway as a type of roadway that has complete access control and separation
from intersecting roads. Access to freeways is limited to interchanges with grade separation. The
classification of an area as urban, suburban, or rural takes into account various factors such as
road characteristics, population density, and land use. Urban areas, according to Federal
Highway Administration (FHWA) guidelines, are designated as locations within urban
boundaries with a population exceeding 5,000. On the other hand, rural areas encompass regions
outside urban centers where the population is below 5,000. The HSM also uses the term
suburban to refer to areas on the outskirts of urban regions. Note that this literature review only
discussed the freeway prediction models related to urban facilities. To predict crash frequencies,
HSM employs specific methods developed for three types of facilities: rural freeway segments
with four to eight lanes, urban freeway segments with four to ten lanes, and freeway speed-
change lanes associated with entrance and exit ramps. Additionally, the HSM further classifies
freeway segments into four categories based on the number of lanes: four-lane, six-lane, eight-
lane, and ten-lane segments (AASHTO, 2014).

SPFs for Urban Freeways

The HSM includes a set of sixteen SPFs for urban freeway segments, corresponding to four
specific facility types as mentioned in the previous section. These SPFs are listed in

Table 11. Furthermore, the HSM provides an additional set of sixteen SPFs for speed-change
lanes, corresponding to eight distinct facility types, as listed in Table 12 (AASHTO, 2014).
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Table 11. SPFs for Urban Freeway Segments (fs), Reproduced from the HSM (AASHTO,

2014).
Cross Section (x) Crash Type (y) Crash Severity () SPF
Multiple vehicle (mv) lljatal jtnd ;njury (ﬂ)l (pdo) xspf'fs'4'mu'fi
o roperty damage only (pdo Spf.fs,4mv,pdo
Four-lane divided (4) Single vehicle (mv) Fatal and injury (f1) Nspf fs,4.50,fi
Property damage only (pdo) Nspf fs.4,s50.pdo
Multiple vehicle (mv) IF,atal :ld;njury (ﬁ)l (pdo) xspf'fs'("mvﬂ
' o roperty damage only (pdo spf.fs,6;mv,pdo
Six-lane divided (6) Single vekiiole (mv) Fatal and injury (fi) Nepf fs.6,50,fi
Property damage only (pdo) Nyt fs,6,50,pdo
Multiple vehicle (my) oL and injury (1) Nopt rsmoi
Eight-lane divided (8) Property damage only (pdo) | Nepy fssmopdo
Single vehicle (mv) Fatal and injury (/0 Nopf repsms
Property damage only (pdo) Nyt £s,8,sv,pdo
Multiple vehicle (my) ol and injury (/0 Noptrs.tomosi
Ten-lane divided (10) Property damage only (pdo) | Nepy.s.10mvpde
Single vehicle (mv) Fatal and injury (/1) Nopf roosusi
Property damage only (pdo) Nspf.£s,10,sv,pdo

Table 12. SPFs for Urban Freeway Speed-Change Lane (sc), Reproduced from the HSM

(AASHTO, 2014).

Cross Section (x) Crash Type () Crash Severity (z) SPF
Ramp entrance to four- All types (at) Fatal and injury (FI) Ngpf scabnat fi
lane divided (4EN) Property damage only (PDO) Nsp f,sc,4EN,at,pdo
Ramp entrance to six-lane All types (at) Fatal and injury (FI) Nyt sc.6EN,at. fi
divided (6EN) Property damage only (PDO) Nsp f,5¢,6EN,at,pdo
Ramp entrance to eight- All types (at) Fatal and injury (FI) Ngpf sc.8EN at. fi
lane divided (8EN) Property damage only (PDO) Nsp f,s¢,8EN,at,pdo
Ramp entrance to ten-lane All types (at) Fatal and injury (FI) Nyt sc10EN at fi
divided (10EN) Property damage only (PDO) Nsp £,5¢,10EN,at,pdo
Ramp exit from four-lane All types (at) Fatal and injury (FI) Ngpf scabx at,fi
divided (4EX) Property damage only (PDO) Nsp f.sCAEX,at,pdo
Ramp exit from six-lane All types (at) Fatal and injury (FI) Ngpf sc6Ex at,fi
divided (6EX) Property damage only (PDO) Nsp f.5¢,6EX,at,pdo
Rarpp exit from eight-lane Al types (at) Fatal and injury (FI) Nspf sc8Ex,atfi
divided (8EX) Property damage only (PDO) Nsp f.s¢,8EX,at,pdo

All types (at) Fatal and injury (FI) Nsp F,sc10EX,at,fi
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Cross Section (x) Crash Type (y) Crash Severity (2) SPF

Ramp exit from ten-lane
divided (10EX)

Property damage only (PDO) Nsp f,s¢,10EX,at,pdo

Predictive Model for Freeway Segments

The predictive model for freeway segments described in the HSM can be defined using
Equations (15) to (19) (AASHTO, 2014).

Np,fs,n,at,as = Np fsnmv,fi T Np,fs,n,sv,fi + Np,fs,n,mv,pdo + Np,fs,n,sv,pdo (15)

Ny rsnmv,fi = Crs.acmv,fi X Nspr rsmmuvfi X (CMFy g5 acmufi XX CMFp £ acmu,fi) (16)
X (CMFl,fs,ac,at,fi X..X CMFm,fs,ac,at,fi)

Np,fs,n,sv,fi = Cfs,ac,sv,fi X Nspf,fs,n,sv,fi X (CMFl,fs,ac,sv,fi X..X CMFm,fs,ac,sv,fi) (17)
X (CMFl,fs,ac,at,fi X..X CMFm,fs,ac,at,fi)

Np,fs,n,mv,pdo = Cfs,ac,mv,pdo X Nspf,fs,n,mv,pdo X (CMFl,fs,ac,mv,pdo X.. (18)

X CMFm,fs,ac,mv,pdo) X (CMFl,fs,ac,at,pdo X..X CMFm,fs,ac,at,pdo)

Np,fs,n,sv,pdo = Cfs,ac,sv,fi X Nspf,fs,n,sv,pdo X (CMFl,fs,ac,sv,pdo X..X CMFm,fs,ac,sv,pdo) (19)
X (CMFl,fs,ac,at,pdo X.. X CMFm,fs,ac,at,pdo)

Where, Nj, £5 .y~ represents the projected average crash frequency of a freeway segment

with n lanes, crash type y (y = sv: single vehicle, mv: multiple vehicle, at: all types),

and severity z; Ny represents the projected average crash frequency of a freeway

pf.fsnyz

segment with base conditions; CMF,, , represents CMF for a freeway segment with

fs.ac.y,
any cross-section ac, feature m, crash type y, and severity z; and Cy; 4 5, T€presents

calibration factors for freeway segments.

Predictive Model for Urban Freeway Speed-Change Lanes

The predictive model for freeway speed-change lanes described in the HSM can be defined using

Equations (20) to (22) (AASHTO, 2014).

Ny scnen,atas = Np,senenat,fi T Np,scnEN,at,pdo (20)

Ny senenatfi = Cscenatfi X Nsprsenenatfi X (CMFy senpn.atfi Xo X CMFp senpnatri)  (21)
X (CMFl,sc,ac,at,fi X..X CMFm,sc,ac,at,fi)

Np,sc,nEN,at,pdo (22)
= sc,EN,at,pdo X Nspf,sc,nEN,at,pdo X (CMFl,sc,nEN,at,pdo X..

X CMFm,sc,nEN,at,pdo) X (CMFl,sc,ac,at,pdo X..X CMFm,sc,ac,at,pdo)
Where, N scnen at,as TEPresents the projected average annual crash frequency of ramp
entrance speed-change lane on a freeway with n lanes, all crash types at, and severity z
(z = fi: fatal and injury, pdo: property damage only, as: all severities); Noy ¢ scnen at z
represents the projected average annual crash frequency of ramp entrance speed-change lane
on a freeway considering base condition; CMF,, s  q¢ , represents CMF for a speed-change
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lane with feature m, cross-section x (x = nEN: ramp entrance adjacent to a freeway with n
lanes, nEX: ramp exit adjacent to a freeway with n lanes, ac: any cross-section), all crash
types at, and severity z; and; and Cs. gy q¢  represents the calibration factor for a ramp
entrance speed-change lane with all crash types and severity.

Predictive Method Steps for Urban Freeway Segments

The HSM outlines a procedure consisting of eighteen steps for a predictive method on freeways.
These steps are as follows (AASHTO, 2014).

= Step 1: Establish the project boundaries.

= Step 2: Determine the timeframe of interest.

= Step 3: AADT volumes and observed crash data for the study period, particularly for existing
projects, to determine if the EB Method is applicable.

= Step 4: Identify the geometric design features, traffic control features, and site characteristics
for all locations within the project boundaries.

= Step 5: Divide the roadway into distinct sites.

= Step 6: Assign recorded collisions to the individual sites (if relevant).

= Step 7: Select the initial or subsequent specific site within the project boundaries.

= Step 8: For the chosen site, designate the first or next year in the designated time frame. If
there are no more years to evaluate that site, move to Step 13.

= Step 9: Identify the geometric design features, traffic control features, and site characteristics
for all locations within the project boundaries.

= Step 10: Multiply the outcome from Step 9 by the appropriate CMFs.
Step 11: Multiply the outcome from Step 10 by the suitable calibration factor.

= Step 12: If there are additional years to assess within the evaluation period for the selected
site, return to Step 8. Otherwise, proceed to Step 13.

= Step 13: Apply the site-specific EB Method (if applicable) and incorporate SDFs.

= Step 14: If there are additional sites to evaluate, return to Step 7; otherwise, proceed to Step
15.

= Step 15: Implement the project-wide EB Method (if relevant) and incorporate SDFs.

= Step 16: Aggregate the data from all sites and years in the study to estimate the overall crash
frequency.

= Step 17: Assess whether there are any alternative designs, treatments, or projected AADT to
be examined.

= Step 18: Analyze and compare the outcomes.

CMFs for Urban Freeway Segments

The HSM has provided a comprehensive list of CMFs that are applicable to the SPFs discussed
in the previous section.
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Table 13 presents a detailed compilation of CMFs categorized by specific site types, cross

sections, crash types, and crash severities (AASHTO, 2014).

Table 13. Freeway CMFs and their Corresponding SPFs (AASHTO, 2014).

Applicable SPF(s) CMF Variable (2) SPF
CMF, v xy,2 Horizontal curve
CMF;y xy fi Lane width
Freeway segments or speed- CMF3w .z Inside shoulder width
change lanes CMF, .y, Median width
CMFs x.y,2 Median barrier
CMFgw xy.z High volume
?il?@};;e;\ég;ceiscrashes on CMF; fs acmu,z Lane change
CMFg g5 acsv,2 Outside shoulder width
Single-vehicle crashes on CMFy s acsv,ri Shoulder rumble strip
freeway segments CMF1o fs,acsv,fi Outside clearance
CMFy1 fs,acsv,2 Outside barrier
Ramp entrances CMFi3 scnENat.z Ramp entrance
Ramp exits CMF,3 ¢cnEx.atz Ramp exit

2.2.3 Safety Prediction Models

Researchers have utilized a wide variety of modeling techniques to explore the association
between operating speed, posted speed, roadway geometry, traffic exposures, and safety. The
primary modeling approaches used for safety prediction models up to this point may be generally
divided into two categories: statistical approaches and machine learning/ data mining
approaches. This section provides a brief overview of state-of-the-art modeling techniques.

Statistical Approaches

Poisson Regression

The Poisson regression model has been proposed as a viable method to examine the connection
between factors affecting risk and the modeling of traffic crashes. The utilization of Poisson
regression has been extensive in analyzing data related to transportation counts, particularly
when studying the frequency of crashes. Since crash-frequency data consists of non-negative
whole numbers, traditional ordinary least-squares regression, which assumes a continuous
dependent variable, is not suitable. As a result, researchers have recently embraced the Poisson
regression model as a framework for modeling crash-frequency data, considering its
appropriateness for analyzing non-negative integer dependent variables. Presented below is a
mathematical representation of the Poisson regression model (Lord and Mannering, 2010).
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EXP(—A)A"

P(y) =

Where the probability of a roadway entity, denoted as i, experiencing a specific number of
crashes per period, represented as y;, is denoted by P(y;). The Poisson parameter, 4;, for
roadway entity i is equal to the expected number of crashes per year, E(y;). To estimate Poisson
regression models, the Poisson parameter A;, which signifies the expected number of crashes per
period, is determined as a function of explanatory variables. The most used functional form is

A; = EXP(BX;), where X; represents a vector of explanatory variables and 8 represents a vector
of estimable parameters.

Negative Binomial Regression

To account for potential excessive scattering in the data, the negative binomial (NB) model has
been developed as an expansion of the Poisson model. The Poisson-Gamma approach serves as
an alternative term for this technique. Within the negative binomial model, the Poisson
parameter relies on a gamma probability distribution, leading to a closed-form equation.
Manipulating the relationship between the mean and variance structures is straightforward in this
model. By incorporating over-dispersion into crash data counts, this method relaxes the
requirement of equal mean and variance. The negative binomial model accommodates possible
over-dispersion in crash data counts through the utilization of a Gamma probability distribution.
By introducing an error term to the expected number of crashes in the Poisson regression, the
modified equation yields the negative binomial model (Lord and Mannering, 2010).

A; = EXP(BX; + &) (24)

Where EXP(¢;) is a gamma-distributed error term with mean 1 and variance a. Negative
binomial models have garnered considerable attention in the realm of crash frequency analysis.
Khattak et al. (2021) conducted a study utilizing a negative binomial regression model to
establish SPFs for urban intersections. The findings suggested that employing negative binomial
models has the potential to enhance the accuracy of estimating SPFs for urban intersections.
Similarly, Rista et al. (2018) employed negative binomial models to assess the safety
implications of narrow lane widths on urban and suburban arterials. Kim and Washington,
(2006) utilized this modeling approach to develop crash models specifically for intersections
with a focus on left-turn lanes. Additionally, Daniels et al. (2010) employed negative binomial
models to investigate safety performance at roundabouts.

Poisson-Lognormal Regression

To address the limitations associated with NB models, researchers have developed the Poisson-
lognormal (PLN) model. In contrast to the NB model, the PLN model assumes a PLN error term
instead of a gamma distribution, making it better suited for handling under-dispersed data counts.
Although the PLN model shares similarities with the NB model, it introduces a lognormal-
distributed the EXP(¢;) term in the model, resulting in increased flexibility. However, the PLN
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model also presents certain drawbacks, such as the lack of a closed form for the PLN
distribution, leading to more complex parameter estimation compared to the NB model
(Abdulhafedh, 2017).

Several scholars have employed Poisson modeling methods to examine the correlation between
crashes and relevant risk factors, particularly in urban settings. A study conducted by Park and
Lord (2007) introduced a new approach called the multivariate Poisson-lognormal model
(MVPLN) to simultaneously analyze crash count data based on severity. Additionally, Zhao et
al., (2018) utilized the MVPLN model to investigate crashes occurring at signalized intersections
in urban areas. The results of their study demonstrated that the MVPLN model provides a better
fit when compared to the traditional univariate Poisson model.

Zero Inflated Poisson and Negative Binomial Regression

Two commonly utilized methodologies for modeling crash frequencies are the zero-inflated
Poisson and zero-inflated negative binomial models. These models were developed to tackle the
problem of over-dispersion arising from an abundance of zero counts in traffic data, which
occurs when no crashes are observed at specific locations. By employing a zero-altered process,
these models enable the representation of crash frequencies in two distinct states: the state of
zero crashes and the state of non-zero crashes. The likelihood of a section being in either state
can be determined through the utilization of a binary logit or probit model. The presence of a
significant number of zero observations in crash data is typically attributed to underreporting of
minor crashes, the presence of nearby hazardous crash sites that render the observed sites
relatively safe, and the absence of certain types of crashes at these specific locations. The
objective of zero-inflated models is to accommodate these excess zeros by assuming a dual-state
crash system in which one state represents the absence of crashes, indicating virtual safety during
the observation period, while the other state represents the occurrence of non-zero crashes
(Abdulhafedh, 2017).

The zero-inflated model has gained considerable traction among transportation safety
researchers, and its application has provided valuable insights into various aspects of road safety.
For instance, in a comprehensive study conducted by Liu et al. (2018), the zero-inflated model
was utilized to examine urban mid-block crashes, leading to improved predictions of crash
frequency and severity compared to traditional models. Similarly, Raihan et al. (2019) employed
the zero-inflated negative binomial model to develop CMFs for bicycle crashes in urban areas,
identifying contributing factors and recommending safety countermeasures. Kumara and Chin
(2003) also applied the zero-inflated negative binomial model to investigate crash occurrence at
signalized tee intersections, successfully capturing the excess zeros and overdispersion
commonly observed in crash data. Moreover, researchers such as Carson and Mannering (2001),
Lee and Mannering (2002), Shankar et al., (2003) have utilized the zero-inflated model to
analyze crash data and identify factors influencing crashes on different types of roadways.
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Conway—Maxwell-Poisson

The Conway-Maxwell-Poisson distribution is an advanced statistical distribution that can be
applied to model queues and service rates. Unlike the traditional Poisson distribution, it can
handle both under-dispersed and over-dispersed data, thus providing a more flexible approach
for various types of crash-frequency data. The distribution also encompasses several other
probability density functions, such as the geometric, Bernoulli, and Poisson distributions, which
allows its utilization in a broader range of applications beyond crash-frequency modeling. By
utilizing the Conway-Maxwell-Poisson distribution, researchers can expand their analytical
capabilities when examining crash-frequency data. The versatility and flexibility of this
distribution make it an invaluable tool for transportation safety analysts who aim to accurately
model and predict crash occurrences. Many studies have implemented this modeling technique to
analyze crash data and develop safety prediction models (Lord et al., 2008; Sellers and Shmueli,
2010).

Logit and Probit Models

Logit and probit models are commonly employed to capture the severity of crash data,
considering the multitude of factors associated with crash occurrences. Binary models, which
accommodate two possible outcomes, are preferable when modeling crash severity since the
dependent variable often comprises multiple outcome categories. While discriminant analysis is

a viable alternative, logit and probit models are generally favored due to their flexibility and
ability to handle non-linear relationships. The classification of traffic crash severity models can
be categorized as either nominal or ordinal, with no consensus on the optimal approach as the
choice of model relies heavily on the characteristics of the data. Some researchers favor nominal
models due to the potential shared unobserved effects among adjacent injury categories, while
others prefer ordinal models for their simplicity and overall performance. Additionally,
multinomial models, accommodating three or more outcomes, can be employed to model crash
severity (Abdulhafedh, 2017). Numerous studies have utilized these modeling techniques to
investigate crash severity. For example, Chen and Fan (2019) conducted a study to identify
significant contributing factors to pedestrian injury severity in pedestrian-vehicle crashes in both
rural and urban areas of North Carolina, United States. Similarly, logit and probit models have
been applied in freight crash analysis (Doustmohammadi, 2019) and the examination of
intersection-related crashes (Tay, 2015). Other studies have utilized logit and/or probit models to
analyze safety in urban networks (Asil and Bargegol, 2022; Haleem and Gan, 2013; Intini et al.,
2020).

Random-Parameter Models

Random-parameter models represent an extension of random-effects models, which allow
estimated parameters to vary across each individual observation in the dataset, rather than just
affecting the model intercept. This modeling approach aims to capture the unobserved
heterogeneity among different roadway sites. The primary motivation for using random-
parameter models is to account for this heterogeneity that cannot be explained by observed
variables alone. Such models assume that estimated parameters vary across observations
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according to a particular distribution. Researchers have utilized this modeling technique to
investigate various road safety issues, such as the influence of traffic, geometric, and context
variables on urban crash types (Intini et al., 2020), assessing the impact of traffic signal
performance on crash frequency for signalized intersections along urban (Kabir et al., 2021),
examining the safety impacts of narrow lane widths on urban/suburban arterials (Rista et al.,
2018), and investigating motorcyclist injury severities (Se et al., 2021).

Other Statistical Models
In addition to the modeling techniques, there are several other statistical models that are
commonly used to investigate traffic safety. These include the random-parameters model,

gamma model, generalized estimating equation, generalized additive model, negative
multinomial model, hierarchical/multilevel model, finite mixture/Markov switching model, and
Bayesian approach. Each of these models has its strengths and weaknesses, and the choice of
model depends on the research question and the characteristics of the data (Lord and Mannering,
2010).

Machine Learning/ Data Mining Approaches

Classification and Regression Trees (CART)/ Decision Tree (DT)
DT or CART are widely used machine learning methods that construct classification or

regression models in the form of a tree, where each node represents a predictor variable, and
each branch corresponds to a decision rule or criterion. At each step, the explanatory variable
that achieves the “best” split is chosen to predict the value of the response variable. The
simplicity and interpretability of DTs make them a popular choice for modeling problems in
various domains, including traffic safety. However, overfitting is a common issue with DTs,
which can lead to poor generalization performance. The application of DTs in crash severity
modeling dates back to early machine learning research. For instance, (Kuhnert et al., 2000)
compared the performance of logistic regression, CART, and multivariate adaptive regression
splines for modeling motor vehicle crashes and found that CART was capable of selecting
significant independent variables. Similarly, Chang and Chien (2013) developed a CART model
to investigate the relationship between injury severity outcomes and various driver/vehicle,
highway geometric, environmental, and crash-related factors. Recent studies have applied
variations of the DT technique to explore the relationship between crash severity and other
factors. For example, Prati et al. (2017) used a modified DT method to identify the most
significant factors contributing to bicycle crashes, including crash characteristics, infrastructure
characteristics, cyclists' demographics, and environmental factors. Additionally, Arefkhani et al.
(2021) applied CART to identify the most significant factors contributing to drivers' injury
status.

K-Nearest-Neighbor (KNN)
KNN is a non-parametric statistical technique applicable to classification and regression tasks.
Its mechanism involves identifying k neighboring values close to the response variable, based on
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the calculated distance between this variable and other known observations. Subsequently, the
predicted value of the response variable is computed. One of the advantages of KNN is its lack
of assumptions about the data's functional form, though it may be sensitive to the local data
structure (Iranitalab and Khattak, 2017). The study conducted by Zhang et al. (2018) involved
the development of multiple machine learning models, including KNN, for the prediction of
crash injury severity. The results obtained from these models were compared with traditional
statistical models, and it was reported that KNN outperformed the other models in terms of
prediction accuracy. KNN has been applied in various transportation safety studies, such as
investigating speed violations (Kugkapan et al., 2021), calibrating SPFs (Farid et al., 2018), and
assessing crash risk at diverging areas (Xing et al., 2020).

Support Vector Machines (SVM)

SVM is a discriminative classifier that operates by identifying an optimal hyperplane in a space
with high dimensions or even infinite dimensions. This hyperplane serves as a decisive
boundary, effectively separating the data into two distinct classes. The margin, which refers to
the distance between the hyperplane and the closest data point on either side, plays a crucial role
in determining the performance of SVM. The primary objective of an SVM classifier is to select
a hyperplane with the widest margin between the two classes, thereby enhancing the accuracy of
classifying new data instances (Bambrick, 2016; Hastie et al., 2001). Researchers have utilized
SVM in various applications, such as real-time crash risk assessment and the analysis of crash
severity on mountainous highways, incorporating real-time traffic and weather data. For
instance, Yu and Abdel-Aty (2013) conducted a study comparing SVM models with different
kernel functions against logistic regression models to evaluate real-time crash risk. The findings
highlighted the superior performance of SVM compared to logistic regression. In a subsequent
study, the same authors employed SVM to examine crash severity on mountainous highways,
incorporating real-time traffic and weather data (Yu and Abdel-Aty, 2014a). Sun et al. (2014)
also utilized SVM models to predict real-time crash risk on urban expressways.

Random Forest

Random Forest (RF) is a supervised classification algorithm in machine learning that constructs
a collection of Decision Trees using a random subset of training data. The predictions of each
tree are then combined through voting to make the final prediction. This approach is commonly
employed to create a forest of multiple classification trees, resulting in more precise predictions.
RF offers several advantages including the ability to handle missing values, avoid overfitting by
using random subsets of data, and provide information about the importance of different features
in the dataset. This feature importance can aid in identifying significant contributing factors
during model training. RF has been widely applied in various road safety domains to predict
different outcomes. For example, Wang and Kim (2019) utilized RF to identify factors and
predict crash severity, comparing its performance to multinomial logit (MNL). Their findings
indicated that RF outperformed MNL in terms of prediction accuracy, as measured by precision,
recall, and F1 score. Although the differences were not statistically significant, sensitivity
analysis revealed that RF was less sensitive than MNL. Moreover, RF has the capability to
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capture nonlinear effects of continuous variables and mitigate the impact of collinearity among
explanatory variables. In another study, Wahab and Jiang (2019) developed three machine
learning models, including Decision Trees, RF, and Instance-Based learning with parameter k
(IBk), to model injury severity in motorcycle crashes. They observed that RF-based algorithms
exhibited better agreement with experimental data compared to the other two algorithms,
attributed to RF's global optimization and extrapolation capabilities. Dash et al. (2022) applied
RF to investigate factors influencing bike crash severity in urban areas and found that RF
demonstrated potential for greater explanatory accuracy. This finding was particularly
noteworthy given the limited use of RF in bike safety studies. Similarly, R. Yu et al. (2019)
employed RF to rank the most critical factors associated with crash risk on the expressway
system.

eXtreme Gradient Boosting (XGBoost)

XGBoost is a popular and efficient implementation of Gradient Boosting, an ensemble learning
method that utilizes a series of weak learners to build a predictive model. In contrast to other
ensemble methods, Gradient Boosting constructs individual models in a sequential manner and
adjusts their weights based on information from previous models. XGBoost improves upon
Gradient Boosting by incorporating a more precise estimation method that includes information
on the gradient direction and minimum loss function. It also uses regularized boosting to
minimize overfitting and enhance performance. XGBoost is governed by several parameters,
including shrinkage, boosting iterations, minimum loss reduction, and decision tree-related
parameters (A. Das et al., 2022). Recent studies have demonstrated the versatility of XGBoost in
the safety analysis. For example, Goswamy et al. (2023) utilized XGBoost to identify the factors
that influence the severity of injuries at pedestrian crossing locations with flashing beacons.
Similarly, Jiang and Ma (2021) employed XGBoost to investigate macro factors associated with
traffic fatality rules. XGBoost has also been used in conjunction with SHapley Additive
exPlanations, an explainable Al-based model, to examine various aspects of safety analysis. For
example, Chang et al. (2022) investigated fatal pedestrian crashes, Parsa et al. (2020) conducted
real-time crash detection and feature analysis, and Yang et al. (2021) examined factors in freight

truck-related crashes.

Artificial Neural Network (ANN)
The Artificial Neural Network (ANN) is a computational system inspired by the structure of the

human brain that comprises numerous interconnected neurons arranged in layers, including
input, hidden, and output layers. The system operates in a coordinated manner to solve problems
and learns from information provided by comparing its classification with known information
classifications. A significant advantage of the ANN is that it does not require any assumptions or
prior knowledge for problem-solving (Zheng et al., 2014). Recently, ANNs have gained
popularity in the field of crash severity data analysis. This type of analysis involves treating
crash severity modeling as a pattern recognition task, in which the ANN classifier assigns each
input to a severity category. In previous studies, fully connected feed-forward neural networks
were employed to predict the severity of vehicle crashes (Abdelwahab and Abdel-Aty, 2001;
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Sohn and Shin, 2001). Subsequently, ANNs were used to assess the effects of electronic toll
collection (ETC) systems at toll plazas on highway safety (Abdelwahab and Abdel-Aty, 2002).
To improve the accuracy of individual ANN classifiers, a data fusion method was introduced to
combine data from various sources (Sohn and Lee, 2003). More recently, researchers divided
crash severity datasets into subsets using k-means clustering and applied ANNs to model them
separately, leading to significant improvements in prediction performance when compared with
ANN:Ss trained on the entire dataset (Alkheder et al., 2017).

Data Mining

Data mining, which is a process of extracting knowledge from large datasets, has emerged as a
powerful tool for analyzing and understanding complex road safety datasets. There are several
advantages of data mining techniques in traffic safety analysis. Firstly, data mining can identify
patterns and relationships between variables that are not easily detected using traditional
statistical methods. In addition, data mining can handle large and complex datasets with a high
level of accuracy and efficiency. This is particularly useful in traffic safety analysis, where
datasets can contain hundreds of variables and thousands of records. Unlike most traditional
statistical models, data mining usually does not have any predefined assumptions.

Data mining techniques, such as association rule mining, can identify contributing factors behind
safety-critical events, including crashes, by investigating unclear and complex relationships
among variables in big data. This may not be possible using traditional safety analysis methods
that rely on traditional modeling. Association rule mining is a rules-based data mining method
for investigating interesting associations of variables in large databases. The study conducted by
Khan et al. provides an in-depth analysis of driver speed selection behavior in adverse weather
utilizing telematics data coupled with association mining, with the aim of developing a human-
in-the-loop variable speed limit (VSL) algorithm (Khan et al., 2020). Another study utilized this
robust technique to discover vehicle-pedestrian crash patterns to help safety professionals
understand significant patterns and relevant countermeasures to raise awareness and improve the
potential reduction of pedestrian crashes (Das et al., 2019). In recent years, many researchers
have been using clustering-based data mining methods including k-means clustering, k-medoids
clustering, hierarchical clustering, density-based clustering, fuzzy clustering, and spectral
clustering. One recent study applied several clustering methods to categorize drivers into
aggressive, normal, and calm clusters, and subsequently proposed a driving score to assess
driving performance (Mohammadnazar et al., 2021).

The use of text mining has also been leveraged in many recent traffic safety-related studies to get
a deep understanding of the contributing factors leading to crashes and associated driver
behaviors. With the rise of the internet and digital technology, publication media has become a
valuable source of information that can be used to enhance collective knowledge. Das et al.
conducted a study that demonstrated the potential of text mining in gathering information related
to traffic safety. They utilized the knowledge discovery in text (KDT) approach to analyze over
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15,000 research papers, revealing research trends and histories of development (Das et al., 2016).
In another study, the same researchers utilized latent Dirichlet allocation (LDA) in conjunction
with structural topic modeling (STM) to understand topical trends in the complex and evolving
field of transportation engineering research, particularly within traffic safety (S. Das et al., 2017).
A. Rakotonirainy et al. (2015) conducted a study that employed text mining to identify various
factors that contribute to crashes, such as the use of phones and oversteering, particularly on
curved sections.

Deep Learning

In recent times, the utilization of deep learning models has witnessed a growing trend in traffic
safety analysis. Among these models, Convolutional Neural Network (CNN) has emerged as a
popular option for developing prediction models due to its exceptional performance compared to
alternative methods. In a recent investigation carried out by Zheng et al. (2019), they introduced
a new model called Traffic Accident's Severity Prediction-Convolutional Neural Network
(TASP-CNN) for predicting crash severity. The study compared the performance of TASP-CNN
against various statistical and machine learning models, ultimately demonstrating the superiority
of the TASP-CNN model. Similarly, another study proposed a deep learning framework known
as ‘DeepScooter’ to predict the severity of motorcycle-involved crashes, achieving an impressive
accuracy of 100% and 94% for the training and testing datasets, respectively (Das et al., 2018).
A. Furthermore, Rahim and Hassan (2021) utilized four years of crash data from Louisiana and
employed Deeplnsight in conjunction with a pre-trained CNN called EfficientNet to establish a
crash severity prediction framework. The study highlighted that the proposed framework
exhibited significantly better performance compared to traditional machine learning models.

Other Machine Learning Models
Other machine learning and data mining-based models that have been used to conduct safety
analysis include Naive Bayes, gradient boosting, Light GBM, recurrent neural network,

AdaBoost, genetic algorithm, fuzzy adaptive neural network, conditional inference forest, pre-
trained CNNs, and TabNet.

2.3 LAND AREA CONTEXT
2.3.1 Expanded Functional Categorization System

To evaluate the impact of land use on traffic safety, it's crucial to consider the latest land use

categories presented in the NCHRP Report 855 (Stamatiadis et al., 2018). The report introduced

an Expanded Functional Categorization System (FCS) comprising five distinct context

categories, each requiring different geometric design practices in terms of operating speeds,

accessibility, and user groups: Rural, Rural Town, Suburban, Urban, and Urban Core.

= Rural: Regions characterized by minimal population concentration, limited buildings or
constructions (scattered or absence of residential, commercial, and industrial establishments),
and typically significant distances between structures.
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Rural Town: Regions with low population density yet diverse land utilization, featuring a
commercial main street ambiance, potential availability of on-street parking and sidewalks,
and relatively small distances between structures.

Suburban: Areas displaying moderate population density, a blend of land uses within and
between buildings (including mixed-use town centers, commercial strips, and residential
zones), and varying distances between structures.

Urban: Localities marked by high population density, a mix of land uses and prominent
destinations, potential provision for on-street parking and sidewalks, and a combination of
different distances between structures.

Urban Core: Districts showcasing the highest population density, diverse land uses within
and among predominantly tall structures, and relatively minimal distances between
structures.

The Expanded FCS's main goal is to give designers better information so that they can make
better design decisions by considering the mobility and safety of all roadway users. Figure 1
shows the typical user priorities in the expanded FCS (freeways are not shown).

Context
Rural Rural Town Suburban Urban Urban Core
Roadway
Principal & & AN ’ 5 Ay & % riﬁf_f._\'ﬂ
incipe ok | & & SoR| &= %
Minor & Ex k & Ex A & . £ A
AFTGI’IG| &) { | \_."x %ﬂ "ﬁ: ‘-Q.zﬁ
Collector | ¢ R ) SL3T) R >R
local | FoR | SR | BR| 0 R
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Low *_C Mecium(% High
Low r-f.ed[un*& High

Figure 1. Typical User Priorities in the Expanded FCS (Stamatiadis et al., 2018).
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2.3.2 Studies on Land Use and Traffic Safety

Xie et al. (2019) presented an innovative approach to evaluate the impact of land use conversions
on traffic safety outcomes. The study specifically focused on examining the association between
land use conversions and changes in severe crash occurrences. The results demonstrated that
urban areas characterized by residential, commercial, and mixed residential-commercial land
uses exhibited the highest levels of exposure to severe crash risk. In a similar vein, Mathew et al.
(2022) conducted a study that explored the influence of road network characteristics,
demographic variables, and land use characteristics on the occurrence of collisions involving
minors. Through their research, they identified several significant explanatory factors that
contribute to the incidence of teen crashes. These factors include AADT, the presence of light
commercial land use, the number of occupied housing units in proximity, and the number of
students enrolled in public or private high schools.

The association between several built environment elements on and around the university
campus and pedestrian crashes was investigated by Dai et al. (2010). The study used network-
based geospatial methods to pinpoint the locations of crash clusters in the study region. Data on
pedestrian crashes from 2003 to 2007 were gathered from the Georgia Department of
Transportation, and each road segment and intersection's environmental aspects of the
streetscape, infrastructure, and pedestrians were assessed. According to the study, there were
pedestrian crashes on more than 50% of roadways that were wider (more than 29 feet), two-way,
and in good shape. Crashes involving pedestrians happened more frequently on road segments
with mixed land uses and substantial street compactness, and they were notably concentrated in
high-density areas. Mukoko and Pulugurtha (2020) investigate the impact of network, land use,
and demographic factors on the estimation of bicycle-vehicle crashes on urban roads. The
research findings indicate that network characteristics exhibit comparable or superior predictive
capabilities compared to land use and demographic factors. Specifically, the study reveals that
bicyclists have a higher probability of being involved in crashes on road segments lacking
dedicated bicycle lanes, those with traffic lights, and where the speed limit is set at 45 mph.
Furthermore, increased crash likelihood is observed on road segments situated in close proximity
to commercial, research, institutional, multi-family residential, and heavy industrial areas.
Conversely, the presence of single-family residential areas appears to have a relatively lower
impact on the occurrence of bicycle-vehicle crashes.

In another study, Ding et al. (2020) examined the influence of infrastructure and land use on
bicycle crash exposure and frequency using bike-sharing data. They identified factors such as
higher road density, business areas, a larger percentage of older individuals, male and white
populations, and higher median family income as positively associated with bicycle crash
incidence. Pulugurtha et al. (2013) developed crash estimation models at the traffic analysis zone
(TAZ) level, indicating the significance of land use factors such as mixed-use development,
urban residential, single-family residential, multi-family residential, business, and office districts
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in predicting crashes. The models also revealed a negative coefficient for single-family
residential areas, suggesting a decrease in crash frequency with an increase in the extent of such
development. Koloushani et al. (2022) conducted a study focusing on the spatial correlations
between land use and pedestrian injury severity in non-intersection crashes in Northwest Florida.
The findings of this research indicate that certain types of land use play a significant role in
predicting the severity of pedestrian-involved crashes. Specifically, the likelihood of a severe
pedestrian-involved crash increases in areas with commercial land use, such as retail stores or
nightclubs, while it decreases near university campuses. Furthermore, regardless of the
surrounding land use type, daylight conditions contribute to the severity of pedestrian-involved
crashes, while average traffic volume is a statistically significant factor for crashes occurring in
proximity to parking lots and office buildings. Pedestrian-involved crashes predominantly occur
during daylight hours near office buildings, and pedestrians in these areas are less likely to
sustain severe injuries.

2.4 PEDESTRIAN AND BIKE SAFETY

Each year, pedestrian and cyclist fatalities account for approximately 19% of all traffic-related
deaths, resulting in approximately 6,000 pedestrian deaths and 850 cyclist deaths, along with
numerous injuries (FHWA, 2022). While the overall number of traffic fatalities has decreased,
the proportion of pedestrian and cyclist fatalities within the total has been increasing. However,
the actual magnitude of the safety issue is likely greater than what is reflected in published
statistics due to limited data on changes in pedestrian and cyclist travel patterns and exposure
compared to other modes of transportation.

To tackle these safety concerns, jurisdictions are adopting more advanced approaches to assess
the safety performance of transportation infrastructure. This often involves monitoring shifts in
pedestrian and cyclist crash frequencies and exposure. Such monitoring helps identify potential
risks and the most effective strategies for creating safer environments for walking and biking.
For instance, if both crash occurrences and exposure decrease, it may indicate that people are
avoiding walking or biking due to safety apprehensions. Conversely, if exposure increases while
crashes decrease, it suggests that initiatives like Toward Zero Deaths or Vision Zero have been
successful. Encouraging active modes of transportation while simultaneously reducing crash
incidents necessitates collaborative efforts by state and local agencies. However, the limited
availability of data restricts our understanding of the severity of pedestrian and cyclist crash risks
and the locations where issues are prevalent. For instance, two intersections may report the same
number of pedestrian crashes in a given year, but one intersection might have significantly
higher pedestrian volumes, making it comparatively safer (Kristen Brookshire et al., 2016).

2.4.1 Common Factors Contributing to Pedestrian and Bicycle-Related Crashes

Although crash frequencies and rates can provide information on the severity and changes over
time, they do not reveal the root causes of crashes or how to address them. To effectively combat
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pedestrian and bicyclist crashes and injuries, it is crucial to fully comprehend the factors that
contribute to these crashes. This will enable the development and application of the most cost-
efficient and appropriate combination of countermeasures. Common issues that increase the risk
of collisions and severe injury include (Kristen Brookshire et al., 2016):

= Speeding: Bicyclists and pedestrians are more likely to be struck by vehicles that go beyond
the posted speed limit or drive too quickly for the conditions of the road. According to
studies, the chance of a pedestrian dying increases as the impact speed of the motor vehicle
rises. According to one study, the likelihood of a pedestrian dying in a collision with a
moving car increases from 8% at 50 km/h (about 31 mph) to 50% at 75 km/h (about 47 mph)
(Rosén and Sander, 2009).

= Conflicts at crossing locations: The danger of a collision may increase when the layout of
an intersection or other crossing place causes conflicts between various road users. Drivers
are less likely to expect pedestrians and bicycles to cross at places that are not intended for
crossing, which increases the likelihood of crashes.

= Inadequate conspicuity: Drivers may not detect pedestrians and bicyclists if they are
difficult to spot, especially in low-light situations, which increases the likelihood of a
collision. Additionally, a lot of bikers are either unaware of or disobey the rules requiring
them to wear reflectors and/or lights when riding at night.

= Poor compliance with traffic laws and proper use of facilities: The safety of all road users
is impacted by motorists, pedestrians, and bicyclists who break the law. For instance,
pedestrians and bicyclists who use the incorrect side of the road or disregard traffic signs and
signals, as well as automobiles that refuse to yield to pedestrians at crosswalks. Sometimes,
poor compliance can be attributed to missing or inadequately constructed facilities and
crossings, as well as to a lack of awareness of the intended use of certain designs or traffic
control systems.

= Inadequate separation: Bicyclists and pedestrians who are not segregated from fast-
moving, heavy traffic are at risk. Drivers could not see pedestrians in time to prevent a
collision if they were forced to cross the road while walking. Dense traffic, heavy vehicle
traffic, darkness, and a small field of vision may also have an impact on bicyclists who share
motor vehicle lanes in similar circumstances. The danger of collisions at junctions and
driveways, as well as possible confrontations with pedestrians, might rise if riders choose to
ride on sidewalks in an effort to feel safer.

A recent study has identified several risk factors associated with pedestrian crashes at both
intersections and roadway segments. These factors include traffic volume, functional classes,
pedestrian volume, presence of signals, and vehicle speed. The report discusses the potential
roadway risk factors and their relationship to pedestrian crashes. The study found that most of
the factors have a generally positive but not linear relationship to pedestrian crashes, except for
high-turning volumes and the proportion of local streets at an intersection, which are still
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unknown (see Table 14). The presence of a two-way left-turn lane was found to be positively
related to pedestrian crashes on roadway segments, while vehicle speed and speed limits were
found to be positively related to crash severity (Thomas et al., 2018).

Table 14. Potential Roadway Risk Factors and Relationship to Pedestrian Crashes
Reproduced from Thomas et al. (2018).

Variable/Risk Factors

Intersections

Segments

Traffic volume

Positive (generally
positive but not

Positive (generally positive but
not linear)

compared with local streets

linear)
High-turning volumes Unknown threshold | Unknown at present
Functional classes—arterials and collectors - -

Positive Positive

Proportion of truck/bus traffic in traffic
stream

Positive (crash
severity)

Positive (crash severity)

Proportion of local streets at intersection

Negative

Unknown at present

Pedestrian volume

Positive (but not
linear)

Positive (but not linear)

No median/median island

Number of legs > 3 Positive Unknown at present
Total lanes on largest leg (5+) Positive Unknown at present
Positive

(less certain than for | Positive
segments)
Presence/number of transit stops Positive Positive
Presence of on-street parking Positive Positive
Presence/number of driveways Positive Unknown (theoretically yes)

Presence of signal

Positive with crash
frequencies Negative
with crash severity

Unknown at present

Lack of separate turning movements from

walk phase (all red walk phase, or walk and | Positive Unknown at present
restricted turn phase)

Lack of leading pedestrian interval Positive Negative

Presence of four or more through lanes . .

Higher numbers of total lanes Theoretically yes Positive

Presence of TWLTL Unknown at present | Positive

Speed limit > 25 mph

Unknown at present

Positive with crash severity;
positive with frequency in a few
studies

Vehicle speed

Positive with severity

Positive with severity
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2.4.2 Addressing Pedestrian and Bicycle Safety Concerns

The 3E’ approach is frequently used by transportation professionals to increase the safety of
cyclists and pedestrians. The three main ‘Es’ in this concept are engineering, education, and
enforcement. Engineering describes the addition of sidewalks, bike lanes, or traffic lights, among
other modifications to the environment or operations of the highway that impact how people on
foot, on bicycles, and in other vehicle types navigate it. In order to encourage positive changes in
attitudes or actions among drivers, pedestrians, cyclists, and other groups, education entails
raising knowledge of certain safety regulations, concerns, or practices. Compliance with safety-
related rules and regulations, such as speed limits or the use of crosswalks, is the main goal of
enforcement activities.

There are more crucial aspects to consider in addition to these three mains ‘Es.” These could
include Emergency Response, Emerging Technologies (such applications that warn of vehicle-
pedestrian collisions), and Encouragement/Engagement initiatives that encourage people to walk
and bike and include them in safety-related discussions. Some professionals look at the ‘Es’ from
the perspectives of evaluation and equity. While equity aims to equally distribute spending in
safety measures across a community, evaluation focuses on assessing the impact of safety
treatments or programs. According to research, combining the ‘Es’ (such as adopting engineering
modifications with education and enforcement initiatives) is typically more effective than
depending on a single strategy. The National Highway Traffic Safety Administration (NHTSA)
recently conducted a comprehensive review of existing treatments and programs related to key
pedestrian and bicycle safety concerns, as well as the related treatments and programs.

Table 15 summarizes the key pedestrian and bicycle safety concerns and the treatments and
programs associated with them (Kristen Brookshire et al., 2016).

Table 15. Summary of Key Pedestrian and Bicycle Safety Concerns and Related
Treatments and Programs.

Relation to Safety Concerns
=2 a o L
2 - § o = g S = g
Primary Mode S o 8 |8 2 .8 \§ Z 5&
Treatment or Program -3 S8 820 =8 =5 g2
Affected o 8 22 | &L F =29 .2 c&
1) o= SER-a) —_— 2 .9 e
Zaoa|lBw|dagoaSEETS
% ©n 8 o < 8 E O B a S 5
‘7 | <
3 O21=8 5 % &85 &
x = S 2 7
= ) - o
Engineering Treatments
1. Access management All . . maybe
2. Advance yield/stop lines Pedestrians/Drivers . . .
3. Bicycle detection at signals Bicyclists . .
4. Bike lanes Bicyclists . .
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Relation to Safety Concerns

7] |
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Affected 0o 3| 2= |g2FHE=2g =&
ze | Ew|38FSsSSEE
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[8a) 5} s
5. B}cycle pavement marking Bicyclists . . . .
improvements
6. Bicycle-tolerable rumble strips Bicyclists/Drivers .
7. CrOSS{ng islands and raised Pedestrians/Drivers . . . .
medians
. Pedestrians/
8. Interchange design Bicyclists
9. Intersection geometric design Pedestrians/Drivers . . .
10. Lighting and illumination All . .
11. Marked crosswalks Pedestrians . . .
12. Pedestrian and bicycle Pedestrians/ . .
overpasses/underpasses Bicyclists
Pedestrians/
13. PHBs Bicyclists)
14. Pedestrian signals and push Pedestrians . .
buttons
15. Rectangular rapid flashing Pedestrians . . .
beacons
16. Road diets All . . . .
17. Roundabouts All . . .
18. Separated bike lanes Bicyclists . . .
19. S1devyalk buffers and Pedestrians . maybe . maybe .
landscaping
20. Sidewalks and curb ramps Pedestrians . .
21. Traffic signal phasing All . . . .
22. Traffic calming and management All .
Education and Awareness Programs
23. Child training and skills practice Pec'iestrl.ans/ . . .
Bicyclists
24. General pedestrian/bicycle
safety communication and All maybe | maybe . .
outreach
25. Safe routes to school Pec'iestrl.ans/ maybe | maybe .
Bicyclists

Enforcement Programs
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Relation to Safety Concerns

Q 2] Q|
S g S g _¢
= s2|lex> 55 5e8
Primary Mode o 2 S |582= 2= 8=
Treatment or Program >3 £ 38 |5820 =825 g.3
Affected o 8| .2 SO F g€=9 .2 cF
> 2 =— | & &o — ] E =%
2o | 8B u| g2 oglSEES
n @ g g mé’-go-ﬁhaﬁb
‘7 | <
Q OZ2|E878*3a=E &
% e £ ~ 2
[8a) 5} s
. Pedestrians/
26. Adult school crossing guards A . . .
Bicyclists
27. Automated enforcement All maybe .
28. Speed display devices All .
29. Targeted law enforcement All . . .

2.4.3 Pedestrian and Bicyclist Safety Variables

Analyzing crash data is a common method to evaluate the safety of pedestrians and bicyclists.

These crashes typically involve motor vehicles, but it's important to acknowledge that not all

crashes are reported, and some do not involve motor vehicles at all. Undocumented crashes can
provide valuable insights into areas requiring safety enhancements. One strategy for identifying

such areas is to pinpoint ‘hot spots’ where pedestrian or bicycle crashes are concentrated. These
hot spots might encompass intersections or specific road segments that necessitate design

improvements. Moreover, it's crucial to consider that crash likelihood is higher in locations with
greater pedestrian and bicycle activity. To accurately assess the risk of pedestrian or bicycle
crashes, exposure measures must be incorporated. For instance, the crash rate can be determined
by dividing the total number of crashes during a specific period by a corresponding measure of

exposure. Exposure measures encompass various factors such as pedestrian crossing volume,

motor vehicle volume at crosswalks, total bicycle volume at intersections, or population density

in census tracts. Additionally, variables categorized under ‘Demand’ can serve as proxies for
pedestrian or bicycle exposure. Even in cases where specific data on pedestrian and bicycle
volumes may not be available, exposure measures can still be estimated based on the time spent
in areas where pedestrians and bicyclists are likely to encounter motor vehicles. A recent
NCHRP Report outlines several variables related to pedestrian and bicycle safety, as presented in

Table 16 (Lagerwey et al., 2015).

Table 16. Safety Variables, Reproduced from Lagerwey et al., (2015).

Example Variables PIe{slevanceBike E((;tce;;;ﬂ
Total number of pedestrian/bicycle crashes ° ° S, Cr, Co, A
Fatal and severe injury pedestrian/bicycle crashes ° ° S, Cr, Co, A
Pedestrian/bicycle crash rate ° ° S, Cr, Co, A
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Relevance i
Example Variables - Poten‘Flal
Ped Bike Location

Proportion of pedestrians walking in the roadway O O S
Proportion of pedestrians complying with “Don’t L)) O Cr
Walk” signals
Proportion of bicyclists complying with red lights O L)) Cr
Proportion of motorists complying with right turn on L)) D) Cr
red restrictions
Proportion of motorists yielding to pedestrians in L)) O Cr
crosswalks
Number of “near misses” involving O
pedestrians/bicyclists © 5, Cr, Co, A

Notes: ® = Very relevant, © = Less relevant, O = Not likely relevant, S = Segment, Cr = Crossing, Co = Corridor,

A = Area

These variables, which are listed in Table 17, include traffic volume, pedestrian volume, transit

presence, total through lanes, median type, crosswalks, on-street parking, and various types of

markings and signs. Additionally, the table provides measurements for each variable, such as
AADT for traffic volume and the presence or count of certain facilities like pedestrian hybrid
beacon or rectangular rapid flashing beacon along a segment (Thomas et al., 2018).

Table 17. Potential Pedestrian Crash Risk Variables for Segment Analysis, Reproduced

from Thomas et al., (2018).

Segment-Related Roadway Variables

Measurements

Traffic volume

Typically, ADT or AADT are available for state road networks.
Subtypes may include.

e  Major and minor road volumes (for intersections)

e  Volume assignment by functional class (surrogate measure)
e Heavy vehicle percentages

Pedestrian volume

It is challenging to account for pedestrian volumes crossing a length or
segment of roadway. Ideally, the number of pedestrians walking along
the roadway and of pedestrians crossing anywhere along a segment could
be included. It may be feasible to collect counts of pedestrians crossing
at non-intersection-marked crosswalk locations.

Transit

e Presence of stops within X distance of segment midpoint or
e endpoints
e  Number of stops along segment

Total through lanes

Number of through lanes (average, either end of segment;
midpoint[ Inumber of through lanes; or number proportionally weighted)

Total through lanes

Number of through lanes (average, either end of segment; midpoint
number of through lanes; or number proportionally weighted)

Median with/without crossing facilities

Presence of a continuous raised (not painted or TWLTL) median
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Segment-Related Roadway Variables

Measurements

Median islands with pedestrian
crossing

Count of raised median islands with pedestrian pass-through refuge
along segments. Could consider median island presence at the
intersection.

Two-way left-turn lane

Presence of TWLTL

Midblock crosswalks

Presence or count of marked crosswalks with unsignalized approaches
along a segment

On-street parking

Presence (any, one, or both sides) or proportion of segment covered by
striped parking

Pedestrian hybrid beacon or PHB

Presence or count of the facility type along a segment

Rectangular rapid flashing beacon

Presence or count of the facility type along a segment

High visibility crosswalk markings

Presence or count of the facility type along a segment

Advance stop/yield markings and signs

Presence or count of the facility type along a segment

Speed limit

Posted speed limit or weighted average speed limit along segment

Segment length

Length of segment; may be estimated from spatial data

Sidewalk coverage

Presence of sidewalks along zero, one, or both sides, or proportional
coverage from front frontage data

Distance to nearest signalized crossing
or activated beacon along same road

As described

Right- or left-turn lanes at adjacent
intersections

Presence or counts of different lane types at adjacent intersection

2.4.4 Selection of Safety Countermeasures

As part of the Every Day Counts (EDC-5) program focused on pedestrian safety, the FHWA has
recently revised its guide for improving safety at uncontrolled crossing locations (FHWA, 2021).
The guide presents various measures to address pedestrian safety concerns, taking into account
the characteristics of the roadway. Aligned with the objectives of the EDC-5 program, several
recommended measures include Road Diets, Pedestrian hybrid beacons (PHBs), Pedestrian
refuge islands, raised crosswalks, Crosswalk visibility enhancements, Rectangular Rapid
Flashing Beacons (RRFBs), and Leading Pedestrian Intervals. A comprehensive matrix and list
of these countermeasures, categorized according to roadway and traffic features, can be found in

Figure 2 (Blackburn et al., 2018). The assignment of specific countermeasures to matrix cells is

based on safety research, best practices, and established national guidelines. When implementing

pedestrian crossings, FHWA advises agencies to carefully assess the available countermeasure
options and select the most suitable combination of treatments, taking into consideration factors
such as pedestrian volume, operational speeds, land use context, and site-specific features.
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Posted Speed Limit and AADT
Vehicle AADT <2,000 Vehicle AADT 2,000-15,000 Vehicle AADT =15,000
Roadway Configuration =30 mph | 35 mph | =40 mph | <30 mph | 35 mph |40 mph | <30 mph | 35 mph | =40 mph
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# Signifies that the counfermeasure is a candidate crosswalk approach, adequate nighttime lighting levels,
treatment af o marked uncontrolled erossing location. and crossing warning signs
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1gni Lnenmm L ] . . .
considered, but not mandated or required, based upon Advance Yield Here To (Stop Here For) Pedestrians sign

engineering judgment ot @ marked uncontrolled and yield (sop) line .
crn?slsingnln%d:mT am u In-Street Pedestrion Crossing sign

O Signifies that crosswalk visibility enhancements should Curb extension
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Figure 2. Pedestrian Crash Countermeasures by Roadway Feature (Blackburn et al., 2018).

2.4.5 Development of SPFs and CMFs for Pedestrians and Bicyclists

The NCHRP Project 17-56 undertook the task of creating several SPFs and CMFs specifically
for various pedestrian treatments at unsignalized pedestrian crossings (Zegeer et al., 2017). After
careful consideration of multiple options concerning the design of road features and traffic
control devices, this particular study chose to assess the effectiveness of four distinct treatment
types. These encompassed RRFBs, PHBs, pedestrian refuge islands, and advanced markings and
signs indicating YIELD or STOP. The analysis of data involved the formulation of cross-
sectional models and the utilization of EB analysis techniques, both before and after the
implementation of treatments, to ascertain the impact on crashes, represented by CMFs. In the
case of refuge islands, specific equations were fine-tuned to provide projections of the
anticipated number of crashes. The parameter estimates for all models pertaining to refuge
islands can be found in Table 18.
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PEDCRASH = exp(a+City+b*Refuge Island Presence+cxAreaType) A AADTEPEDAADTS (25)
TOTCRASH = exp(a+City+b*Refuge Island Presence+d*Midblock_int)AAADTePEDAADTf (26)
IN]CRASH — exp(a+City+b*Refuge Island Presence+d*Midblock_int)AAADTePEDAADTf (27)
TARGETCRASH = exp(a+City+b*Refuge Island Presence+d*MidblOCk_int)AAADTePEDAADTf (28)
IN]TARGETCRASH — exp(a+City+b*Refuge Island PTesence+d*MidblOCk_int)AAADTePEDAADTf (29)

Where,

AADT = total AADT on the roadway being crossed
AreaType = 1 if Suburban, 0 if Urban

City = an intercept term specific for each city
Midblock_Int = 1 if intersection, 0 if midblock

PEDAADT = total pedestrian AADT for midblock or intersection
Refuge Island Presence = 1 if present, 0 if not present

Table 18. Parameter Estimates for Refuge Island Regression Models, Reproduced from
Zegeer et al. (2017).

Parameter Parameter Estimate (Standard Error)
Pedestrian Total Injury RE+SS Injury RE+SS
N -10.4246 -5.5953 -6.4572 -8.3157 9.713
(-1.6409) (-0.7761) (-0.8886) (-0.9754) (-1.2009)
b -0.3578 -0.2981 -0.3369 -0.2999 -0.3254
(-0.2153) (-0.0956) (-0.1148) (-0.1258) (-0.146)
c é)0537 1125 7 n/a n/a n/a n/a
d o/ 0.473 0.4312 0.414 0.3728
(-0.1083) (-0.1183) (-0.1224) (-0.1395)
0.6977 0.5192 0.5375 0.7235 0.778
© (-0.1694) (-0.0756) (-0.0846) (-0.0947) (-0.1157)
¢ 0.3295 0.1224 0.1141 0.1041 0.0986
(-0.0486) (-0.0247) (-0.026) (-0.0237) (-0.0263)
overdispersion | n/a 0.7608 0.7075 0.9149 0.9837
(-0.0305) (-0.0482) (-0.0521) (-0.1075)

Likewise, advanced YIELD or STOP markings and signs the following equations were generated
to predict the expected number of crashes per year. The parameter estimates for all models

related to advanced YIELD or STOP markings and signs are shown in Table 19.

PEDCRASH = exp (a+City+b*Advance StopYield Sign Presence+C*AreaType)AAADTePEDAADTf (30)

TOTCRASH

€2))

= exp (a+City+b*Advance StopYield Sign Presence+c*AreaType+d*Midblock_int)AAADTePEDAADTf
IN]CRASH — exp(a+City+b*Advance StopYield Sign Presence+d*Midblock_int)AAADTePEDAADTf (32)

TARGETCRASH

= exp (a+City+b*Advance StopYield Sign Presence+d*Midblock_int)AAADTePEDAADTf
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INJTARGETCRASH (34)
= exp (a+City+b+Advance StopYield Sign Presence+d*Midblock_int)AAADTePEDAADTf

Where,

AADT = total AADT on the roadway being crossed

AreaType = 1 if Suburban, 0 if Urban

City = an intercept term specific for each city

Midblock_Int = 1 if intersection, 0 if midblock

PEDAADT = total pedestrian AADT for midblock or intersection
Advance Stop Yield Sign Presence = 1 if present, 0 if not present

Table 19. Parameter Estimates for Advanced YIELD or STOP Markings and Signs
Models, Reproduced from Zegeer et al. (2017).

Parameter Parameter Estimate (standard error)
Pedestrian Total Injury RE+SS Injury RE+SS
N -6.5485 -5.1484 -5.5571 -7.8277 -8.7847
(1.6715) (0.6466) (0.7427) (0.7854) (1.0780)
b -0.1470 -0.0195 -0.1367 0.3520 0.2801
(0.3295) (0.2240) (0.2714) (0.3284) (0.4228)
. -0.9656 -0.2668 n/a n/a n/a
(0.4798) (0.1462)
d n/a 0.6124 0.6039 0.5200 0.4786
(0.1172) (0.1265) (0.1283) (0.1550)
. 0.2501 0.5021 0.4384 0.6752 0.6761
(0.2041) (0.0634) (0.0705) (0.0767) (0.1044)
¢ 0.4003 0.0949 0.1006 0.0880 0.1026
(0.1011) (0.0257) (0.0270) (0.0248) (0.0287)
. . 0.7151 0.6908 0.9038 1.1215
overdispersion | n/a (0.0307) (0.0488) (0.0530) (0.1149)

The study also generated SPFs for the remaining two categories of treatments. Upon analyzing
the data in relation to untreated sites, it was observed that all four treatment options were
associated with a reduced likelihood of pedestrian crashes. The CMFs for pedestrian collisions
were as follows: PHBs (CMF of 0.453), PHBs with advanced YIELD or STOP signs and
markings (CMF of 0.432), pedestrian refuge islands (CMF of 0.685), and advanced YIELD or
STOP signs and markings (CMF of 0.75). These treatments exhibited the most significant impact
in mitigating the risk of pedestrian collisions. Notably, the CMFs for PHBs and PHBs with
advanced YIELD or STOP markings and signs differed significantly from 1.0. Furthermore,
CMFs for some of the four pedestrian treatments were identified for various other types of
collisions, including rear-end, sideswipe, and complete crashes. A comprehensive compilation of
the recommended CMFs generated for this study can be found in Table 20.

Table 20. Potential Pedestrian Crash Risk Variables for Segment Analysis, Reproduced
from Zegeer et al. (2017).
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Recommended CMF

Treatment Crash Type Study Basis
. Standard
Estimate
Error
Pedestrian 0.685 0.183 Median from two studies
Total 0.742 0.071 Cross-section
Refuge Island All Injury 0714|0082 | Cross-section

Rear-End/Sideswipe Total 0.741 0.093 Cross-section

Rear-End/Sideswipe Injury | 0.722 0.106 Cross-section

Advanced YIELD or | Pedestrian 0.750 0.230 Median from two studies
STOP Markings and | Total 0.886 0.065 Before-after

Signs Rear-End/Sideswipe Total | 0.800 0.076 Before-after

PHB Pedestrian 0.453 0.167 Median from two studies
PHB + Pedestrian 0.432 0.134 Median from two studies
Advanced YIELD or | Toq) 0.820 |0.078 Before-after

STOP Markings and

Signs Rear-End/Sideswipe Total 0.876 0.111 Before-after

RRFB Pedestrian 0.526 0.377 Cross-section

2.4.6 Studies on Pedestrian and Bicyclist Safety

The safety and behavior of cyclists and pedestrians crossing at greenway-road crossings on an
urban greenway in New Orleans were studied by Anderson et al. (2019). The researchers gathered
information on crossing practices, safety, and driving practices via direct observation and
intercept questionnaires. They analyzed the link between motor vehicle behavior and the
activation of crossing signals (rectangular fast flash beacons) for walkers and bicycles using
logistic and negative binomial regression. According to the study, turning on the crossing signals
made it less likely for walkers and bicycles to cross the street dangerously, but there was no
connection between pedestrian use of the lights and motorists’ stopping habits. However, cyclists
had considerably increased probabilities of seeing moving cars fail to stop when the signal was
triggered.

In order to assess pedestrian facilities and pinpoint necessary upgrades along roadways, Asadi-
Shekari et al. (2015) created the pedestrian safety index (PSI). By comparing the current
circumstances to a standard, a point system technique was put out to estimate this PSI. The
technique was used to pinpoint issues already present and provide solutions. Additionally, the
improvements to pedestrian safety outlined using this technique enhance the security of elderly
and disabled pedestrians, who are most adversely affected by a lack of amenities. Dumbaugh and
Li (2011) aimed to ascertain whether the occurrence of urban crashes is attributable to random
error or features of the constructed environment. They utilized vehicle miles of travel as an
approximation for random error and discovered a slight positive correlation with crashes
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involving both motorists and pedestrians. Conversely, they identified stronger connections
between crashes and characteristics of the built environment. Major risk factors for crashes were
identified as arterial roadway miles, four-leg intersections, strip commercial uses, and big box
stores. In contrast, pedestrian-friendly retail uses were associated with a lower frequency of crash
incidents. The findings indicate that enhancing urban traffic safety necessitates a balance
between mitigating safety risks and addressing conflicts in traffic, rather than relying exclusively
on forgiving roadway design.

Using supervised association mining, Das et al. (2019) found trends in a database of vehicle-
pedestrian crashes. The study used crash data from Louisiana from 2004 to 2011 for eight years
in order to look for these tendencies. The use of association rules mining was made to achieve
this. The findings suggested that nighttime road lighting might lessen the severity of pedestrian
collisions. The study also identified a number of groups of interest, including male pedestrians
who are more vulnerable to serious and fatal crashes, younger female drivers who are more
likely to be in collisions, impaired pedestrians who are still at risk even when there is nighttime
lighting on the road, middle-aged male pedestrians who are more vulnerable to collisions, and
single vehicle crashes as the most frequent.

The study conducted by Ferenchak and Marshall (2017) aimed to identify areas in urban regions
that have a high concentration of child pedestrian fatalities. The researchers employed spatial and
statistical analysis to compare fatal collision rates in areas surrounding schools and other places
that children frequent, such as parks, trails, and recreation spaces. The authors utilized 30 years
of crash data for six American cities and concentrated on collisions that occurred in Denver,
Colorado, in the first phase of their study. Their research indicated that areas around parks and
schools have higher child pedestrian fatality rates than areas without a school or park, and
fatality rates around parks are higher than those around schools. The authors concluded that
actions aimed at ensuring child pedestrian safety should concentrate on parks as well as schools.
A separate study also explored the incidence of child pedestrian injuries in urban crashes and the
characteristics that influenced injury severity (Koopmans et al., 2015). The study discovered that
children had a higher overall incidence of injuries compared to adult pedestrians, but the case
fatality rate was lower. It was also found that most crashes for both children and adults occurred
during favorable driving conditions. Younger age groups experienced injuries more frequently
during warmer months than older groups. Midblock crashes increased as age decreased. The
majority of crashes took place at locations with inadequate traffic controls but varied by age. For
younger age groups, crashes were more likely to happen during daylight, on dry roads, and under
clear weather conditions than for older groups.

A recent investigation conducted by Goswamy et al. (2023) explored the effectiveness of the

RRFB in mitigating the severity of crashes occurring at pedestrian crossings. The study
encompassed a dataset of 312 locations where pedestrians crossed, out of which 154 locations
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were equipped with the RRFB, while the remaining 158 control locations lacked any
countermeasures specifically designed for pedestrian crossings. The control locations exhibited
similar characteristics in terms of traffic, roadway, and land use compared to the treatment
locations. The objective of the study was to assess the impact of the RRFB and other variables on
the severity of various types of crashes, including those involving pedestrians, nighttime
incidents, total crashes, and rear-end collisions. The findings indicated that the RRFB had a
positive influence on reducing nighttime crashes, particularly those classified as K and A
crashes. However, the study did not observe a significant improvement in reducing rear-end
collisions and overall crashes within the study area.

Another research study conducted by Guo et al. (2016) examined the effects of parallelogram-
shaped pavement markings on vehicle speed and pedestrian safety at urban crosswalks. The
study employed observational cross-sectional methods to evaluate the impact of these markings
on vehicle speed and the occurrence of crashes near pedestrian crosswalks. The results
demonstrated that the utilization of parallelogram-shaped pavement markings resulted in a
notable decrease in vehicle speeds and violations of speed limits in the vicinity of pedestrian
crosswalks. Furthermore, the implementation of these markings also led to a reduction in both
the frequency and severity of crashes at pedestrian crosswalks. Kraidi and Evdorides (2020)
conducted a study that aimed to create models for evaluating pedestrian safety, considering the
impact of pedestrian and roadside activities. The researchers discovered that various factors
significantly contributed to pedestrian crash risk, including the frequency of bus stops, parking,
pedestrian crossings, traffic speed fluctuations, the number of intersecting side roads, and
through and intersecting traffic volume. Additionally, the volume of violations committed by
pedestrians and drivers was also a significant risk factor.

For different kinds of urban highway segments and junction facilities, a study was done to
estimate the bicycle CMFs (Raihan et al., 2019). According to the research, bicycle collisions are
decreased by lane width, speed limits, and grass in the median. However, the incidence of
bicycle collisions rose when there were sidewalks and sidewalk barriers present. The study also
discovered that an increase in bicycle activity increased the likelihood of collisions at junctions
but decreased the likelihood of collisions on segments of roadways. Bus stops were found to
increase the possibility of cycling crashes at junctions, but protected signal control improved
bicycle security. The study by Davidse et al. (2019) looked at possible outcomes of collisions
involving light mopeds in urban bike lanes. The research made many recommendations for
improving the safety of both bikers and light-moped riders based on the data. These included
clearing obstructions like poles from the bike path, adhering to recommendations for the
minimum width of bike lanes given traffic volumes, enhancing visibility at intersections, putting
traffic light control in place without interfering with traffic flows, and enacting a helmet law for
riders of light mopeds and their passengers.
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2.5 RELATIONSHIP BETWEEN SPEED AND SAFETY
2.5.1 Speed Measures in the HSM

The SPFs for the first edition of the HSM (AASHTO, 2010) and the future second edition of the
HSM does not explicitly contain speed metrics despite the fact that they must be included when
evaluating highway safety. The first version of HSM’s Appendix 3E, titled ‘Speed and Safety,’
offers some background about speed restrictions and how they affect overall safety. The HSM
also includes CMFs for the average operating speed change (before and after the crash
occurrence), although these measurements need to be reexamined in light of the availability of
more recent data sources like the NPMRDS.

2.5.2 Speed Limit

Corridor-level strategies for implementing measures to ensure compliance with speed restrictions
rely on the establishment of speed limits. To safeguard the well-being of all individuals utilizing
the roadway, including motor vehicles, bicycles, and pedestrians; it is important to impose a
reasonable speed restriction that promotes a secure, consistent, and practical flow of traffic.
Speed control measures, such as speed limits, play a vital role as they provide drivers with
explicit instructions to guide their selection of suitable speeds while driving. This is particularly
significant because drivers may not always possess the ability to independently determine
appropriate speeds (Elvik, 2010). Figure 3 presents a visual representation of various types of
speed limits.
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Figure 3. Types of Speed Limits (FHWA, 2016).

Statutory Speed Limit

State legislatures set statutory speed limits for each type of highway infrastructure, which might
differ from state to state. A statutory speed restriction is legally binding and valid even if it is not
posted, according to FHWA Speed restriction Basics. Examples include 55 mph on rural
roadways, 70 mph on rural freeways, and 25 mph in residential or school areas (FHWA, 2016).
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Posted Speed Limit

Posted speed limits, also known as regulatory speed limits, are those that are posted along the
road and are made enforceable by law, according to FHWA Speed Limit Basics. A posted speed
limit might be adjusted from the statutory speed limit by a municipal, county, or state
transportation agency, or it could be the same as the legal speed determined by the State
legislature (FHWA, 2016).

Advisory Speed Limit

Advisory speeds are intended to increase safety at road alignments like the sites of horizontal and
vertical curves. These speed restrictions are typically established using an engineering speed
study and in compliance with recommendations in the MUTCD (FHWA, 2016). The posted
advisory speed is meant to notify motorists of any road conditions that call for a decrease in
speed (Grabowski and Morrisey, 2007). According to Bonneson et al. (2007), the advised speed
restriction needs to be established using the mean operating speed of truck drivers.

Variable Speed Limits

An essential component of an intelligent transportation system (ITS) is the VSL concept. This
speed management system can modify the speed limit on various road segments based on the
current flow of traffic or a predetermined speed control algorithm. Several American states,
including Arizona, New Mexico, Oregon, and Washington, have already enacted VSL.
According to studies, VSL practices have been found to lower average speeds (Garber and
Srinivasan, 1998; Ullman and Rose, 2005). VSLs are seen to be an efficient countermeasure for
avoiding speed-related collisions as well as aiding in the regulation of congestion, especially in
work zones (Levin et al., 2019; Ullman and Rose, 2005). According to data from Pauw et al.
(2018), the introduction of VSL resulted in a sharp decline in injury collisions (18% of overall
crashes were reduced, and 6% of fatal and serious crashes). On rural, mountainous motorway
routes for VSL, Saha et al. (2015) investigated how the road, weather, and collisions interacted.
The research results indicated that the combination of meteorological conditions along with
horizontal and vertical curves had a notable influence on the frequency of crashes.

Studies on Speed Limit and Safety

The role of reducing speed limits is crucial for ensuring road safety, as demonstrated by
Kloeden's research conducted in Australia. In South Australia, the implementation of the Default
Urban Speed Limit (DUSL) lowered the speed limit from 37 mph to 31 mph on all urban roads,
unless specified otherwise, starting from March 1st, 2003. Kloeden et al. (2004) examined the
effectiveness of this reduction by analyzing speed surveys and crash data. The results showed an
average decrease of 1.4 mph in mean speeds on streets with reduced speed limits and 0.4 mph on
arterial roads with 37 mph signs. Additionally, there was a significant reduction of 19.8% in
casualty crashes on 37 mph roads and 4.6% on 37 mph arterial roads. In a subsequent evaluation
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three years later, Kloeden et al. (2007) observed average speed reductions of 2.4 mph on
reduced-speed streets and 1.3 mph on arterial roads. Moreover, casualty crashes decreased
significantly by 23% on 31 mph roads and 16% on 37 mph arterial roads. Comparing data from
2016, Kloeden et al. (2017) noted that speeds on South Australian 31 mph roads remained
mostly unchanged, although there was a potential increase in the number of vehicles exceeding
40 mph on local roads in Adelaide. On the other hand, Adelaide's 37 mph roads experienced a
historical decline in vehicle speeds, while speeds on rural hill roads stabilized in 2016 after three
years of decrease. Rural roads with speed limits of 62 mph and 68 mph remained stable since
2015, with fewer occurrences of high-speed instances observed over time.

Numerous studies have investigated the impact of speed limits on pedestrian safety. The
introduction of metrication in 1974 resulted in an increase in the urban speed limit from 35 mph
to 37 mph throughout Australia. Mclean and Anderson (2008) conducted a study to assess the
effects of metrication and the subsequent reduction of the urban speed limit from 37 mph to 31
mph on pedestrian fatalities. They estimated the potential consequences of choosing a 37 mph
speed limit instead of 31 mph since 1974. Heydari et al. (2014) proposed a methodology to
analyze the influence of speed limit reduction on speeding behaviors, identifying various factors
that either heightened or diminished speeding. While speed limit reductions proved effective for
limits of 25 mph and 31 mph, they did not significantly reduce instances of excessive speeding,
thereby posing risks to pedestrians and cyclists. Isaksson-Hellman and Toreki (2019) discovered
that reducing the speed limit from 31-37 mph to 19-25 mph significantly decreased the
likelihood of moderate-to-fatal injuries for cyclists involved in car collisions. Mitra et al. (2021)
reported that lower speed limits in Korea reduced the likelihood of pedestrian fatalities, although
they did not observe reductions in the overall number of pedestrian crashes and injuries.

Islam and El-Basyouny (2015) conducted a comprehensive assessment using Bayesian analysis
to evaluate the safety impacts of reducing the posted speed limit in urban residential areas. They
found that reducing the speed limit had a positive effect in reducing crashes of all severities. In
Spain, a new law implemented in 2020 lowered the standard speed limit on two-lane roads from
31 mph to 19 mph to decrease crashes. Gonzalo-Orden et al. (2021) gathered evidence from
other countries showing the positive effects of reducing vehicle speeds in urban areas. Son et al.
(2022) conducted a study and found that lowering the speed limit effectively reduced the number
of crashes, including serious injuries and fatalities. These findings suggest that lowering the
speed limit reduces both the overall number and severity of crashes.

In their study, Kwayu et al. (2018) employed regression analysis to examine the consequences of
increasing the speed limit on urban freeways in Michigan. They observed a rise in fatal,
incapacitating, and total crashes, as well as incidents of vehicles veering off the road, following
the speed limit increase. This impact was particularly notable on curved sections of the freeways.
Cloutier and Lachapelle (2021) conducted an assessment of the effects of reducing speed limits
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on collisions involving fatalities or severe injuries in Quebec, Canada. They identified a
decreasing trend in incidents across various road segments, with a more substantial decline in
segments characterized by higher initial speeds and larger speed reductions. It is crucial to
thoroughly evaluate geometric characteristics when considering modifications to speed limits.
Siddiqui et al. (2017) examined the impacts on the safety of a VSL system that provided
advisory guidelines on the OR-217 freeway in Portland. Due to a lack of comprehensive crash
data, they relied on surrogate safety measures to assess the system's effectiveness. The results
indicated a decrease in the overall number of crashes, particularly rear-end collisions. The
implementation of the VSL system led to reductions in both the average speed and the variability
of speeds within and between lanes at specific locations. Additionally, it contributed to
minimizing speed fluctuations along the corridor, resulting in smoother transitions in speed.
However, the study emphasized that the recurrent activation of the advisory VSL system for
short durations could potentially have adverse effects on speed consistency.

A study conducted by Tarko et al. (2019) examined various speed limit scenarios on interstate
freeways in Indiana and determined that speed limits had a greater impact on mobility and safety
when traffic conditions were uncongested, with limited effects during intermediate traffic
conditions. They recommended a uniform speed limit of 70 mph on rural roads to enhance safety
and mobility. However, they cautioned against raising speed limits on urban interstates due to
safety considerations. In a separate investigation by Hu and Cicchino (2020), the effects of
reducing the speed limit from 30 mph to 25 mph in Boston were analyzed, revealing a significant
decrease in average speeds and a reduced likelihood of drivers exceeding the speed limit. These
findings indicate that the reduction in speed contributed to improved safety by reducing instances
of speeding. Silvano and Bang (2016) examined the consequences of changes in PSL on urban
roads and identified a modest but statistically significant decrease in average free-flow speeds
and speed variability with lower PSL. This decrease in speed and speed variance potentially
contributed to a reduction in severe injury crashes. Conversely, raising the PSL led to higher
average free-flow speeds without impacting speed variability. Social media data was utilized by
Salazar-Miranda et al. (2022) to assess how Paris' slow zones affected the city's street life.
According to the study, slow zones, which were put in place to make streets more pedestrian-
friendly, increased human activity by 44% when compared to nearby regions without them, as
shown by data from Twitter. More users and more tweets per user were responsible for this rise,
proving that slow zones attracted more users and promoted higher social media involvement
there. Another study by Alhomaidat et al. (2020) examined the consequences of increasing speed
limits on freeways on the neighboring urban arterial roads. The results revealed a significant
13.9% rise in the frequency of crashes on adjacent arterials, even with a slight increase in
freeway speed limits. This phenomenon, known as speed spillover, indicates that drivers are less
likely to adhere to speed limits on arterial roads when the speed limits on freeways are raised.
The impact of freeway speed on driver speeding behavior diminishes as the distance from the
freeway increases. In a subsequent study, Alhomaidat et al. (2021) compared the speeds of

47



vehicles exiting the freeway with those already on the adjoining arterial road. They observed
differences in average speeds between the two groups, with higher speeds observed on arterials
adjacent to freeways with higher speed limits. For instance, on arterials near a 70 mph freeway,
passenger cars exhibited higher mean speeds and 85th percentile speeds compared to arterials
near a 55 mph freeway.

2.5.3 Design Speed

The concept of design speed pertains to the maximum safe speed at which vehicles can travel on
a highway under favorable conditions, low traffic density, and in accordance with the highway's
design characteristics (Berry and Belmont, 1951). The definition of design speed has undergone
changes over time. Previous definitions focused on the speed adopted by the fastest group of
drivers, whereas later definitions emphasized the safe speed that takes into account the highway's
design features (AASHTO, 2004). Design speed serves as a basis for determining various
geometric design elements of the roadway, including horizontal and vertical curvature, sight
lines, super elevation, stopping sight distance, lane widths, and shoulder widths. However,
relying solely on design speed does not guarantee alignment with posted speed limits and actual
operating speeds, as designers often incorporate conservative design controls that surpass the
minimum values specified in design guidelines. Different highway agencies may adopt different
approaches for incorporating design speed into their design criteria, with some using it as the
sole factor while others consider multiple geometric factors.

2.5.4 Operating Speed
Operating Speed Measures

Data regarding vehicle speeds and travel times are crucial for traffic engineers involved in street
and highway design and operation. Operating speed refers to the speed chosen by drivers under
prevailing conditions and is typically distributed normally. This parameter can be characterized
by the mean speed and standard deviation (Donnell et al., 2018, 2009). Various measures of
operating speed are significant in this context:

= Spot speed: This refers to the instantaneous speed of a vehicle passing at a specific location.

* Time-mean speed: Also known as mean speed or average speed, it represents the arithmetic
average of all vehicle speeds over a specified period. It is associated with a specific point in
time.

= Space mean speed: This is the average speed of all vehicles measured at a particular instant
while traveling a given length of the roadway. It is a harmonic mean and accounts for spatial
measures rather than temporal measures.

= Standard deviation: This statistical measure determines the dispersion of the data. The
standard deviation of speed measures is the square root of the variance, which is the average
of the squared differences from the mean speed.
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= Percentile speeds: These are speeds at or equal to which a certain percentage of vehicle
groups are traveling, such as the 15th percentile (representing slow-speed group), 50th
percentile (mid-range speed group), and 85th percentile (high-speed group). The 85th
percentile speed has been historically linked to speed limit setting, assuming that most
drivers choose a rational speed to minimize risk.

= Free-flow speed: This refers to the speed when there are no constraints on the driver due to
other vehicles or geometric and traffic control devices on the road, such as curves or traffic

signals.

= Ten-mph pace speed: This speed range encompasses the largest percentage of vehicles in a
distribution of spot speeds at a specific location.

= Speed dispersion: Research on speed dispersion characteristics is limited compared to the
well-established measures of operating speed, such as percentile speed and space mean
speed. Vehicle speed dispersion has been a significant focus in speed research, with the
concept initially introduced by Solomon (1964). Solomon's research revealed a U-shaped
curve, indicating that crash rates increased as speeds deviated from the average speed.
Notably, the slope of the curve was steeper for slower speeds (see Figure 4). Vehicle speed
dispersion is typically defined as the variation in vehicle speeds. Different researchers have
employed various indicators to quantify speed dispersion, considering the specific objectives,
methodologies, and data limitations of their studies. For instance, Wang et al. (2018)
proposed two measures: the standard deviation of individual speeds and the average speed
difference between neighboring vehicles.

Additionally, it is essential to
evaluate the degree to which
motor vehicles surpass the speed
limits that are posted or
specified by law. Traditional
crash databases commonly use
phrases such as ‘speeding’ or
‘exceeding the designated speed
limit’ to categorize these
incidents. However, it is
important to offer additional
clarification regarding these
terms. The interpretation of
speeding violations should
consider the context, as the
behavior of a motorcycle
speeding in a residential
neighborhood varies
significantly from that of a large
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truck speeding on a freeway. It is important to recognize that each state has a fundamental speed
law in place, which requires drivers to operate their vehicles safely by adhering to appropriate
speed thresholds.

Studies on Operating Speed and Safety

The crash-speed relationship has been extensively studied, revealing varying viewpoints among
researchers. Hauer (2009) conceptualized this relationship as a ‘causal two-link chain’
comprising human actions, speed evolution, and safety outcomes. Human activities, including
the establishment and enforcement of speed limits, play a crucial role in shaping the evolution of
vehicle speeds and drivers' speed choices. These factors, in turn, have a direct impact on roadway
safety. The safety implications resulting from the speed evolution are subsequently considered in
future decision-making processes related to human activities. The probability of crashes
occurring is influenced by “pre-event” probabilities, which determine the number and frequency
of crashes, while “at the time of event’ probabilities determine the severity of crashes (Haddon
Jr, 1972). Hence, a driver's speed choice not only influences the potential severity of a crash
based on the selected operating speed but also affects the likelihood of a crash occurring in the
first place.

To gain a deeper understanding of the connection between speed preference and its impact on
safety, researchers have utilized various measurements of operational speed. These
measurements encompass individual velocities, average speeds along road segments, and
variations in speed (Aarts and Schagen, 2006). Prior investigations (Fildes et al., 1991; Haglund
and Aberg, 2000; Maycock et al., 1998) have employed data on vehicle speeds and conducted
surveys or questionnaires with drivers to establish a clear relationship between higher individual
driving speeds and an increased probability of collisions. Earlier studies have revealed a notable
correlation between average operational speed and collision rates, particularly with regard to the
severity of the crashes (Elvik et al., 2004, 2004; Hauer, 1971). Abdel-Aty and Radwan (2000)
examined the extent of speeding in relation to the posted speed limits and found that male and
young drivers exhibited a higher tendency to exceed the speed limits. In a study conducted in the
United Kingdom, Taylor et al. (2000) uncovered a negative association between the average
speed metric and the frequency of collisions overall. Furthermore, when analyzing different
homogeneous groups based on road and traffic conditions, the results consistently demonstrated
an increase in collision frequency with higher traffic speeds.

A study conducted by Pei et al. (2012) aimed to explore the correlation between speed and the
likelihood of crashes. The researchers identified various factors that contribute to this
connection, such as the design of the road, prevailing weather conditions, and the distribution of
time. The findings of the study revealed a negative relationship between speed and crash risk,
indicating that as speed increases, the probability of crashes decreases. Similarly, R. Yu et al.,
(2013) carried out a study focusing on crash data obtained from I-70 in Colorado over a one-year
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duration. They utilized a Bayesian inference model that incorporated real-time variables like
weather conditions, traffic, and road geometry. The results of the study demonstrated a
significant association between weather conditions and the occurrence of crashes. Consistent
with prior research, this study also found that crash segments with lower speeds and higher
occupancy in the upstream segment 5-10 minutes before the crash exhibited an elevated risk of
crash occurrence. It is important to note that the relationship between speed and crash risk may
be influenced by factors such as traffic congestion, as well as other variables that can confound
the analysis, such as severe weather conditions. Gargoum and El-Basyouny (2016) uncovered an
inverse relationship between variations in speed and the frequency of crashes, indicating that
lower speeds were associated with higher crash rates. Similarly, Imprialou et al. (2016) observed
a negative correlation between the speed at which vehicles were operated and the frequency of
crashes, regardless of their severity. Yu et al. (2018) scrutinized data from urban expressways
and discovered that higher operating speeds during congested traffic conditions were linked to a
decreased likelihood of crashes. Wang et al. (2018) examined segments of urban arterial roads
and ascertained that a 1% rise in the average speed corresponded to a 0.70% increase in the total
number of crashes. On rural roads, Dutta and Fontaine (2019) determined that lower average
speeds were associated with higher crash frequencies, while an increase in the variability of
speeds led to a higher occurrence of crashes. These investigations underscore the significance of
managing speed to mitigate the risks of crashes on roads in both urban and rural settings.

In a study conducted by Xu et al. (2019), a semi-automatic filtering technique was utilized to
differentiate GPS data points collected on elevated expressways from those obtained on surface
roadways. The examination of speed variations involved the implementation of the cross-section
speed standard deviation (MCSSD) and the standard deviation of the cross-sectional speed mean
(SDCSM). Both hierarchical and non-hierarchical Poisson-gamma models indicated a positive
correlation between SDCSM, MCSSD, and the occurrence of crashes. Hutton et al. (2020)
utilized data from the Strategic Highway Research Program 2 (SHRP 2) Naturalistic Driving
Study to investigate individual driving speeds and their connection to crash likelihood,
considering various roadway parameters. Higher speed variations between trips were associated
with an increased incidence of collisions. However, few other speed metrics demonstrated a
significant relationship with collision frequency. In a path analysis conducted by Park et al.
(2021) on city roadways, it was discovered that certain factors such as signalized junctions,
traffic volume, and segment length had a favorable impact on collision rates. Conversely,
specific roadway features like medians and curbs exhibited direct detrimental effects. The study
also provided evidence supporting a causal relationship between crash frequency and speed
variability.

In another study by Das et al. (2022) on roads in Dallas during the COVID-19 pandemic, several

changes were observed. These included a decrease in traffic volume, an increase in average
operating speed, an uptick in the frequency of fatal and serious collisions per mile traveled, and
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an overall reduction in traffic volume. The study found that higher operating speeds in 2020 were
associated with an increase in collisions, particularly on roads with speed limits set at 60, 65, and
70 mph, as depicted in Figure 5. However, when considering all speed limits and a three-year
period, the relationship between average operating speed and crash frequency was found to be
minor and negative. This suggests that driving at higher speeds on well-designed highways may
not necessarily lead to more crashes. In a subsequent study by Das et al. (2023), a short-duration
crash modeling technique was employed to examine the impact of operating speed on highway
collisions during the COVID-19 period. The findings revealed variations in the effects of speed
regulations on crash rates across different years and levels of collision severity. The influence of
speed measurements was more pronounced in the 2020 models, indicating that the impact of
speed measures depends on the severity of the crashes being studied. Additionally, the
magnitude of the speed effects varied for different levels of collision severity.
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Figure 5. Cumulative Speed Plots by Posted Speed Limit (S. Das et al., 2022).

2.5.5 Speeding

Various terms have been used by researchers to describe speeding incidents. One such term is
‘Free-Flow Episode,” which describes a scenario where a driver travels at or above a speed
threshold set at 5 mph below the posted speed limit. For this to be included, the speed must be
maintained for a minimum of 30 seconds. Another term is ‘Speeding Episode,” which involves
continuous driving at or above a speed threshold set at 10 mph over the posted speed limit, as
shown in Figure 6. To qualify as an episode, this speed threshold must be sustained for at least 6
seconds (Richard et al., 2013b, 2016). According to another study by the same researcher, the
definition of speeding varies depending on several factors, such as ad hoc or analytical criteria,
risk and kinematics, psychological and subjective speeds, and behavior-based approaches
(Richard et al., 2013a). Another study defines speeding as exceeding the posted speed limits or
driving at speeds considered too high for the road or weather conditions at a specific location or

time (Gargoum and El-Basyouny, 2016).
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The detrimental impact of speeding on road safety should not be underestimated, given its
profound influence on both the probability and consequences of vehicular collisions. Recent data
released by the NHTSA in 2020 indicates that speeding was

responsible for a distressing loss of 11,258 lives (NHTSA, Speeding Episode
2020). NHTSA employs a comprehensive definition of a +10 mph = —jefange _ _ _ _
speeding-related crash, incorporating situations where any Free-Flow Episode
involved driver faces charges related to speeding or where SE:::: e

law enforcement officials ascertain that factors such as sopho
racing, driving at excessive speeds given prevailing ?:e-:::l)ponunity to

conditions, or surpassing the posted speed limit contributed
to the incident. While there has been a modest decline in
speeding-related crashes in recent years, it remains a
predominant concern in the realm of traffic safety, as
illustrated in Figure 7. Additionally, within the domain of
urban and suburban arterials, where a significant number of Figure 6. Definition of Speeding
pedestrian and bicycle fatalities occur, speeding has (Richard et al., 2016).
emerged as a pivotal causal factor in such regrettable events

(Cai et al., 2021; Goel, 2021).

==== Speeding Episode Threshold

==== Free-Flow Episode Threshold

Studies on Speeding and Safety

A recent publication by the FHWA emphasized the significance of advancing speed management
as a means to decrease injuries and fatalities associated with speeding on the nation's roadways
(Xu et al., 2022). The COVID-19 pandemic showed an increase in excessive speeding
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speeding-related Figure 7. Speeding Related Fatalities (NHTSA, 2020).

fatalities. Factors
such as less congestion and high-risk drivers contributed to this trend. Beliefs, attitudes, and
societal acceptance of speeding significantly influence drivers' behavior. This study underscores
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the importance of speed management in addressing safety concerns related to speeding. Speed
management involves establishing appropriate speed limits, reducing speeding, and mitigating
speeding-related crashes. The USDOT Intermodal Speed Management Team, comprising the
NHTSA, FHWA, and the Federal Motor Carrier Safety Administration (FMCSA), identified the
following key approaches for implementing the USDOT speed management program (Xu et al.,
2022).

= Establishing and executing comprehensive speed management programs and strategies at the
jurisdictional level.

= Developing strategies for setting speed limits that prioritize the safety and needs of all road
users, taking into account contextual factors and not solely relying on drivers' observed
speeds.

»= Implementing evidence-based safety measures to promote safe speeds and protect the well-
being of all individuals using the road network.

= Enhancing the reporting of crash data by incorporating specific information on speeding-
related incidents, ensuring consistency and enabling the identification of contributing factors.

= Implementing visible and transparent enforcement measures, alongside educational
initiatives and awareness campaigns, rather than solely focusing on enforcement actions.

* Incorporating considerations of equity into the decision-making process for speed
management.

In a study conducted by Wang and Cicchino (2023) on excessive speed during the COVID-19
pandemic, it was observed that a significant proportion of vehicles were traveling at speeds 5 to
10 mph above the posted limit. The research focused on urban expressways and major roads,
with the highest occurrences of speeding observed during weekday rush hours and weekend
afternoons. After accounting for factors such as road type, time of day, day of the week, and
traffic volume, the analysis revealed a 22% increase in the likelihood of exceeding the speed
limit by 5 mph in 2020 compared to 2019, along with a 51% increase in the risk of surpassing the
speed limit by 10 mph. These findings indicate a concerning surge in speeding incidents during
the COVID-19 pandemic. Stiles et al. (2023) conducted a study to examine the influence of
COVID-19 stay-at-home measures on alterations in collision characteristics, timing, and severity
on urban streets, considering the impact of reduced traffic volumes and increased velocities. The
results revealed a robust correlation between diminished traffic levels and heightened crash
severity. The findings indicated that higher speeds were associated with more severe collisions,
and there was a reduction in crash occurrences during the morning peak hours. Furthermore,
there was a significant decrease in the frequency of collisions, which are typically more
prevalent in congested areas. Additionally, the data demonstrated an increase in the proportion of
collisions attributed to drunk driving and speeding, underscoring the significance of these factors
in comprehending the shifts in crash patterns throughout the course of the pandemic.
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In the research conducted by Yadav and Velaga (2020), the focus was placed on investigating the
influence of alcohol consumption on speeding behavior, while also analyzing the probabilities of
crashes occurring. The study employed driving simulator experiments, wherein participants were
subjected to various Blood Alcohol Concentration (BAC) levels, namely 0%, 0.03%, 0.05%, and
0.08%. The findings of the study indicated a noteworthy escalation in driving speed as the BAC
levels increased. Moreover, the investigation revealed that crash probabilities were significantly
greater in urban settings compared to rural environments across all BAC levels.

Using survey data collected between the years 2000 and 2018, the study by Sultana (2018)
examined the trend in driver speed behavior on Perth's metropolitan road network in Australia.
The results showed that, in 2000, 53% of cars in the metropolitan network adhered to or went
below the prescribed speed limits. The compliance rate significantly increased on average
between 2003 and 2015, reaching 64.1% in 2015 compared to the compliance rate seen in 2000.
Additionally, the survey that was done in 2018 showed a notable jump in compliance rates, with
a climb of 5.3% to a record high of 69.5%, as depicted in Figure 8. The findings indicate the
need for speed enforcement strategies to account for variations in driver speed behaviors related
to factors such as road type, speed limit, and temporal variables including the day of the week
and time of day.
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Figure 8. Speeding Trend in Perth's Metropolitan Road Network in Australia (Sultana,
2018).
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Richard et al. (2013b) conducted a study on the speeding behavior of drivers in urban and rural

settings over a three to four-week period of naturalistic driving. The research aimed to analyze

speeding causes, factors, com .

prediction, classification, and 5% .l

proposed interventions for Alot of 'l Habitual speeding
duci di incid 40% speeding on|
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The study identified four [Situational]:

distinct categories of
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by individual drivers, as

illustrated in Figure 9. These
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specific situational speeding,
casual speeding characterized
by frequent but minor speed
violations per trip, and habitual or chronic speeding. Regression models, employing both logistic
regressions to predict the likelihood of speeding and linear regressions to determine the extent of
speeding, were developed. The examination identified noteworthy indicators of excessive speed,
encompassing factors

associated with the driver, such

Percent of Trips with Any Speeding
Figure 9. Types of Speeding (Richard et al., 2013b).
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T Figure 10. Average frequency of different types of Speeding
produced several significant Episodes by Driver Types sites (Richard et al., 2016).
discoveries. Firstly, the

presence of more hazardous elements in instances of speeding confirmed the widely held belief
that different forms of speeding are linked to varying levels of risk. Secondly, observations from
personal accounts indicated that location-specific factors played a role in the occurrence or
absence of speeding events. Thirdly, indirect measures suggested that certain aspects of the

Figure 10. The research
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driving environment had an impact on speeding behavior. Lastly, similarities in types of
speeding were observed in both rural and urban areas where data was collected (Richard et al.,
2016).

A report issued by the World

Health Organization (WHO)
highlighted several key factors

/
/

speeding behavior and \ /
emphasized the importance of ! /
DRIVER

speed rpanagement in
enhancing roadway safety SPEED CHOICE

designated speed limits, drivers' Enforcementand VA

; / Traffic conditions
speeds are influenced by SARcLoms B -
various factors, including the Crash and injury risk

driver's age and gender. Male
drivers and young drivers tend Figure 11. Factors Affecting Speed Choice (WHO, 2017).

to exhibit a higher likelihood of

speeding, which consequently leads to an overrepresentation of these groups in speed-related

crashes. Additionally, the driver's blood alcohol concentration, as well as road layout, surface
quality, and the vehicle's power and maximum speed, can also impact speed-related behaviors
(see Figure 11).

that contribute to drivers' Education/promotion N / Vehicle factors

(WHO, 2017). Apart from the / \

In a study conducted by Cai et al. (2021), the effects of speed management strategies on the
proportions of speeding incidents were examined in urban and suburban arterials. Probe speed
data was utilized to calculate speeding proportions using a Beta regression model and grouped
random parameter modeling. The results demonstrated that the grouped random parameter model
outperformed alternative approaches, allowing for a better understanding of the diverse effects of
road features and other contributing factors on speeding across different road types. Findings
indicated that road segments with more intersections tended to exhibit lower speeds, resulting in
adjusted proportions of different speed ranges. Moreover, the presence of asphalt pavement was
associated with increased speeding proportions across all arterial types, while strategies such as
lane narrowing and short blocks showed potential for decreasing the proportion of speeding
incidents on suburban commercial roads.

A study conducted by Tankasem et al. (2022) investigated the impact of automatic speed control
(ASC) on speeding behavior and intentions on urban arterial highways with mixed traffic. The
research findings revealed cognitive shifts resulting from ASC in relation to speeding behavior.
Specifically, the perception of speeding decreased, with reduced acceptance and increased



resistance to regulation. Drivers reported a decrease in both actual speeding behavior and the
inclination to speed. Furthermore, ASC altered the relative significance of various factors,
amplifying the influence of close friends and family members on drivers' propensity to speed,
while emphasizing the role of intention and perceived control in shaping speeding behavior.

2.5.6 Safe Speeds

The Safe System Approach (SSA) has been widely adopted by the U.S. Department of
Transportation (USDOT) as the primary framework for addressing road safety concerns. This
comprehensive strategy is highly
regarded within the transportation
community as an effective approach to
mitigate risks in our complex and
extensive transportation network. The
SSA aims to prevent crashes and
minimize the harm caused when crashes
do occur. It takes a holistic view,
recognizing both human errors and
vulnerabilities and incorporates
multiple measures to protect all
individuals. In line with the SSA, the
DOT's National Roadway Safety
Strategy and ongoing safety initiatives
are committed to achieving a future
where there are no fatalities or severe
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Figure 12. Principles and Pillars of SSA.

injuries on the roads. In accordance
with the core principles of the SSA, the
FHWA has identified five pillars: safe
road users, safe vehicles, safe speeds, safe roads, and post-crash care (see Figure 12). Within the
SSA, safe speeds play a critical role in reducing the risk of crashes and the severity of injuries.
Recognizing the importance of implementing safe speeds across the entire road network, the
SSA emphasizes a combination of measures. These include setting appropriate speed limits,
designing roads that encourage safe speeds, and utilizing technologies like speed cameras to
regulate vehicle velocities. Establishing suitable speed limits is a vital aspect of speed
management and should take into account factors such as road design, traffic volume, and the
presence of pedestrians and cyclists in the road environment. By incorporating these measures,
the SSA aims to enhance roadway safety and create environments that prioritize the well-being
of all road users (Finkel et al., 2020; USDOT, 2022a).
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Energy Transfer

Traveling at high speeds increases the likelihood of crashes and exacerbates the resulting
injuries. This is primarily due to the limited time available for drivers to respond to unexpected
events and the greater kinetic energy generated by faster-moving vehicles, which intensifies the
impact of collisions. Kinetic energy refers to the energy that is related to the motion of an object
and is dependent on both its mass and velocity, as demonstrated by Equation (35). The
mathematical relationship between kinetic energy and velocity is quadratic, meaning that any
increase in velocity results in a disproportionately greater increase in kinetic energy. For
example, doubling the velocity of an object will result in a four-fold increase in its kinetic
energy, while tripling the velocity will lead to a nine-fold increase in kinetic energy. As such,
even minor changes in velocity can have a significant impact on the energy generated during a
collision.

E, = 1 mv? (35)
2
Where,
E;, = Kinetic energy (Joules)
m = Mass (kg)

v = Velocity (m/s)

Effect of Speed on Crash and Injury Severity

Numerous studies have confirmed the significant role of speed in crash likelihood. Elvik (2013)
conducted research that revealed a decrease in the likelihood of casualty crashes when mean
traffic speeds were reduced in response to speed limit reductions. Similarly, Kloeden et al.
(2002) established a relationship between driver speed exceeding the speed limit and an
increased likelihood of involvement in a casualty crash. These findings underscore the fact that
even minor reductions in speed can yield substantial decreases in road crashes. Furthermore,
extensive research has explored the relationship between speed and crash severity. Elvik (2013)
demonstrated that fatal crashes exhibited a more substantial decline compared to all injury
crashes when mean speed was reduced. In other words, a reduction in mean speed corresponded
to a decrease in crash severity. A model presented by Wramborg (2005) provides insights into
how speed influences the severity of specific types of crashes. This study introduced three
relationships between impact speed and the likelihood of fatalities, as illustrated in Figure 13.
These relationships assume that the involved vehicles have equal mass and velocity. According
to these probability curves, pedestrian/cyclist incidents at speeds of 19 mph, side impact
collisions at speeds of 31 mph, and head-on collisions at speeds of 44 mph have a 10%
probability of resulting in a fatality (Hall et al., 2021; Jurewicz et al., 2015) (see Figure 13).
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Tingvall and Haworth, (1999) examined the speed thresholds in relation to the type of
infrastructure and traffic. Their findings suggest that if a pedestrian is struck by a well-designed
car traveling at speeds exceeding approximately 30 km/h (18 mph), the human tolerance
threshold is likely to be surpassed. In urban areas where there is a desire for higher speeds, one
effective approach is to —
separate pedestrian crossings
from the flow of traffic.
Alternatively, pedestrian
crossings, zones, or vehicles
must be carefully designed to
ensure that speeds are limited
to a maximum of 30 km/h (18
mph). This principle can also
be extended to infrastructures 20%
where only car-to-car TN . IR

collisions are possible. While 0% i i i

it is generally expected that e c;,?sion s::ed(k;?h, 0w
well-designed cars will

90% Pedestrian/cyclist collision

Side impact collision
80%

Head-on collision
70%
60%
50%

40%

Probability of a fatality (%)

30%

‘ Figure 13. Relationships Between a Motorised Vehicle
possess a maximum safety Collision Speed and Probability of a Fatality (Jurewicz et
threshold of 70 km/h (43 al., 2015; Wramborg, 2005).

mph) for frontal impacts and

50 km/h (31 mph) for side impacts, it is possible to tolerate higher speeds if the interface
between the vehicle and the infrastructure is thoughtfully engineered. In fact, speeds exceeding
100 km/h (62 mph) may be considered permissible under certain circumstances.

Table 21 outlines the potential long-term maximum travel speeds that can be associated with
infrastructure, assuming the adoption of best practices in vehicle design and the utilization of
100% restraint systems.

Table 21. Possible Long-Term Maximum Travel Speeds (Tingvall and Haworth, 1999).

Type of infrastructure and traffic Possible travel speed
kmh mph
Areas where pedestrians and vehicles may come into
: 30 18
conflict
Intersections with potential side impacts between
: 50 31
vehicles
Roads where vehicles may collide head-on 70 43
Roadways where there is no chance of a side or frontal
.. . : : 100+ 62+
collision, only collision with the infrastructure

Power models illustrating the connections between average speed and the occurrence of injury or
fatal crashes, as well as the number of injuries or fatalities, were presented by Nilsson (2004).
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Figure 14 visually represents these relationships, clearly showing that as speed increases, there is
a corresponding rise in the percentage change in casualties. Furthermore, Elvik et al. (2004)
conducted an extensive meta-analysis of studies examining the correlation between travel speeds
and casualty rates. This analysis encompassed 98 distinct studies, which collectively offered 460
estimates regarding the association between changes in mean traffic speed on a road and changes
in the fatality rate. The included studies were conducted between 1966 and 2004, with around
half of the estimates derived from studies conducted after 1990. Both rural and urban roads were
considered, covering a speed range of approximately 25 km/h (15 mph) to 120 km/h (75 mph).
Nilsson (2004) presented power models that illustrate the relationships between average speed
and the incidence of injury or fatal crashes, as well as the number of injuries or fatalities. These
relationships are visually represented in Figure 14, where it is evident that as speed increases,
there is a corresponding increase in the percentage change in casualties. In addition to Nilsson's
models, Elvik et al. (2004)

5
conducted a comprehensive :g;: — Deaths ‘
meta-analysis of research @ 209 Serious injuries

investigating the association £ oy " Otherinjuries

between travel speeds and § 10%

casualty rates. This analysis c 0%

encompassed 98 distinct -é -10%

studies, which collectively _¢:=u 20%

provided 460 estimates :‘2 -30%

regarding the relationship -40%

between changes in mean -50%

-10% -8% -6% -4% -2% 0% 2% 4% 6% 8% 10%

% change in speed

traffic speed on a road and
changes in the casualty rate.
The data included studies
conducted between 1966 and
2004, with approximately half
of the estimates derived from studies conducted after 1990. The study encompassed both rural
and urban roads and considered a speed range spanning from approximately 25 km/h (15 mph) to
about 120 km/h (75 mph). Data from 20 countries were included in the analysis. The findings of
this meta-analysis are summarized in Table 22, providing a comprehensive overview of the
results.

Figure 14. Relationship Speed Changes and Changes in
Casualty Rates (Elvik et al., 2004; Nilsson, 2004).

Table 22. Relationship Speed Changes and Changes in Casualty Rates (Elvik et al., 2004;

Hall et al., 2021).
Change in Mean Speed
Change in: Speed reduction Speed increase
-10% -5% -1% +1% +5% +10%
Deaths -38% -21% -4% +5% +25% +54%
Serious Injuries -27% -14% -3% +3% +16% +33%
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Other Injuries

-15%

-7% -1%

+2%

+8% +15%

Property Damage Crashes

-10%

-5% -1%

+1%

+5% +10%

In a study conducted by Tefft (2013), the risk of severe injury or fatality for pedestrians involved
in collisions with forward-moving vehicles was estimated. The analysis utilized crash data from
the US and focused on pedestrian impacts by cars, light trucks, vans, and sport utility vehicles.
The findings revealed that the average risk of a pedestrian sustaining an injury classified as
Abbreviated Injury Scale 4 or greater severity increased with impact speed. At an impact speed
of 17.1 mph, the average risk reached 10%. This risk escalated to 25% at 24.9 mph, 50% at 33.0
mph, 75% at 40.8 mph, and 90% at 48.1 mph, as demonstrated in Figure 15 and Figure 16.
Similarly, the average risk of death showed a similar trend. At an impact speed of 24.1 mph, the
risk of death reached 10%, followed by 25% at 32.5 mph, 50% at 40.6 mph, 75% at 48.0 mph,
and 90% at 54.6 mph.
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Figure 15. Risk of Severe Injury (Left) and Death (Right) of Pedestrians in Relation to
Impact Speed (Tefft, 2013).
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Figure 16. Impact Speed and a Pedestrian’s Risk of Death (USDOT, 2022b).

62



Studies on Safe Speed

In the US, cities and states have been increasingly adopting the SSA to tackle transportation
inequalities, safeguard vulnerable road users, and establish safer speed limits. In a recent study,
Ngo et al. (2022) presented examples of how two states, Washington and California, and two
cities, Philadelphia and Portland, Oregon, have implemented this approach to achieve the
ambitious target of zero fatalities. The study revealed that these states and cities have taken
substantial steps to institutionalize the SSA and have utilized it as a cornerstone for their policies
that shape their operations at both program and project levels. By adopting this approach, they
aim to transform the transportation system into a more equitable, efficient, and safer one. The
study highlights the significance of implementing the SSA to achieve road safety goals and the
importance of institutionalizing it into policies for effective and long-lasting results.

Steinmetz et al. (2018) conducted a study to assess the effectiveness of the SSA in enhancing
road safety in Mildura, Australia. The study included two speed management scenarios,
Treatment scenario 1 and Treatment scenario 2, both of which included two broad speed limit
regions. Additional changes were made to certain roads in Treatment scenario 2 to further
supplement the speed management plan. Australian Road Assessment Program (AusRAP) star
rating assessments and Australian National Risk Assessment Model (ANRAM) fatal and serious
injury crash estimates were conducted to compare the treatment scenarios with the baseline
scenario. The study found that Treatment scenario 1 reduced the proportion of the network with
1 or 2-star ratings and increased the proportion with 3+ stars by 32%. It also reduced Fatal and
Serious Injury crashes by 45%. Treatment scenario 2 had a similar impact with the added road
modifications. These findings highlight the effectiveness of the SSA and demonstrate the
significance of implementing speed management plans to enhance road safety.

In response to the persistent occurrence of serious injuries resulting from crashes at intersections,
Candappa et al. (2013) conducted an in-depth investigation of these crashes in Victoria. The
study identified a key principle that emphasized the need to limit side impact crash speeds to
under 31 mph, as exceeding this speed threshold exceeds the biomechanical tolerance of the
human body. Additionally, minimizing angles and conflict points was recognized as an essential
principle for improving intersection safety. The investigation produced several existing and new
designs that incorporate these principles, which have the potential to enhance intersection safety.
Another study by the same authors implemented an innovative trial at a signalized intersection in
Victoria, Australia with the aim of aligning approach speeds to SS speeds. The trial included a
combination of signals, reduced speed limits, and a Safety Platform. Speeds were measured
using pneumatic tubes, and video footage was taken over a two-week period. The study found
that the reduced speeds resulted in crash kinetic energy (KE) levels that were more aligned with
SS principles, with KE levels estimated to be just above the recommended level of 96.5 kJ,
compared to Control 1 and 2 where KE levels were closer to double the tolerable levels at 189
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kJ. The trial suggests that aligning approach speeds with SS principles can lead to safer outcomes
for road users (Candappa et al., 2016).

The implementation of the Safe System (SS) policy requires that speed limits for the road and
traffic system be designed based on human biomechanical and competency parameters, taking
crash injury severity factors into consideration. While most Australian States have yet to fully
apply SSA principles to speed zoning, the NSW Speed Zoning Guidelines aim to guide the
setting of speed limits that balance mobility, road safety, and community concerns. However,
vocal opposition to lowering speed limits often hinders governments from implementing safer
limits. In this context, Mooren et al. (2014) analyzed the NSW practices and identifies specific
departures from the SSA in setting speed limits, as well as ways to shift community attitudes
towards safer speeds. The study suggests that setting speed limits based on the 85th percentile of
free travel speeds is irresponsible and dangerous.

Jurewicz and Turner (2011) conducted a study with the aim of exploring the emerging idea of
setting speed limits based on severe crash risks, which result in fatal and serious injury
outcomes. The research was based on Austroads studies and proposed several alternative
approaches to determine speed limits. These approaches included evaluating crash history,
assessing inherent crash risk due to the road environment, or a combination of both.
Additionally, the intended road function was considered an indicator of the mobility level
expected by the public. To apply a risk-based approach to speed limits, the study explored the
use of established network-level risk assessment tools, such as AusRAP. The authors stressed the
significance of considering not only the road environment but also the mobility needs of the
public in setting speed limits. The study provided valuable insights into alternative approaches to
speed limit setting, which could potentially reduce the risk of severe crashes on roads.

To achieve a SS, it is crucial to align the speed limit with the infrastructure, or vice versa. The
idea of reducing speed limits in areas where the road environment changes is not novel. For
several decades, Victoria has been lowering speed limits in areas with rough surfaces, road
events, or roadwork to mitigate safety risks. The study by Beer (2011) discussed the challenges
associated with implementing a speed limit policy that would genuinely achieve a SS. The study
made several key findings, including the roads farthest from the SS being 62 mph and 68 mph
roads with possible collisions with fixed poles or trees. The study also suggested that investing in
wire-rope safety barriers to prevent run-off-road crashes could improve the road environment
towards a SS without changing the speed limit. From a SS perspective, these areas should have
speed limits below 25 mph. If infrastructure is not readily available to mitigate the risk to
vulnerable road users, the study suggests lowering speed limits in these areas to 25 mph,
assuming a reasonable level of exposure.
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Harm minimization is a promising strategy for setting speed limits and achieving safer
transportation systems. Recognizing this potential, Austroads commissioned a study with the aim
of striking a balance between harm minimization and mobility when establishing speed limits. In
pursuit of this objective, Fildes et al. (2006) reported on developments to date as well as future
initiatives in the field. Building on these efforts, Jurewicz and Hall (2009) presented an approach
for setting speed limits based on harm minimization. The approach was developed with the aid of
a recent Austroads project conducted by the Australian Road Research Board (ARRB). The
project aimed to review the principles for setting speed limits in the context of the SS, which
extended beyond the current guidelines. The project extensively reviewed literature and analyzed
data to explore the relationship between road infrastructure, driver speeds, speed limits, and
crash outcomes. A panel of speed management policy stakeholders from Austroads assessed the
role of road infrastructure features in speed limit setting, resulting in recommendations for
appropriate speed limit setting policy and principles that align with the SS framework. The study
also identified possible intermediate speed management policy options to assist the transition
toward the SS. Jurewicz (2010) introduced a new set of principles for setting speed limits based
on harm minimization, which is a fundamental aspect of the SSA. The SS aims to eliminate
serious injuries and fatalities in the road transportation system by focusing on safer roads and
reduced speeds. The ARRB and road jurisdiction stakeholders have developed revised speed
limit-setting guidelines for Austroads. These guidelines provide a framework for assessing the
readiness of a route to align with the SS principles and determining appropriate speed limits and
necessary road improvements to ensure passenger safety. It is acknowledged that implementing
all SS road characteristics may not be economically feasible in the short and medium term, and
not all speed limit changes may be instantly welcomed by the public. Therefore, the study
proposes various harm-reduction strategies as an initial step towards implementing the SS.

Road safety remains a significant issue worldwide, and effective speed management plays a
crucial role in achieving safer roads. The importance of implementing the SSA to enhance road
safety by aligning speeds with human biomechanical and competency parameters. This approach
serves as a foundation for establishing consistent and safe speed limits. The findings suggest that
the implementation of speed management plans can lead to a significant reduction in low-rated
roads and fatal and severe injury crashes. However, opposition from communities may pose
challenges to implementing safer speed limits. Therefore, educating the public and involving
them in the decision-making process is crucial to achieving long-lasting results. Table 23
provides a comprehensive summary of the studies reviewed concerning safe speeds in the
context of the SSA.
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Table 23. Summary of Studies on Safe Speeds.

Study Aim/Objective Key Findings/ Summary
Present examples of states Washington, California, Philadelphia, and Portland
Ngo et al and cities im;?l ementing have institutionalized the SSA to shape their safety
(2022) the SSA to achieve zero policies.

fatalities

The SSA can transform the transportation system
into a safer, more equitable, and more efficient one.

Steinmetz et

Assess the effectiveness of
SSA in enhancing road

The study included two speed management scenarios
with different speed limits.
Treatment scenario 1 reduced FSI crashes by 45%.

al. (2018) safety in Mildura, Treatment scenario 2, with additional road
Australia modifications, had a similar impact, demonstrating
the effectiveness of the SSA.
Limiting side impact crash speeds to under 31 mph is
Investigate crashes at crucial for intersection safety.
intersections and identify Minimizing angles and conflict points are essential
Candappa et o L . o .
al. (2013) key principles for principles for improving intersection safety.
' improving intersection Existing and new intersection designs can be
safety modified to incorporate these principles to enhance
safety.
An innovative trial implemented at a signalized
intersection in Victoria, Australia, aimed at aligning
Implement an innovative approach speeds to SS speeds.
Candappa et . . . o
al. (2016) trial to align approach Reduced speeds resulted in crash kinetic energy

speeds to SS speeds

(KE) levels more aligned with SS principles.
Aligning approach speeds with SS principles can
lead to safer outcomes for road users.

Mooren et al.

(2014)

Analyze NSW practices
and identify specific
departures from the SSA in
setting speed limits

Opposition to lower speed limits can hinder
governments from implementing safer limits.

Setting speed limits based on the 85th percentile of
free travel speeds is irresponsible and dangerous, and
there are ways to shift community attitudes toward
safer speeds.

Jurewicz and

Explore the emerging idea

Emphasized the significance of considering the
intended road function and mobility needs of the

Turner of setting speed limits public in setting speed limits.
(2011) based on severe crash risks Explored the use of network-level risk assessment
tools.
62 mph and 68 mph roads have the highest risk of
. collisions with fixed poles or trees, making them
Discuss challenges
associated with farthest'fr(')m the SS. .
Beer (2011) Speed limits around schools and areas with

implementing a speed limit
policy that achieves a SS

vulnerable road users have the highest community
outrage and should be lowered to 25 mph from a SS
perspective.
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Study Aim/Objective Key Findings/ Summary

. = Australian speed limits are higher than those
. Evaluate the potential of . . .

Fildes et al. harm minimization in internationally, prompting the need for a SSA.
(2006) . = The SSA aims to balance harm minimization and
speed limits o . .

mobility when setting speed limits.

= Harm minimization approach can guide speed limit
setting consistent with SS principles.

Devel ht > . .
cvelop an approach to =  Road infrastructure features should be considered in

Jurewicz and setting speed limits based

Hall (2009) C speed limit setting.
on harm minimization . . .
= Intermediate speed management policy options can
guide the transition toward SS
= The newly introduced speed limit setting principles
Introduce a new set of provide a framework for assessing a road's SS
Jurewicz principles for setting speed readiness.
(2010) limits based on harm =  SSroad features may be economically viable in the
minimization short and medium term and not all speed limits

would be immediately acceptable to the public.

2.6 IMPACT OF WEATHER ON SAFETY

Crashes that take place in unfavorable weather conditions such as rain, sleet, snow, fog, icy or
wet pavement, and other weather-related factors are known as adverse or inclement weather-
related crashes. Weather conditions encompass various factors such as reduced visibility,
precipitation, strong winds, and extreme temperatures, all of which can impact the friction of the
road surface, driver performance, and vehicle condition. These factors have the potential to
elevate the likelihood and seriousness of crashes. Numerous research studies have examined
driver behavior and the frequency of crashes during adverse weather conditions. A concise
overview of these pertinent studies is provided below.

2.6.1 Pedestrian and E-scooter Safety

Asli (2022) examined pedestrian incidents in urban circular junctions and identified lighting,
road surface characteristics, and atmospheric conditions as significant factors. Qiu and Fan
(2022) determined that urban environments and wet road surfaces reduce the probability of fatal
pedestrian injuries at intersections. Ferreira et al. (2022) identified factors that adversely affect
the safety perception of pedestrians and cyclists, including pollution, lack of vegetation,
inclement weather, inclines, and long commuting distances. Pobudzei et al. (2023) investigated
the severity of injuries in pedestrian-vehicle crashes and revealed that e-scooter incidents
increase during favorable weather conditions. Cerny et al. (2023) explored the limitations of
automatic emergency braking (AEB) systems in detecting pedestrians and found that the
efficiency of AEB is influenced by vehicle speed and weather conditions. In sunny weather,
vehicles are 20% more inclined to come to a halt in front of pedestrians compared to light rain.
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2.6.2 Connected and Automated Vehicle Safety

Environmental factors can have an impact on the effectiveness of advanced driver assistance
systems (ADAS). Research has indicated that the overall risk of crashes during snowfall remains
consistent over time (Andrey, 2010). ADAS has shown effectiveness in reducing crashes,
especially in urban areas with clear daylight conditions and rural areas with clear daylight
conditions Masello et al. (2022). The ability of (AEB) systems to detect pedestrians is influenced
by vehicle speed and environmental conditions, resulting in a higher probability of stopping in
sunny weather compared to light rain (Cerny et al., 2023). Autonomous vehicles and connected
autonomous vehicles have the potential to contribute to the reduction of pedestrian crashes, with
weather conditions, lighting, and road classifications playing significant roles (Susilawati et al.,
2023). Risk factors associated with crashes involving electric vehicles (EVs) include
intersections, daytime, dry road conditions, clear weather, urban roads, traffic signals, and
angular collisions (Weibull et al., 2023). Considering and understanding environmental
conditions is crucial for optimizing the performance and safety benefits of ADAS, AEB, and
autonomous vehicles.

2.6.3 Traffic Safety in General
Weather Conditions as a Contributing Factor to Traffic Crashes

The research conducted by Xu et al. (2018) revealed that unfavorable weather conditions
contribute to increased crash risks on freeways in California, particularly when there are
interactions between upstream occupancy and light rain. Several studies also examined the
utilization of weather and significant variables for real-time crash prediction (Rongjie Yu et al.,
2013; Yu et al., 2015; Yu and Abdel-Aty, 2014b; W. Yu et al., 2019). Wen et al., (2019)
developed a Bayesian spatiotemporal model that identified associations between crash frequency
and risk factors such as curves, slopes, traffic composition, and weather conditions. Strong et al.
(2010) discussed the existing gaps in weather and transportation research and emphasized the
importance of proactive safety management with up-to-date traffic data. By analyzing
Pennsylvania crash data, Kelarestaghi et al. (2017) found that adverse weather conditions and
young drivers contribute to a reduction in crash severity, while factors such as unbelted
passengers, motorcycles, heavy trucks, and pedestrians increase crash severity. Theofilatos
(2019) conducted a study in Athens, Greece, utilizing real-time traffic and weather data and
discovered that the intensity of rainfall strongly influences the occurrence of crashes.
Buddhavarapu et al. (2013) investigated crash severities in Texas, focusing on pavement surface
conditions and horizontal curves, and established a significant impact of the Distress Index and
International Roughness Index (IRI) on crash injury severity.

The study conducted by A. Das et al., (2017) aimed to gain insights into the impact of visibility
on safety from a visibility perspective. The research findings identified several factors that were

68



significantly associated with safety, including curved roads, drivers of different age groups,
roads with higher speed limits, traffic signalization, roads with low friction, undivided roads, and
the absence of nighttime lighting. Weather conditions such as heavy precipitation, wet pavement,
strong winds, frozen precipitation, reduced visibility, flooding, extreme temperatures, and other
related factors affect the operations of commercial motor vehicles (CMV) and driver safety. This
important subject, which had received limited attention, was explored by Rossetti and Johnsen,
(2011).

When examining crashes involving multiple vehicles on high-speed roadways during rainfall,
Jung et al. (2012) discovered noteworthy factors such as inadequate car following, wind speed,
and actions of the driver at fault. Olowosegun et al. (2022) emphasized the impact of attributes
related to the road, weather, and time on the severity of crashes, particularly on slippery road
surfaces. Sun et al. (2022) identified elements that influence the severity of bicycle-motor
vehicle crashes in urban and suburban areas of Beijing, including the type of vehicle, signal
control, and lighting conditions. These investigations highlight the importance of diverse factors,
such as driver conduct, road conditions, and environmental elements, in comprehending and
addressing the seriousness of crashes during adverse weather conditions.

Cafiso et al. (2021) established indicators to assess the quality of pavement surfaces and
geometric design using SPFs. By applying SPFs to analyze the impact of specific factors on the
occurrence of crashes, they derived CMFs using the coefficients obtained from the models. The
study focused on developing CMFs for various criteria, including Grip Number, International
Roughness Index, curvature change ratio, curvature coefficient of variation, maximum
superelevation deficit, and minimum lane width. Generalized linear modeling techniques were
employed, assuming a negative binomial distribution error structure, to fit the models. Equation
(36) in the study provides detailed information on the selected model formulation.

E(Y) — L X ea0+a1 In(AADT) X 62?=1Bixi (36)
Where: E(Y) is the projected annual crash frequency, L is the length of the segment (m), AADT
is the segment average annual daily traffic (veh/day), ay, a; and §; are the model parameters, and
x; are the explanatory variables. The distribution of the crash frequency around E(Y) = u is a
negative binomial with variance described using Equation (37).

Var(Y) =u+ k x u? (37)
Where k is the dispersion parameter of the negative binomial distribution.
The model can be rewritten similarly to the HSM form:

E(Y) = e%wase) x [, x AADT* X (CMF; X ...x CMF,,) (38)
Where CMF; are the CMFs for the base conditions, derived from the SPF coefficients:
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CMF; = ePilxi—Xipase)) (39)
And ag(pgse) 18 the constant coefficient of estimated SPF, adjusted for the base conditions:

Ao(base) = e“o"'z BiXi(base) (40)

The baseline conditions were established using reference values for the covariates. The model
parameters, as well as the dispersion parameter for the negative binomial distributions, were
estimated using the maximum likelihood technique.

Table 24 displays the CMFs for the indicators of pavement condition.

Table 24. CMFs for Pavement Condition Indicators (Cafiso et al., 2021).

Crash type B X base Xmin Xmax )C(MF )C(MF
min max
Grip Number — GN
Total crashes -2.148 (-2.840, -1.456) | 0.45 0.25 0.65 1.54 0.65
Run-off-the road -3.054 (-4.534,-1.574) | 0.45 0.25 0.65 1.84 0.54
Other -1.971 (-2.680, -1.263) | 0.45 0.25 0.65 1.48 0.67
Dry -2.048 (-2.780, -1.315) | 0.45 0.25 0.65 1.51 0.66
Wet -3.508 (-5.035,-1.981) | 0.45 0.25 0.65 2.02 0.50
Daytime -2.025 (-2.780, -1.270) | 0.45 0.25 0.65 1.50 0.67
Nighttime -2.628 (3.796, -1.460) | 0.45 0.25 0.65 1.69 0.59
International Roughness Index — IR

Total crashes 0.073 (0.021, 0.124) 4.00 2.52 7.96 0.90 1.33
Run-off-the road 0.109 (0.013, 0.205) 4.00 2.52 7.96 0.85 1.54
Other 0.059 (0.008, 0.111) 4.00 2.52 7.96 0.92 1.26
Dry 0.088 (0.035, 0.140) 4.00 2.52 7.96 0.88 1.41
Daytime 0.058 (0.002, 0.115) 4.00 2.52 7.96 0.92 1.26
Nighttime 0.085 (0.011, 0.159) 4.00 2.52 7.96 0.88 1.40

Weather Conditions as the Sole Study Factor to Traffic Crashes

Norrman et al. (2000) explored the relationships between road slipperiness, crash probability,
and winter road maintenance frequency. The study's results indicated that the risk of a traffic
collision varied depending on the type of road slipperiness. The most common cause of crashes
was slippery conditions caused by rain or sleet on a frozen road surface. Najafi et al. (2015)
developed regression models using data on collisions and pavement conditions in New Jersey to
examine how friction impacts the frequency of vehicle crashes under wet and dry conditions in
different urban settings. The findings revealed that friction affects the frequency of vehicle
collisions in both dry and wet conditions. Abohassan et al. (2022) investigated the impact of
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altering pavement friction levels on traffic safety during snowstorms in urban areas, focusing on
Edmonton, the capital of Alberta. The results showed a highly significant association between
pavement friction and traffic safety. When the pavement friction exceeded 0.6, a significant
reduction in collisions was expected, while pavement friction below 0.35 was predicted to result
in a significant increase in collisions. Additionally, the study found that arterial roads had a
substantially higher crash rate compared to collector roads.

El-Basyouny et al. (2014a) established 12 weather conditions based on temperature, snow, rain,
and wind speed and developed multivariate safety models using 11 years of daily weather and
crash data from Edmonton, Alberta, Canada. The results revealed that severe collisions (resulting
in injury or death) had a greater impact on PDO crashes compared to adverse weather conditions,
resulting in a 4.5% to 45% increase in PDO crashes. All types of crashes showed statistical
significance and a strong correlation with sudden weather changes that led to heavy rain or snow.
El-Basyouny et al., (2014b) investigated the influence of meteorological conditions, particularly
abrupt and intense snowfall or rainfall, on the type of crashes. The findings demonstrated that
snowfall and temperature had statistically significant associations with all collision categories,
indicating that as snowfall intensity increased, crashes increased, and as temperature increased,
crashes decreased. Rainfall, on the other hand, had minimal impact. Gim (2022) analyzed
demographic data from nationwide road traffic crashes that occurred between 2011 and 2015 to
examine the severity of injuries in collisions involving senior drivers (aged 65 or older). The
findings showed that the peak picnic season in October had the greatest impact on an increase in
severity, but this magnitude was observed primarily in minor or less serious collisions.
Additionally, in January, when road conditions were poor, minor or less serious collisions
escalated into serious ones. Notably, between April and September, when the weather was
favorable, the severity of fatal injuries decreased.

Examining the correlation between weather conditions and crash risk, Bergel-Hayat et al. (2013)
observed significant associations on a monthly basis, varying depending on the type of road.
Poor road weather conditions, such as icy rain and slippery roads, were identified as contributing
to higher crash risks, with motorways exhibiting a particularly elevated risk in adverse weather
and road conditions (Malin et al., 2019). Qin et al. (2006) conducted a study on the impact of
snowstorms on road safety, revealing that both the severity of crashes and winter maintenance
efforts played a role in crash rates and casualties. Implementing proactive winter maintenance
measures was found to have a significant positive effect on traffic safety. These studies
underscore the importance of considering weather conditions and implementing effective
maintenance strategies to mitigate crash risks across different types of roads.

In analyzing weather-related crashes, Khan et al. (2008) identified spatial patterns and significant

clusters based on different weather conditions. Jackson and Sharif (2016) studied rain-related
fatal crashes in Texas, highlighting counties with potential contributing factors. Brijs et al.
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(2008) used an autoregressive model to examine the impact of weather conditions on crash
counts in the Netherlands. Assumptions related to weather effects were found to be significant.
Lee et al. (2018) utilized Structural Equation Modeling (SEM) to analyze the relationship
between water depth, rainfall, and traffic crashes in Seoul, Korea. These studies employed
statistical techniques to understand the influence of weather on crash patterns and provided
insights into specific regions and factors to focus on for further analysis and research.

Jin et al. (2014) proposed a method for spatial optimization aimed at identifying optimal
locations for weather station deployment within an extensive regional transportation network. By
utilizing crash data associated with weather conditions, a safety concern index was developed.
This information was then used to analyze routes that offer comprehensive spatial coverage of
the area, enabling the identification of the most suitable locations for weather station placement
through a maximizing technique. In another approach, Lee et al. (2022) explored the use of
Global Navigation Satellite Systems signals to assess the safety of urban roadways for navigation
purposes. The aim was to enable automated vehicles to plan their trajectory while avoiding
hazardous road segments affected by adverse weather conditions, thereby ensuring safe
operations. This decision-making process relied on the analysis of physical route characteristics,
vehicle capabilities, and weather conditions.

Table 25. Studies on Weather and Safety.
Study Modeling Approach Impact of Weather on Safety

» The severity of snowstorms, considering factors
Qin et al. (2006) Macroscopic analysis such as duration, intensity, and wind speed, leads to
an increase in traffic crashes and casualties.

Brijs et al. (2008) Integer autoregressive |®  Results suggest that serial temporal correlation can

model account bias reduction
»  Applied spatial statistical techniques
Khan et al. (2008) | Spatial analysis = Identified notable patterns of weather-related
crashes

Bijleveld et al. Aggregate level »  Performed an analysis of the aggregate effect of
(2009) analysis weather conditions on crashes in the Netherlands

Matched-pair = Qver time, there is no significant alteration in the
Andrey (2010) framework relative risk of casualties during snowfall.

= Synthesized the findings from some of the major

Strong et al. (2010) | Severity index efforts in weather-crash association

» Examined the safety impact of weather on
commercial motor vehicles (CMVs) on our
Nation’s highways

Rossetti and Johnsen | Exploratory data
(2011) analysis
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Study

Modeling Approach

Impact of Weather on Safety

Jung et al. (2012)

Sequential logistic
regression

Examined effect of contributing factors on the
severities of multivehicle-involved crashes (during
inclement weather) on high-speed roadways of
Wisconsin

Used a sequential logistic regression approach to
perform analysis

Khan et al. (2012)

Spatial analysis

Conducted spatial statistical techniques to identify
substantial patterns of weather-related crashes.

Buddhavarapu et al.
(2013)

Ordered probit (OP)
response model

On two-lane horizontal bends, skid number was not
significantly connected with collision injury
severity.

IRI and the Distress Index were shown to have a
statistically significant impact on injury severity.

Bergel-Hayat et al.
(2013)

Time series model

Examined the link between weather conditions and
crash risk at an aggregate level (on a temporal
basis)

El-Basyouny et al.
(2014a)

Full Bayesian (FB)
context via a Markov
chain Monte Carlo
simulation

Examined the aggregated impact of adverse
weather on crash.

El-Basyouny et al.
(2014b)

Multivariate Poisson
lognormal

Examined the impact of weather elements and
sudden extreme snow or rain weather changes on
crash type

Jin et al. (2014)

Spatial optimization
method

Examined the right deployment of roadway weather
information systems (RWIS)

Theofilatos and
Yannis (2014)

Linear regression

Provided a review of the effect of traffic and
weather characteristics on road safety

Identified the gaps and discuss the need for further
research

Najafi et al. (2015)

Regression analysis

Friction affects not only the frequency of vehicle
crashes in wet conditions but also in dry conditions.

Das et al. (2017)

Parametric model,
MCA, topic model

Examined the implications of inclement weather on
safety from the perspective of visibility and other
key issues.

Kelarestaghi et al.
(2017)

Spearman correlation
test

adverse weather conditions and the presence of
young drivers tend to reduce the severity of crashes.

Lee et al. (2018)

SEM

Conducted a systematic approach to analyze
weather crash relations using data from Seoul,
Korea.

Xu et al. (2018)

Logistic regression
models

Environmental information improved the crash risk
prediction model's fit and prediction performance.

Malin et al. (2019)

Concept of random
point process

Investigated the relative crash risk of different road
weather conditions and combinations of conditions.
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Study

Modeling Approach

Impact of Weather on Safety

Theofilatos et al.

Cusp catastrophe theory

Results show that rainfall is linearly associated with
crashes

(2019) and NB model Average flow shows a non-linear relationship with
crashes
Bayesian Measured the association between crash and factors

Wen et al. (2019)

spatiotemporal model

such as curve and slope, traffic composition,
weather conditions, and their interactions

Yu et al. (2013); Yu
and Abdel-Aty
(2014); Yu et al.
(2014); Yu et al.
(2015); Yu et al.
(2018);

Different modeling
techniques

Examined the effect of real-time traffic and weather
on crashes.

Gim (2022)

Conventional ordered
logit model

Poor road conditions in January increase the
severity of minor crashes. In contrast, favorable
weather conditions from April to September reduce
the severity of fatal injuries.

Abohassan et al.
(2022)

Negative binominal
techniques

Collisions decrease with pavement friction above
0.6, but increase with pavement friction below 0.35.

Asli (2022)

Friedman test

Weather conditions were found to be the first factor
in pedestrian crashes in urban roundabouts.

Ferreira et al. (2022)

Literature Review

Bad weather conditions negatively affected the
users' safety perception.

Masello et al. (2022)

Experiments

The efficiency of ADAS is significantly dropped
during bad weather conditions

Norrman et al.
(2022)

Data statistics

The greatest risk of crashes occurred when the road
surface was slippery due to rain or sleet freezing.

Olowosegun et al.
(2022)

Ordered probit models

Weather was found to affect the severity of crash
injuries.

Qiu and Fan (2022)

Logistic regression

Severe weather only has impacts at non-
intersections.

Sun et al. (2022)

A two-stage approach
integrating random
parameters logit model
and two-step clustering
algorithm

Weather had statistically significant random effects
on the injury severity in urban areas

Susilawati et al.
(2022)

A two-level Bayesian
Poisson lognormal
model

Weather had significant effects on vehicle—
pedestrian crashes in all road classifications.

Weibull et al. (2023)

Literature review

Weather is one of the most frequently reported risk
factors

Cerny et al. (2023)

Experiments

The efficiency of AEB was significantly influenced
by both vehicle speed and weather conditions.
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2.7 SUMMARY

This chapter summarizes the findings of Task 2:

= Examined the SPFs in the HSM and other innovative statistical and machine learning models.

= Addressed the existing limitation in traditional safety calculations by incorporating the safety
of non-motorists, such as pedestrians and cyclists, into the overall safety calculations. By
considering the specific vulnerabilities and risks faced by non-motorists, the findings ensure
a more comprehensive and inclusive approach to safety planning and decision-making
processes. This inclusion facilitates the identification of areas of concern and enable the
implementation of targeted measures to enhance the safety of all road users.

* Provided a comprehensive understanding of safe speed within the context of the SSA. It
combines theoretical foundations with empirical evidence, identifying key factors and
strategies that contribute to maintaining appropriate speeds and reducing crash risks.

= Investigated the complex relationship between various factors, including operating speed,
geometric variables, rainfall, posted speed limits, and crash outcomes. By conducting a
thorough analysis, the memorandum provides valuable insights into the interplay between
these variables and their impact on urban roadway crash risk.

Through the synthesis of gathered information, knowledge, and practices, this chapter provides
valuable insights. The findings contribute to the development of improved SPFs, the inclusion of
non-motorist safety considerations, and a better understanding of the relationship between key
factors and crash outcomes on urban roadways.
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CHAPTER 3:
DATA PREPARATION

3.1 INTRODUCTION
This chapter provides a brief overview of the data sets and the data conflation framework.
3.2 DATA SOURCES

The Project Team identified four major data sources to perform the analysis. These data sources
are:

= Short duration (10-minute interval) operating speed data from National Performance
Management Research Data Set (NPMRDS) and INRIX XD.

= Traffic crash data from CRIS.

= Roadway inventory data from the Road-Highway Inventory Network Offload (RHiNO).

= Weather data from Copernicus, the European Union’s Earth Observation Program.

3.2.1 Speed Data: NPMRDS and INRIX XD

Three readily accessible options exist for capturing speed information on Texas roadways:
NPMRDS, the recently released Performance Network from the FHWA, and the INRIX XD
network (Federal Highway Administration, 2019). The Project Team currently has a contract
with INRIX to obtain travel time data on its XD network, which is conflated onto the RHiNO
network. NPMRDS, procured by the FHWA, is free to state departments of transportation and
metropolitan planning organizations for research.

3.2.2 Crash Data: CRIS (2018-2022)

The Project Team collected 5 years (2018-2022) of crash data from TxDOT’s CRIS. CRIS data
elements are divided into three major groups: (a) crash event characteristics, (b) primary person
characteristics, and (c) vehicle (unit) characteristics.

3.2.3 Roadway Inventory Data: RHiNO

The Project Team acquired roadway inventory data from two different sources: (a) 2021 RHiNO,
and (b) 2021 TxDOT Roadway Inventory (Texas Department of Transportation, 2024, 2025a).
An examination of these data sets showed that they are the same. RHiNO provides a detailed
data dictionary and additional supporting GIS files, the Project Team used the 2021 RHiNO as
the main layer on which the other data layers were conflated.

3.2.4 Weather Data: Copernicus

Copernicus, the Earth Observation Program of the European Union, serves the collective
interests of citizens by observing and analyzing the Earth's environment. Its primary goal is to

77



offer unrestricted access to satellite Earth observations, in situ data, and modeling information.
Coordinated by the European Commission, Copernicus operates through agreements with
international organizations. The European Centre for Medium Range Weather Forecasts
(ECMWEF) oversees the implementation of Copernicus Climate Change Service (C3S) and
Copernicus Atmospheric Monitoring Service (CAMS) on behalf of the European Union. The
data collection was conducted for 4 years (2019-2022).

3.3 DATA PREPARATION FRAMEWORK

The Project Team has followed an extensive and replicable data preparation and conflation
framework to develop the data product (P1) for RTI Project 0-7144. This document provides
detailed information on the implementation of this replicable methodological procedure.

These sources encompassed road inventory data, which was obtained through the RHiNO
system, providing detailed information about the urban freeway infrastructure. For an in-depth
understanding of traffic patterns, granular operating speed data was derived from the NPMRDS
and INRIX XD, offering 10-minute interval operating speed data. The Project Team further
gathered the weather data. Finally, crash data was collected from CRIS, enabling an analysis of
safety factors and their impact on urban roadways. The databases were organized into two
primary temporal clusters: 1) Annual level, and 2) Short-duration level. Figure 17 provides a
flowchart of the data conflation procedure.

Part 1: )
Speed Conflation Conflate XD
[N | Naworson
RHINO
Part2:
Crash Assignment
RHINO - CRIS Assign Crash
(2021) (2018-2022) Data to RHINO
Part 3: )
Weather Conflation
Conflate C3S
s
Data on RHINO

Figure 17. Data Conflation on Texas Urban Roadways.
3.3.1 RHiNO Segments

The Project Team first collected the RHiINO dataset for the year 2021. This dataset encompasses
a total of 883,837 roadway segments, divided into 341,843 rural and 541, 994 urban segments.
The focus of 0-7144 Project is on the urban network, which the Project Team further categorized
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based on functional classification into two groups: major urban roads with 173,913 segments,
and minor urban roads with 368,081 segments (see Table 26).

Table 26. Statistics of TxDOT Urban Facilities.

Facility Code | Facility Name Number of RHINO Segments | Total Lenth (mi.)
Ul Urban Interstate 23,832 5,186.3
Urban Other Freeway
U2 and Expressway 19,340 4,741.7
Urban Other Principal
U3 Arterial 46,582 9,403.8
U4 Urban Minor Arterial 32,683 9,144.1
U5 Urban Major Collector 51,476 16,231.7
U6 Urban Minor Collector 2,828 1,132.8
U7 Urban Local 365,253 80,122.2
Total | 541,994 125,962.6
Ul-U5 Major Urban 173,913 44,707.5
Ue6-U7 Minor Urban 368,081 81,255.1

The data preparation was conducted by using R and Python programming languages and ArcGIS
Pro software. Figure 18 illustrates the R code chunk used to extract the major and minor urban
roadway segments from the overall dataset. In the code, “Urbanl_5” indicates major urban
roads, and “Urban6_7” indicates minor urban roads.

# Required packages for script.
require(data.table)
require(dplyr)

require(sf)

require(tidyverse)
require(tigris)

# Sets the working directory to the same folder as the R script is located in.
setwd("C:/Users/j_1848/0neDrive - Texas State University/RTI_B7144/3 Task 3/Data/RHiNO/")

rh <- st_read("2021/TxDOT_Roadway_Linework wAssets.shp™)

#Urban Subset
subset_df <- rh %»%
subset(RU %in% c(2, 3, 4))

#Urban fun_sys subset
Urban1_5 <- subset_df %»¥%
subset(F_SYSTEM %inX c(1,2, 3, 4,5))

#Urban fun_sys subset
Urbané_7 <- subset_df #»¥%
subset(F_SYSTEM %inX c(6,7))

Figure 18. R Code for Selecting Urban Roads.
Upon a thorough examination of all data attributes within the accessible RHiNO dataset, the

Project Team pinpointed six specific attributes capable of aiding in the identification of various
urban facilities according to the definitions outlined in the HSM . Table 27 provides more details
of these attributes.
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Table 27

. Attributes Relevant to Urban Roadway Selection.

Item Name

Column Name

Definition

RURAL-URBAN-CODE

RU

1=Rural (Population < 5,000)

2=Small Urban (Population 5,000 — 49,999)
3=Urbanized (Population 50,000 — 199,999)
4=Large Urbanized (Population 200,000+)

FUNCTIONAL- F SYSTEM 1=Interstate
CLASSIFICATION 2=0ther Freeway and Expressway
(Updated  codes  for 3=Other Principal Arterial
YE2014) 4=Minor Arterial
5=Major Collector
6=Minor Collector
7=Local
RECORD-TYPE (Pre REC 0=Grade Separated Connector (YE2014 new code)
YE2004: 8=HPMS Tolls) On-System:
(Updated for YE2018 to 1=On-System Mainlanes
remove  6=Functionally 2=0n-System Right Frontage Road
Classified City Street) 3=0On-System Left Frontage Road Off-System:
5=County Road
7=City Street
8=Non-TxDOT Toll Authority Road (YE2014 new
code)
9=Federal Road (YE2014 new code)
NUMBER-OF- NUM_LANES Does not include turning, climbing, or auxiliary
THROUGH-LANES lanes, but does include Super 2 and exclusive HOV /
HOT lanes
MEDIAN-TYPE MED_ TYPE 0=No median

2=Unprotected

3=Curbed

4=Positive Barrier - Unspecified
5=Positive Barrier Flexible

6=Positive Barrier Semi-Rigid
7=Positive Barrier Rigid 99=Unknown

CLIMBING-PASSING-
CENTERTURNING-
LANE

CLMB_PS LANE

1=Continuous Two-way Left Turn Lane
2=Super 2 Lane
3=Climbing / Passing Lane

In addition, the Project Team further divided road segments based on the facility types and
supplied the facility code for each segment. “UI”: urban interstate; “UIF”: urban interstate
freeway; “UFE”: urban others minor freeway; “UFEF”: urban other main freeways; “1U”: urban
1 lane undivided road; “2U”: urban 2 lanes undivided road; “2D”: urban 2 lanes divided road;
“3T”: urban 3 lanes left turn road; “3U”: urban 3 lanes undivided road; “3D”: urban 3 lanes
divided road; “4U”: urban 4 lanes undivided road; “4D”: urban 4 lanes divided road; “5T”:
urban 5 lanes left turn road; “5U”: urban 5 lanes undivided road; “5D”’: urban 5 lanes divided
road; “6U”: urban 6 lanes undivided road; “6D”: urban 6 lanes divided road; “7T”: urban 7 lanes
left turn road; “7U”: urban 7 lanes undivided road; “7D”: urban 7 lanes divided road; “8T":
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urban 8 lanes left turn road; “8U”: urban 8 lanes undivided road; “8D’: urban 8 lanes divided
road; The R code, Figure 19, is used developed to cluster the data by these defined facility types.

# Create a new Label column based on the Facility Code and conditior
subset_df_label < Urbanl_5 %%
mutate(Facility_Code = case_when(
F_SYSTEM == 1 & (REC == 1|REC == | REC == 8) ~ "UI",
(REC == 2 | REC == 2|RE "UTF”
(REC == 1|REC == B|REC
(REC == 2 | REC == 3|REC

E",
UFEF™,

(F_SYSTEN F_SYSTEM == 4 | F_SYSTEM & NUM_LANES == 1 ~ "1U",

(F_SYSTEN F_SYSTEM == 4 | F_SYSTEM == 5) & NUM_LANES == 2 & MED_TYPE == @ & (CLMB_PS_LA == 8|CLMB_PS_LA == 3) ~ "2U",

(F_SYSTEN F_SYSTEM == 4 | F_SYSTEM == 5) & NUM_LANES == 2 & (MED_TYPE == 2|MED_TYPE == 3|MED_TYPE == 4|MED_TYPE == 5|MED_TYPE == 6|MED_TYPE == 7) ~ "20",
(F_SYSTE 4 | F_SYSTEM == 5) & (NUM_LAMES == 2| NUM_LANES == 3) & CLMB_PS_LA == 1 ~ "3T",

(F_SYSTE 4 | F_SYSTEM & NUM_LANES == 3 & MED_TYPE == @ & (CLMB_PS_LA == @|CLMB_PS_LA == 3) ~

(F_SYSTE 4 | F_SYSTEM & NUM_LANES == 3 & (MED_TYPE == 2|MED_TYPE == 3|MED_TYPE == 4|MED_TYPE MED_TYPE == 6|MED_TYPE == 7) ~ "3D",
(F_SYSTEM = 4 | F_SYSTEM == 5) & NUM_LANES == 4 & MED_TYPE == @ & (CLMB_PS_LA == @|CLMB_PS_LA == 3) ~ "4U

(F_SYSTEM = 4 | F_SYSTEM == 5) & NUM_LANES == 4 & (MED_TYPE == 2|MED_TYPE == 3|MED_TYPE == 4|MED_TYPE == 5|MED_TYPE == 6|MED_TYPE == 7) ~ "4D",
(F_SYSTEM = 4| 5) & (NUM_LAMES == 4|NUM_LANES == 5) & CLMB_PS_LA == 1 ~ "5T",

(F_SYSTE 4| & NUM_LANES == 5 & MED_TYPE == @ & (CLMB_PS_LA == @|CLMB_PS_LA == 3) ~ "suU",

(F_SYSTE 4| & NUM_LANE: 5 & (MED_TYPE == 2|MED_TYPE == 3|MED_TYPE == 4|MED_TYPE == 5|MED_TYPE == G|MED_TYPE == 7) ~ "5D",
(F_SYSTE X 4] F_ & NUM_LANE: 6 & MED_TYPE == @ & (CLMB_PS_LA == @|CLMB_PS_LA == 3) ~ .

(F_SYSTEM = F_SYSTEM == 4 | F_SYSTEM == 5) & NUM_LANES == 6 & (MED_TYPE == 2|MED_TYPE == 3|MED_TYPE == 4|MED_TYPE == 5|MED_TYPE == 6|MED_TYPE == 7) ~ "&D",
(F_SYSTEM = F_SYSTEM == 4 | F_SYSTEM == 5) & (NUM_LANES == 6|NUM_LANES == 7) & CLMB_PS_LA == 1 ~ "7T",

(F_SYSTEM = F_SYSTEM == 4 | F_SYSTEM == 5) & NUM_LANES == 7 & MED_TYPE == @ & (CLMB_PS_LA == 8|CLMB_PS_LA == 3) ~ "7U",

(F_SYSTEM = F_SYSTEM == 4 | F_SYSTEM & NUM_LANES == 7 & (MED_TYPE == 2|MED_TYPE == 3|MED_TYPE -= 4|MED_TYPE —- 5|MED_TYPE == 6|MED_TYPE == 7) ~ "7D",
(F_SYSTEM = F_SYSTEM == 4 | F_SYSTEM & (NUM_LANES == 7|NUM_LANES == 8) & CLMB_PS_LA == 1 ~ "8T",

(F_SYSTEM - F_SYSTEM == 4 | F_SYSTEM == 5) & NUM_LANES -- 8 & MED_TYPE — @ & (CLMB_PS_LA —— 8|CLMB_PS_LA == 3) ~ "su",

(F_S¥STEN F_SYSTEM == 4 | F_SYSTEM == 5) & NUM_LANES -- 8 & (MED_TYPE —- 2|MED_TYPE —- 3|MED_TYPE —- 4|MED_TYPE — 5|MED_TYPE —— 6|MED_TYPE -= 7) ~ "8D",

TRUE ~ "Other™ ))

Figure 19. R Code for Dividing Roads by Facility Type.

As RHiNO is only limited to roadway data, the Project Team used other data sources to acquire
information on operational speed, crash, and precipitation information. This document offers
concise instructions on both annual and short-duration speed, crash, and precipitation summaries
for RHiNO segments. Due to the data size and processing issue, annual and short duration data
preparations were conducted for major (U1 to U5) and minor (U6 and U7) urban roadways
separately.

3.4 ANNUAL DATA PREPARATION
3.4.1 Speed Measure Assignment

The original XD network of Texas provides operational speed information every ten seconds. To
acquire the speed measures of RHiNO segments (conflating information from XD), the primary
challenge of this conflation process lies in handling different segmentation and misalignment
between the two networks. The core objective of conflation is to create an appropriate integration
by establishing one-to-one or one-to-many relationships between XD segments and urban
RHiNO roadways. This conflation process aims to harmonize and align data from the INRIX XD
network with urban roadways, overcoming the challenges of segmentation and misalignment to
provide a cohesive and accurate dataset for analysis. The main steps are outlined as follows:

Step 1: Preprocessing of RHINO

In this initial step, a new field called ‘unique id’ is introduced as a unique identifier for road
segments within the existing layer. Additionally, the length of each segment is calculated and
added to the ‘rhino_len’ field. The detailed code is shown in Figure 20.
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import arcpy
# Create a spatial reference object for the output coordinate system
out_coordinate_system = arcpy.SpatialReference('NAD 1983 UTM Zone 15N')

# specify the full path to the input Layer
rhino = r"C:\Users\j - Texas State University\RTI_@7144\3 Task 3\Data\2u_4D 4U_3T\Urban6é_7\Urbané_7 Ori\Urbane_7.shp”

# specify the ful

rhino_prej = r"C:\Use Texas State University\RTI_@7144\3 Task 3\Data\2U_4D 4U_3T\Urbané_7\Urban6_7_Project\Urbané_7_Project.shp”

# Run the tool
arcpy.Project_management(rhino, rhino_proj, out_coordinate_system)

FHETH IR dd unique_id to RHINO
# Add o new fi
unique_id_fiel
arcpy.Addrield management(rhlno proj, unique_id field, "LONG")

# Populate the new field with the value "Uri
arcpy.CalculateField_management(rhino_proj,

"'Urban67'", "PYTHON3")

# Calculate the unique ID field based on rou
w1th arcpy.da.UpdateCursor(rhino_proj, [unique_: 1d _field]) as cursor:
for i, row in enumerate(cursor):
row[@] = i
cursor.updateRow(row)

Length

# Add @ new fi for shape Length
shape_length_field = "rhino_len"
arcpy.AddField_management{rhino_proj, shape_length_field, "DOUBLE"}

# Calculate the shape Length for each f
arcpy. Cal(ulateFleld _management(rhino_proj, shaps length_field, "!shape.length!™, "PYTHON")

Figure 20. Python Code for Preprocessing of RHiNO.

Step 2: Creating Buffers Around RHINO

This step involves the creation of a buffer layer around urban roadways. The buffer distance is
set to “25 m or 82 ft”. The side type of the buffer is ‘FULL,” and the end type of the buffer is
“FLAT”. The buffer is generated to provide spatial context and facilitate subsequent conflation.
Figure 21 presents the Python code of this step.

# Specify the full path to the output Layer
poly = r"C:\Users\j_1848\0neDrive - Texas State University\RTI_©7144\3 Task 3\Data\2U_4D_4U 3T\Urbané_7\Urbané_7_buffer\Urbané_7_buffer.shp”

# Set the buff

distance (58 meters)

buffer_distance = "25 Meters”

# Set the buf; side type to "FULL" and end type to "FLAT"
side_type =

end_type = "FL

# Perform the buffer analysis
arcpy.Buffer_analysis(rhino_proj, poly, buffer_distance, side_type, end_type)

Figure 21. Python Code for Creating Buffers Around RHiNO.

Step 3: Establish the relationship between RHiNO and XD

For each buffered urban segment, the code, Figure 22, identifies any XD segments that intersect
with it. During this process, the ‘Intersect Length’ is calculated, representing the length of
intersections between the polygon and XD segments. Furthermore, the ‘Percentage’ is computed
as follows: Percentage = (Intersect Length / Line Length (XD)) * 100.
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import arcpy
# Set the impu
line_layer =
polygon_layer

rurbane_7_buffer.shp”

# Creagte an empty feature class for the output Layer

arcpy .management.CreateFeatureclass("in_me

# Add fields for Line length, intersect Length, and percentage
arcpy .management . Addrield{output_layer, e_Length”, "DOI
arcpy .management . AddField{output_layer, ersect_Length”, "
arcpy.management .. AddField {output_layer, "XDSegID", “text") #
arcpy.management . AddField{output_layer,
arcpy .management . Addrield{output_layer, "
arcpy.management . AddField{output_layer, "R:

# Open an insert cursor for the output Layer
insert_cursor = arcpy.da.Insertcursor(output_layer, ["SHaPE@", “Line_Length", "Intersect Length®, “XDSegID", "Percentage”, "Polygon_ID","RHIMO len"]) # XDSegID

# Cregte an insert cursor for the new Layer
insert_cursor = arcpy.da.InsertCursor(output_layer, ["SHAPE@", “Line_Length", "Intersect_Length®, "XDSegID", "Percentage”, "Polygon_ID","RHIMO_len"]) # XDSegID

# Iterate each Line feature
with arcpy.da.SearchCursor{line_layer, ["SHAPES", "OIDE", "SHAPEBLENGTH","XDSegID"]) as line_cursor: # XDSegID
for line_row in line_cursor:
line_geometry = line_row[e]
line_length = line_row[2]
¥DSegID = line_row[2]

E

Lag to checi
inters

ect_found = False o

A

# Itergte over each polygon fegture
with arcpy.da.SearchCursor{polygon_layer, ["SHAPEE", "OID@","unigue_id","rhinc_len"]) as polygon_cursor:
for polygon_row in polygon_cursor:
polygen_geometry = polygon_row[@]

# check if line intersects with polygon
if line_geometry.crosses(polygon_geometry):
intersect_found = True
intersect_geometry = line_geometry.intersect(polygon_geometry, 2)
intersect_length = intersect_geometry.length
percentage = (intersect_length / line_length) * 128

# In a

insert_row = (
intersect_geometry,
line length,
intersect_length,
¥DSegID,
percentage,
polygon_row[2],
polygon_row[3]

insert_cursor.insertRow{insert_row)

# If no intersections found, insert the Line with null polygon information
if not intersect_found:
continue

# Clean up
del insert_cursor

Figure 22. Python Code for Establish the Relationship Between RHiNO and XD.

Step 4: Data Cleaning

The output generated in the previous step requires further refinement. It begins with the
calculation of the sum of urban segments based on the XD line percentage. If the sum exceeds
100, corrective action is taken. Specifically, the percentages are sorted, and the one with the
lowest percentage is eliminated until the sum is reduced to less than 100. Subsequently, the
remaining percentages are adjusted proportionally to ensure that the cumulative percentage of
each urban segment totals exactly 100. The detailed code is presented in Figure 23.
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import geopandas as gpd

import pandas as pd

it to a pgtarFraome
j_ls4s/onebrive -

# Read the shapefile and ¢
data = gpd.read_file{'C:/Users/

df = pd.DpataFrame(data)
df["Pct_poly"] = df["Intersect_"] *18@/ df["RHINO_len"]
def process_data(df):

# Group the dota by “polygonID" and col e t

grouped_data = df.groupby("Pclygon_ID")["Pct_

um of “percentage”
.sumi)

# kKeep track of whether any changes have been made
changes_made = False

for polygon_id, total percentage in grouped_data.items(}:
if tetal_percentage » 188:

polygon_data = df[df["Polygon_ID"] == polygon_id]

if len{polygon_data) » 1:
sorted_percentages = polygon_data.sert_values("Pct_pely", ascending=False}
df = df.drep{sorted_percentages.tail(l).index)
changes_made = True

else:
df.loc[polygon_data.index, "Pct_pcly"] = 188
changes_made = True

return df, changes_made
# Repeat the process until no changes are mode
changes = True
while changes:

df, changes = process_data(df)

Step 1: aroup the data by "p

grouped_data = df.groupby({"Folygc

onID" ond calculate the sum of "percentoge”
n_ID"}["Pct_poly™].sum()

# Step 2-4: check if the sum of "percentoge™ for a "polygonID" is less than 188 and apply the necessary operations
for polygon_id, total_percentage in grouped_data.items(}:
if total_percentage < 1ee:
polygen_data = df[df["Polygon_ID"] == polygon_id]
if len({polygon_data) » 1:
# Step 4b: Sort the "percentage" walues in descending
sorted_percentages = polygon_data.sort_va
# Step 4c: Increase the percentages
proporticns = sorted_percentages["Fct_p
adjusted_percentages = proportions * 1ee
df.loc[scrted_percentages.index, "Pct_p
else:
# 5tep 4d: set the single "percent
df. loc[polygon_data.index, "Pct_poly"] = lee

order

", ascending=False)
ionally to make the sum equal t
] / sorted_percentages["Pct_p

0 168
. sum()

y"] = adjusted_percentages

# The resulting potarrame "df" will have the desired modifications

df.to_csv("sT_xd.csv", index=False)

Figure 23. Python Code for Data Cleaning.

Step 5: XD Level Speed Summary

The result of Step 5 is a CSV file detailing the correlation between XD and RHiNO segments.
This relationship is quantified by the overlap percentage of each RHiNO segment with
corresponding XDs. The unique identifier for XD segments is labeled as ‘xd_id’, while for
RHiNO segments, it's ‘unique id’. Utilizing the ‘xd_id’ obtained from this step, raw XD speed
data can be downloaded. Subsequently, a summary of XD-level speeds can be compiled using
the Python code illustrated in Figure 24.
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Sys.setlocale("LC_TIME", "English")
library(dplyr)

library(lubridate)

library(data. table)

setwd(’C:/Users/dnala7/Texas State University/Das, Subasish - Data/20 4D 4U 37/3T/Spd Data xd/3T xd 18/')

data_oril = fread('3T_xd_18.csv')
#replace line 8.9

tmc_list = fread('xD_Identification.csv',fill = TRUE)
tmc_list - unique(tmc_listéxd)

tmc_list = split(tmc_list, ceiling(seq_along(tmc_list)/38)) #set it according fo your computer performance.
table - data.frame()

for (1s dn tmc_list)

data - data_oril[data_orilixd id ¥in% 1s]
datal = data %% group_by(xd_id) %% summarize (SpdAve- mean(speed, ne.rm=TRUE), SpdStd = sd(speed, na.rm=TRUE), SpdS - quantile(speed, <(.85), na.rm=TRUE), PSL = first{reference_speed))

dataStimestamp - as.POSIXct(data$measurement_tstamp)

dataSyear - year(datajtimestamp)

datagmonth = months(datagtimestamp)

datagneekday = weekdays(datagtimestamp)

dataghour = hour(data3timestamp)

data_day = data[dataShour 5 & dataShour <18]

data_day = data_day %% group_by(xd id) %>% summarize(SpdAveDay= mean(speed, na.rm=TRUE), SpdStdDay = sd(speed, na.rm=TRUE))
datal = merge(datal,data_day, by = "xd_id", all.x = TRUE, all.y = FALSE)

data_night = data[datathour<é | datashour >17]

data_night = data_night %% group_by(xd id) %% summarize(SpdAveNight= mean(speed, na.rm=TRUE), SpdStdMight = sd(speed, na.rm=TRUE))
datal = merge(datal,data night, by = "xd_id”, all.x = TRUE, all.y = FALSE)

data_MTWT = dsta[datajweekday %in% c('Monday', 'Tuesday’, 'Wednesday’, 'Thursday')]
data_MTWT = data MTWT %% group by(xd_id) %% summarize(SpdAveMTWT= mean(speed, na.rm=TRUE), SpdStdHTWT = sd(speed, na.rm=TRUE))
datal = merge(datal,data MTWT, by = "xd_id", all.x = TRUE, all.y = FALSE)

data_Fss - data[datagweekday ¥in¥ c('Friday’, 'Saturdsy’, 'Sunday')]
data_FSS = data_FSS %% group_by(xd id) %% summarize(SpdAveFSS= mean(speed, na.rm=TRUE), SpdStdFSS = sd(spesd, na.rm=TRUE))
datal = merge(datal,data FsS, by = "xd_id", all.x = TRUE, all.y = FALSE)

data_lpsl - data[datagspeed > datagreference speed & lis.na(data$speed)]
data_lpsl - data_lpsl %% group by(xd_id) %% summarize{SpdFFAve- mean(speed, na.rm=TRUE), SpdFFS5 - quantile(speed, c(.85), na.rm=TRUE))
datal = merge(datal,data_lpsl, by = " ", all.x = TRUE, all.y = FALSE)

table = rbind(table,datal)

}

#replace below
setwd('C:/Users/dmala?/Texas State University/Das, Subasish - Data/2U_4D_4U_3T/3T/Speedieasures/’)
write.csv(table,"dzat, _XD_18.csv”, row.names = FALSE) #please rename the output file accordingly.

Figure 24. R Code for XD Level Speed Summary.

Step 6: RHiNO Level Speed Summary

XD-level speed summary was aggregated to the RHiNO level speed summary based on the CSV
file acquired from Step 4 (see Figure 25). The speed measures used in this study are listed Table
28.

Sys.setlocale("LC_TIME", "English")
require(foreign)
require(data.table)

require(dplyr)

TMC_N <- fread("C:/Users/dmal47/Texas State University/Das, Subasish - Data/2U_4D_4aU_3T/3T/xd_3T/xd_3T.csv")
THMC_N <- TMC_N[,c("Polygon_ID", "XDSegID", "Pct poly")]

TMC_N$unique_id <- TMC_N$Polygon_ID

Spd_N <- fread("C:/Users/dmald7/Texas State University/Das, Subasish - Data/2U_4D _4U_3T/3T/SpeedMeasures/data_summary_3T_XD_18.csv")
TMC_Spd_N <- left_join(TMC_N,Spd_N,by = c('XDSegID' = 'xd_id'))

TMC_Spd_N <- TMC_Spd_N[!is.na(TMC_Spd_N$SpdAve),]

TMC_Spd_N$tmc_perc <- TMC_Spd_N$Pct_poly/16@

TMC_Spd_N$TMC_Ratio <- TMC_Spd_N$Pct_poly

TMC_Spd_N_Ave <- TMC_Spd_N #>% group_by(unique_id) %»>% transmute(Spdi8-weighted.mean(SpdAve,TMC_Ratio,na.rm = TRUE),
5518=sqrt(sum{SpdStd~2*tmc_perc~2)),
SEF18-weighted.mean(Spd85,TMC_Ratio,na.rm = TRUE),
PSL18=weighted.mean(PSL,TMC_Ratio,na.rm = TRUE),
SpdD18=weighted.mean(SpdAveDay,TMC_Ratio,na.rm = TRUE),
55D18=sqrt(sum(SpdStdDay~2*tmc_perc”2)),
Spdii8=weighted.mean(SpdAveNight, TMC_Ratio,na.rm = TRUE),
S5N18=sqrt(sum(SpdStdNight™2*tmc_perc~2)},
SWD18-weighted.mean(SpdAveMTWT, TMC_Ratio,na.rm = TRUE),
SSWD18=sqrt(sum(SpdStdMTWT~2*tmc_perc~2) ),
SWE18-weighted.mean(SpdAveFSsS,TMC_Ratio,na.rm = TRUE),
SSWE18=sqrt(sum(SpdStdFSs~2*tmc_perc”2)),
SFF18=weighted.mean(SpdFFAve, TMC_Ratio,na.rm = TRUE),
SFEF18=weighted.mean(SpdFF85, TMC_Ratio,na.rm = TRUE)
)

TMC_Spd_N_Ave <- unique(TMC_Spd_N_Ave)

#urite. csv(Th

- Spd_N_Ave, file="C: /Users/dmal47/Texas State University/Das, Subasish - Data/2U_4D_4U_3T/3T/Final_Spd/data_summary_3T_XD_18.csv”,row.names = FALSE)

Figure 25. R Code for RHiNO Level Speed Summary.
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Table 28. Speed Measure Variables and Definitions.

Attribute Name | Definition

SpdAve Average speed determined for the year using all data

SpdStd Standard deviation of speed determined for the year using all data

Spd85 85" percentile speed determined for the year using all data

PSL Post Speed Limit (not real posted speed, a measure derived from INRIX average
speed values)

SpdAveDay Average speed determined for the year (hour > 5 and hour < 18) using all data

SpdStdDay Standard deviation of speed determined for the year (hour > 5 and hour < 18) using
all data

SpdAveNight | Average speed determined for year (hour > 17 and hour < 24 and hour > -1 and hour
< 6) using all data

SpdStdNight Standard deviation of speed determined for year (hour > 17 and hour < 24 and hour >
-1 and hour < 6) using all data

SpdAveMTWT | Average speed determined for the year (Mon, Tue, Wed, Thu) using all data

SpdStdMTWT | Standard deviation of speed determined for the year (Mon, Tue, Wed, Thu) using all
data

SpdAveFSS Average speed determined for the year (Fri, Sat, Sun) using all data

SpdStdFSS Standard deviation of speed determined for the year (Fri, Sat, Sun) using all data

SpdFFAve Average speed determined for the year using speed data where 5-min speed is > PSL
(or PSL+5 or +10)

SpdFF85 85" percentile speed determined for the year using speed data where 5-min speed is
> PSL (or PSL+5 or +10)

3.4.2 Crash Data Assignment

This section provides an explanation of the RHiNO level annual crash summary. The Project
Team downloaded Texas crash data (CRIS) from 2018 to 2022. The crash event files encompass
various details, including the date and time of the crash, the severity of the crash, and the latitude
and longitude coordinates corresponding to the crash events. The Project Team first displayed
the crash points on the map using the “Display XY™ tool. Then, the Project Team applied “Near”
function tool in ArcGIS Pro (see Figure 26) to assign crash events to the nearest roadway
segments. An attribute named ‘Near FID’ was assigned to each crash, wherein ‘Near FID’

signifies the FID number (the roadway segment's corresponding row number, commencing from
0 in the crash characteristics file) where the crash occurred. The Project Team chose 25 meters as
the threshold to assign a crash event on the nearest roadway segment. This means only if a crash
event is within 25 meters of a roadway segment, this crash event is it assigned to this specific
roadway segment. If a crash event cannot be assigned to any roadway segment, its “Near FID”
attribute is be equal to -1. The Project Team filtered out the crash events whose “Near FID”

equals -1 because they cannot relate to any roadway segments. After crash events are assigned to
roadway segments, the Project Team summarized the total number of crashes that happened on
each roadway segment by crash severity. Five crash severity levels (KABCO) were used to
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assign the crashes by severity levels. KABCO is an acronym used in the field of traffic safety
and accident investigation to classify the severity of injuries resulting from motor vehicle
crashes. Each letter in the acronym corresponds to a specific level of injury severity: K (Killed or
Fatal), A (Apparent or Incapacitating Injury), B (Non-Incapacitating Injury), C (Possible Injury),
and O (No Injury).

Geoprocessing v B X
© Near &)
This tool modifies the Input Features *

Parameters Environments

# Input Features

# Mear Features

Search Radius

Unknown v
Location
Angle
Methed
Planar w
Field Names
Property (v) Field Name
Enable Undo Run  ~

Catalog Geoprocessing

Figure 26. Near (Analysis) Tool in ArcGIS Pro.

3.4.3 Precipitation Measure Assignment

For short-duration precipitation data, the first step was to download hourly precipitation data,
one month at a time, for an entire year, for 2019, 2020, 2021, and 2022 from the Copernicus
Climate Data Store (CDS). To access the data, two prerequisites need to be followed: 1) A valid
account on cds.climate.copernicus.eu with login credentials; 2) Necessary permissions to access
the ERA5-Land hourly data product (see Figure 27). The steps are described below.

87



3.4.4 Steps to Download Data

Step 1: Log In and Navigate to the CDS: Access the CDS website and log in with your
credentials. Once logged in, navigate to the 'Your Requests' section, as shown in Figure 28.

Step 2: Queue the Download Requests: Submit 12 separate requests, each corresponding to a
different month of the year for each year. This should be done by selecting the ERAS5-Land
hourly data product and specifying the time range for each month. Ensure that all days for a
month are selected, and all hours for each day. There is also a need to set the bounding box to
the bounding box of the state of Texas as seen in Figure 28.

Step 3: Monitor Request Status: After submission, requests appear in the ‘Queued’ status. The
system will automatically process these requests. The page will auto-refresh the status of the
requests by default.

B (cpenicis SECMWE (0 anecnse

Home Search Datasets Applications Your requests Toolbox Suppor

Your requests

this very short survey

Al Queued In progress Failed Unavailable Complete

Delete selected
O

Product Submission date - End date Duration Size Status

" A B O r 0
L C ] 0 |

Figure 27. Precipitation Gridded Binary Data Downloaded from Copernicus.

Step 4: Downloading the Data: Once a request status changes to ‘Complete,” a ‘Download’
button will appear. Click this button to download the dataset for the respective month. The file
size will be indicated next to the button.

Step 5: File Storage and Management: As the data is downloaded, files are stored in an
organized manner in OneDrive storage. A separate folder is created for each year.
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Step 6: Data Verification: After the downloading is completed, the integrity of the data files
was verified by loading data using the R package ‘sp’ to load an object of class
‘SpatialGridDataFrame’ for analysis. Each file corresponded to the monthly data requested, and
files were labeled after verification according to the month and year of the data.

Step 7: Repeat for All Months: Repeat the download process for each month/year until all 12
monthly data files are successfully downloaded for each year.
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Clear all
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Figure 28. Data Requests Details.
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3.4.5 Contents of the Precipitation GRIB Files

After the data download completion, there are 48 Gridded Binary (GRIB) files for the years
2019-2022, one for each month (see Figure 29). Inside the files are bands that total the number
of hours in each of the downloaded months. For example, January of 2019 has 744 bands (31
Days * 24 hours = 744 bands). Each band is stored as a floating-point vector of length

14,124. Each band has a spatial attribute for ‘xmin’, ‘ymin’, ‘xmax’, and ‘ymax’ representing
the grid area covered and spatial resolution. In Figure 30, 14,124 bands are seen as .1 x .1 degree
resolution grid squares, with NA grids being represented as gray grid squares.

Layer layer: 0.000022599743938682

layer

0.005 itt
0.010
0.015
0.020
-0.025

Leaflet’| © OpenStreetMap contributors © CARTO

MONTFRREY=

Figure 29. GRIB File for January 1st, 2019 at 0000-0059 Hours.
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Converting GRIB files to CSV Files for Improved Processing Time

Converting GRIB files containing hourly weather data for one month into more manageable
hourly CSV files is useful for improved processing time. GRIB files are commonly used in
meteorology but can be cumbersome for certain types of data processing due to their size, file
type, and spatial nature.

Step 1: Assessing GRIB File Size: The original GRIB file for January 2019 is approximately 29
megabytes, which is manageable but not optimal for rapid data processing.
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Figure 30. Point Shapefile Corresponding to GRIB Data.
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Step 2: Generating Point Shapefile from GRIB. A point shapefile is created from the GRIB
file, where each point represents the center of a grid cell in the spatial data. The shapefile
contains 14,124 points, each corresponding to a grid cell in the GRIB file, a zoomed-up image of
the point shapefile can be seen in Figure 30.
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Figure 31. TIGRIS Shapefile of Texas.

Step 3: Clipping the Shapefile to the Area of Interest: To focus on a specific region, such as
Texas, the shapefile is clipped using a Texas boundary shapefile obtained from the TIGRIS
database, as seen in Figure 31. The clipping is performed in a common Coordinate Reference
System (CRS) to maintain geographical accuracy.

Step 4: Reducing Data Points: After clipping, the number of data points is reduced to fit the
Texas boundary, resulting in 6,607 points that fall within the state as seen in Figure 32. The
‘NEAR_FID’ column is maintained to match the original GRIB file index. A nearest neighbor

92



index is created from this shapefile to reference the GRIB data, which is stored in the CSV file
for faster processing in the next step.
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Figure 32 Precipitation Points Shapefile.

Step 5: Converting to CSV: The clipped data is then exported to CSV format, creating one file
per hour, thus converting the monthly GRIB data into 744 individual hourly CSV files for the
month of January 2019 and the respective number of hourly CSV files for the number of hours in
each month afterward.

Step 6: Verifying CSV File Size: The size of each CSV file is approximately 82 KB, which is
significantly smaller and more manageable than the original GRIB file. The advantages of
conversion are described below:
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Improved Data Processing Speed: Smaller file sizes in CSV format allow for quicker data
manipulation and analysis, especially when working with hourly data.

Targeted Dataset: Trimming the shapefile to the specific region of interest eliminates
irrelevant data, resulting in a more refined and focused dataset suitable for analysis.
Compatibility and Accessibility: CSV files are widely supported by various software and
programming languages, making it easier to share and work with the data across different
platforms.

Ease of Use: CSV files are easier to inspect and modify, allowing for a more straightforward
data validation and quality control process.

3.4.6 Precipitation Data Processing

The Project Team has developed an R script to process and analyze extensive precipitation data,
specifically focusing on hourly precipitation measures. The script enables us to transform
granular precipitation data into structured insights.

Initialization of Analytical Tools: The first step involves loading a suite of R packages.
Several R packages were used in this process. The package ‘lubridate’ facilitates
sophisticated date-time manipulation, ‘dplyr’ and ‘tidyr ‘are for data manipulation and
tidying, and ‘data.table’ offers the capability to handle large datasets with speed and
efficiency.

Workspace Configuration: To maintain consistency in file paths and operations, the Project
Team configured the working directory dynamically to the script's location. This step is
bypassed on Shiny servers during application development due to their unique operational
environment.

Numerical Representation: The Project Team disabled R’s default scientific notation to
ensure that numerical data is readily interpretable without the necessity for transformation.
Data Aggregation Workflow: The Project Team utilized a nested loop to iterate through
years and months, systematically transforming hourly data into a structured statistical matrix.
This approach enables efficient categorization and computation of aggregated statistics.
Spatial Data Integration: In Step 4 of the Data Conversion section, the Project Team
integrates each precipitation data point with its corresponding geographic identifier by
utilizing the id_match.csv file, thereby incorporating the relevant spatial dimension into the
analysis.

Data Exportation: In the final stage of this process, the Project Team exported the
amalgamated data into CSV files. These files serve as the endpoint of the analytical process,
offering a comprehensive and easily accessible record for subsequent analysis, reporting, and
peer review.

Utilizing the precipitation data processing script, the Project Team employs the capabilities of
data science to undertake comprehensive and replicable investigations.
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3.5 SHORT DURATION DATA PREPARATION

The previous section outlines the procedure for conflating annual speed, crash, and precipitation
data. The current section details the short-duration aspects of these measures; the overall steps
are very similar to the annual data preparation. The Project Team's goal is to obtain these
measures by year, season (across all four seasons), day of the week (distinguishing between
weekdays and weekends), and time of day (daytime and nighttime).

3.5.1 Speed Measure Assignment

In alignment with the annual speed summary procedure, the Project Team adapted and
redeveloped the code for step 5 (Figure 33) and 6 (Figure 34) to obtain the short-duration speed
summary. It's important to note that this process demands significant computational resources,
often necessitating the use of high-performance computing to manage the extensive data
processing involved.

import multiprocessing
import pandas as pd

import numpy as np

from datetime import datetime,timezone
import os

mmer®, "Fall”, "a11%],
ytime®, *Nighttime®, "All"]}

ver unique xd_id values

ta[ *xd_id" ].unig

for condition in conditiens:
for seasen in conditicn

current xd_id
ear”]) & (datal'xd_id'] == xd)
—= season)

== dow)

filtered_data - data[mask]

dAavg and spdstd
iltered_data[

spd_std - filtered_datal
spd_ss - filtered_data[’

Jstdq)
ed'].quantile(e.s5)

spd_sres = filtered_data['s,

].mean(skipna=True)

ate PsL rounded
- filtersd_data['re

raw_psL

1.mean(skipna=True)
if pd.isna(raw_PSL):
PSL = pd.NA
else:
PSL = 5 * round{raw_PSL / 5)

TT_avg = filtered_data[’
TT_std = filtered_data[’
PVTT - (filtered_data['t

nds'].mean(skipna=True)
*].std(skipna=True)
ds'].std(skipna-True))*10e/ (filtered_data[ travel_time_seconds’ ].mean(skipna=True))

results.append({"x0_id": xd condition["vear"], "season”: season,
"DOW": dow, "TOD": tod, "SpdAvg": spd_avg, "SpdStd”: spd_std,’Spdss’: Spd_8S, 'SpdFF85': Spd FF8S, PSL': PSL, 'TTAvg':TT_avg, 'TTStd': TT_Std, PVTT': PVIT}H)

(@
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if __name__ == '__main__':

# get the path of the directory where the script is Llocated
dir_path = os.path.dirname(os.path.realpath{__file__)}

# define the relaoti. path to t

file_path = us.path.jo&n(dir_uath, "2u

e dat

9

» "2U_xd_18", “2U_xd_18_4.csv")

# read the €sv file using pondas

data = pd.read_csv(file_path)_

t the meosurement tstamp to dat
data[ ‘datetime'] = pd.to_datetime(data[ 'measurement_tstamp'])

# Extract year, month, day of the week and hour
data['vear'] = data['datetime’].dt.year
th"] = data['datetime’].dt.month
= data[ 'datetime’'].dt.daycfueek
= data[ 'datetime"].dt.hour

# Assign

data[ 'season

month
ith'].apply(lambda x: ‘Winter® if x im [12, 1, 2] else
("spring' if x in [3, 4, 5] else
('summer' if x in [&, 7, 8] else

1)

httime based on hour

# Assign Daytime/N

data['TOD'] = data['Hour'].apply(lambda x: 'Daytime' if & <= X <= 18 else 'Nighttime"}

end bosed on DOW
ata[ 'DOW' ].apply(lambda x: ‘weekday' if x < 5 else ‘uWeekend')

# Assign

datal ‘e

data[ 'spdFF85'] = data.groupby(['Month', ‘days']}['speed’].transform(pd.Series.quantile, g=2.85

tmc_name = data['xd_id"].unique()

st this to control the chunk s

i+chunk_size] for i in range(e, len{tmc_name), chunk_size)]

chunk_size = 188
tmc_chunks = [tmc_name[

# Determine the number cores, subtracting 1 FESErVE ONE Core

num_ceres_to_use = multiprocessing.cpu_count(} - 2

# Determine the number cores, subtracting 1
num_cores_to_use = multiprocessing.cpu_count{) - 2

Feserve one core

with multiprecessing.Pool(processes=num_cores_to_use) as pool:
list_of_filtered_a - [data[data[ 'xd_id"].isin(tmc1)] for tmcil in tmc_chunks]

results = pocl.map{process_tmc_chunk, list_of_filtered_ a

(b)
Figure 33. Python Code for XD Level Short Duration Speed Summary. (a) Python Code
Part 1; (b) Python Code Continued.
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import pandas as pd

import numpy as np

from datetime import datetime,timezone
ﬁ-am tudm import tgdm

J.mpurt mltlprocess]nﬂ

def process_tme_chunk{unique id list):

t is Located

file_))

file path = os. path join(dir_path,
# read the CSV file using pandas
T = pd.read_csv(File path)

i B ‘xnseum"

umn for THE_Spd N

. dmpna(subse

erc for

TMC['tmc*] = THC[ "XDSegID’]

l-spd_merged", "au", "18.csv")

# read the CsV j us
- pd.read_csv(file_path2)
th.rename{columns={ 'x0_id"': 'tmc'}, inplace=True)

season_name = np.unique(tb["Season"])
+time_name = np.unique(tb["ToD"])

dow_name = np.unique(th["Dou"]}
year_name = np.unique(tb[ 'vear'])

tb_1 = pd.Dataframe (np.zeros(5@8889 * 13).reshape(560808, 13), columns = ['unique_id','vear','Season','DOW', 'TOD', 'SpdAvz','SpdStd',’'Spdss’,'SpdFFEs’','PsSL', 'TTavg','TTStd','RVTT' 1)

for unique_id in unique_id_list:
b - TMC. loc[ (THC[ unique_id'] == unique_id)].reset_index(drop-True)
u.unjquﬁ(h['trt‘]}

For year in year_nane:
For season in season_name:
for dow in dow_name:
for time in time name:

- th.loc[(tb[ 'tmc'].isin{THCs)) & (tb['Season’ — str(dow)) & (tb['T0D'] = str{time))].reset_index(drop-True)

_ str(season)) & (tb[ ‘Do’

if not a_l.empty:
THC_Spd_N = b.merge(a_1, on="tmc")

tb 1L unique_ 1d*][e] = str(unique_id)

[ ][D] = str(year)
eason'][o] = striseason)
tb 1[ pou' I[o] = stridow)
th_1['Top'][e] = str(time)
+th_1[ *Spdavg'1[0] = np.average(TMC_Spd_N['Spdavg'], weights=TMC_Spd_N['tmc_perc'])
th_1[ *Spdstd'][o] = np.average(TMC_Spd_N['spdstd'], weishts=TMC_Spd_N[ 'tmc_perc'])
th_1['spdss' ][6] = np.average(TMC_spd_N['Spdss’], weights=Tuc_spd N[ 'tmc_perc'])
th_1['spdFFes’][o] = np.average(THC_spd_N['spdFres'], weights=TMC_Spd_N['tmc_perc'])
th_1[*PSL" 1[0] = myround{np.average(THC_Spd_N['PSL'], weights=TMC Spd N[ “tmc_perc*]))
th_1['TTave' [[6] = np.average(TMC_Spd_N['TTAve'], weight - Spd_N['tmc_perc ']}
th_1['TTStd' ][6] = np.average(TMC_Spd_N['TTStd'], weight - spd_N[ “tmc_perc ']}
th_A['PVTT"][0] = np.average(TMC_Spd_N[ 'PVTT'], weights=TMC_Spd_N[ "tmc_perc']}
-0+l

@

if _ name__ _ main_ ":

with multiprocessing.Pool() as pool:

# get the path of the directory where the script is located
dir_path = os.path.dirname(os.path.realpath(_file )

# define the relative file path to the data f
file_path = os.path.join(dir_path, "xd 2U.csv

# read the CSV file using pandas
TMC = pd.read_csv(file_path)

#TMC = pd.read_csv('C:/Users/j_LB48/OneDrive - Texas State University/@ 7131 L3l/Data/3 Task3/TMC SpeedData/TMC_SpeedData/Roads with_
TMC = TMC[["Pelygon_ID", “XDSEgID", "Pct_poly"]]

# remove rows with missing values in 'SpdAve' column for THMC Spd N

TMC = TMC.dropna(subset=["XD5egID'])

# compute tmc_perc for TMC Spd N

TMC[ "tmc_perc'] = TMC['Pct_poly’

TMC[ 'unique_id"] = TMC['Polygon_ID"]

THC[ 'tmc"] = THC['XDSegID"]

unique_id_list = np.unique(TMC["unique_id"])

control the chunk size
ist[i:i+chunk_size]) for i in range(®, len(unique_id list), chunk_size)]

chunk_size = 288 # adjust 2]
unique_id chunks = [list(unique id !

»—‘r-

results = pool.map(process_tmc_chunk, unique_id chunks)

print(results)

(b)
Figure 34. Python Code for RHiNO Level Short Duration Speed Summary. (a) Python
Code Part 1; (b) Python Code Continued.
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3.5.2 Crash Data Assignment

To generate a comprehensive analysis akin to an annual crash summary, the Project Team
initiated the process by employing the ‘Near’ feature tool within ArcGIS Pro. This tool was
instrumental in effectively assigning crash events to specific roadway segments. The rationale
behind this method lies in the accessibility of pertinent crash data and crash timestamps within
the designated crash dataset. The Project Team executed a Python code designed to extract
relevant insights from the available crash data. This two-tiered methodology, integrating ArcGIS
Pro for initial segment assignment and Python coding for subsequent short-duration analysis,
aligns with a systematic process to assign crashes to segments (see Figure 35).

import multiprocessing

import pandas as pd

import numpy as np

from datetime import datetime,timezone
import os

tme_chunk(data):

ing”, "Summer”, "Fall”, "All"],
00": ["Daytime”, "Mighttime", "A11"]}

results

for xd in dat

for season in condition["Season™]:
for dow in condition["DOW"]:
for tod in condition[™Ti

onditi
condition

) & (datal'uni_id new'] == xd)

(
if season != :

mask &= (data['Season'] == season)
if dow != "All":

mask &= (data['liesk'] == dow)

if tod !- "All":
mask &= (data['TOD'] == tod)

filtered_data - data[mask]

# Compute ¢

Crash_5 = (fi == 5).sum()
Crash_a - ( — a).sum()
Crash_3 = ( == 3).sum()
Crash_2 = ( ! == 2).sum()
Crash 1 = ( X — 1).sum()
results.append({“uni_id_new": xd, ~": condition["vear"], “: season,
“DOW": dow, "TOD": tod, "Crash_5": Crash_5, " 4": Crash_4,"Crash_3": Crash_3,"Crash_2": Crash_2,"Crash_1": Crash_1})

if not os.path.exists(folder
os.makedirs(folder) # create th ectory if it doesn't exist

filename - str(xd) + '.csv’

filepath = os.path.join(folder, filename)
results_df.to_csv(filepath, index-False)
return results_df

Figure 35. Python Code for Short Duration Crash Summary on RHINO Segments.

3.5.3 Weather Measure Assignment

The Project Team has developed an R script to process and analyze extensive precipitation data,
specifically focusing on hourly precipitation measures. The script enables the user to transform
granular precipitation data into structured insights.

1. Initialization of Analytical Tools: The first step involves loading a suite of R packages. R
package ‘lubridate’ facilitates sophisticated date-time manipulation, ‘dplyr’ and ‘tidyr’ are for
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data manipulation and tidying, and ‘data.table’ offers us the capability to handle large datasets
with speed and efficiency.

Workspace Configuration: To maintain consistency in file paths and operations, the Project
Team configures the working directory dynamically to the script's location. This step is
bypassed on Shiny servers during application development due to their unique operational
environment (see Figure 36).

temporalCategories <- function(data) {
# Extract the day from column names
# Assuming column names are in the format XMMdd, e.g., X0101
day_info <- substr(names(data), 2, 3)
day_info <- as.integer(day_info)

# Extract the hour from column names

# Assuming column names are in the format XDDHH, e.g., X0100
hour_info <- substr(names(data), 4, 5)

hour_info <- as.integer(hour_info)

# Determine the year
year <- years[1l]

# Apply this function to each day in your dataset
weekend <- sapply(day_info, is_weekend)

# Apply this function to each hour in your dataset
daytime <- sapplyChour_info, is_daytime)

# Create an empty category variable.
category <- rep(NA, length(weekend))

# Create 4 categories

# 1. Weekend Daytime

# 2. Weekend Nighttime

# 3. Weekday Daytime

# 4. weekday Nightime

for (i in 1:length(weekend))

{
if (weekend[i] == TRUE & daytime[i] == TRUE)
{
category[i] <- 1
} else if (weekend[i] == TRUE & daytime[i] == FALSE)
{
category[i] <- 2
} else if (weekend[i] == FALSE & daytime[i] == TRUE)
{
category[i] <- 3
} else
{
category[i] <- 4
}
}

# Return the result.
return(category)
}

Figure 36. Temporal Categories Function.
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Numerical Representation: The Project Team deactivates R's default scientific notation to
ensure that the numerical data being worked with is immediately interpretable without the need
for transformation.

Defining Temporal Variables: The analysis spans multiple years, segmented into monthly
intervals.

Development of Classification Functions: Functions have been written by the Project Team
to ascertain whether a date falls on a weekend or a weekday and to classify hours as daytime
or nighttime based on predefined thresholds. These classifications are instrumental for the
layered analysis that follows.

Temporal Categorization Function: The custom function ‘temporalCategories’ tags each
data column with time-based categories, delineating the data by both the day of the week and
the hour of the day (see Figure 36).

# Function to produce the matrix of statistical data.
getMatrix <- function(data) {
# Initialize a matrix to store the results
results_matrix <- as.data.frame(matrix(nrow = nrow(data), ncol = 36))
colnames (results_matrix) <- c("sum_AT1_AT1", "Avg_A11_A11", "Max_ATI1_AT11", "Min_AT11_A11",
"sum_Weekend_AT11", "Avg_Weekend_A11", "Max_weekend_A11", "Min_weekend_AT11",
"sum_weekday_Al11", "Avg_weekday_A11", "Max_weekday_A11", "Min_weekday_AT11",
"sum_Al11_Daytime", "Avg_All1_Daytime", "Max_All1_baytime", "Min_All1_baytime",
"Sum_A11_Nighttime", "Avg_A11_Nighttime", "Max_Al1_Nighttime", "Min_A11_Nighttime",
"sum_wWeekend_Daytime", "Avg_weekend_paytime", "Max_weekend_paytime", "Min_weekend_Daytime",
"sum_Weekend_Nighttime"”, "Avg_weekend_Nighttime", "Max_weekend_Nighttime", "Min_weekend_Nighttime",
"Sum_Weekday_Daytime", "Avg_Weekday_Daytime", "Max_Weekday_Daytime", "Min_weekday_Daytime",
"sum_weekday_Nighttime", "Avg_weekday_Nighttime", "Max_weekday_Nighttime", "Min_weekday_Nighttime")

# Get the full months sum, avg, max, and min with categories
results_matrix$sum_AT11_AT1 <- rowsums(datal[, 1:ncol(data)l)
results_matrix$Avg_A11_A11 <- round(rowsums(data[, 1l:ncol(data)]) / ncol(data),5)
results_matrix$Max_A11_A11 <- apply(data, 1, max, na.rm=TRUE)
results_matrix$Min_A11_A11 <- apply(data, 1, min, na.rm=TRUE)

. Weekend Daytime

. Weekend Nighttime

. Weekday Daytime

. Weekday Nightime

# Assuming 'category' is a vector that matches the columns of 'data’'
weekend_indices <- which(category == 1 | category == 2)
weekday_indices <- which(category == 3 | category == 4)
daytime_indices <- which(category == 1 | category == 3)
nighttime_indices <- which(category == 2 | category == 4)
weekend_daytime_indices <- which(category == 1)
weekend_nighttime_indices <- which(category == 2)
weekday_daytime_indices <- which(category == 3)
weekday_nighttime_indices <- which(category == 4)

R kK
HwN R

(a)
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# First, the simple averages by categories.

results_matrix$Avg_Weekend_AT11 <- round(rowSums (data[, ..weekend_indices]) / length(weekend_indices),5)
results_matrix$Avg_weekday_Al11 <- round(rowsums (datal[, ..weekday_indices]) / length(weekday_indices),5)
results_matrix$Avg_Al1_Daytime <- round(rowsums (datal[, ..daytime_indices]) / length(daytime_indices),5)
results_matrix$Avg_AT1_Nighttime <- round(rowSums(data[, ..nighttime_indices]) / length(nighttime_indices),5)
results_matrix$Avg_Weekend_Daytime <- round(rowSums(data[, ..weekend_daytime_indices]) / length(weekend_daytime_indices),5)
results_matrixSAvg_Weekend_Nighttime <- round(rowSums(data[, ..weekend_nighttime_indices]) / length(weekend_nighttime_indices),5)
results_matrix$Avg_weekday_Daytime <- round(rowsums (data[, ..weekday_daytime_indices]) / length(weekday daytime_indices),5)
results_matrix$Avg_weekday_Nighttime <- round(rowsums(datal[, ..weekday_nighttime_indices]) / Tength(weekday_nighttime_indices),5)

# The weekend Data.

temp <- data[, ..weekend_indices]

results_matrixSMax_Weekend_A11 <- apply(temp, 1, max, na.rm=TRUE)
results_matrixiMin_weekend_A11 <- apply(temp, 1, min, na.rm=TRUE)

# The Weekday Data

temp <- datal, ..weekday_indices]
results_matrixSMax_weekday_A11 <- apply(temp, 1
results_matrixSMin_weekday_A11 <- apply(temp, 1

max, na.rm=TRUE)
min, na.rm=TRUE)

# The Daytime Data

temp <- datal[, ..daytime_indices]
results_matrixSMax_Al1_Daytime <- apply(temp, 1
results_matrixSMin_Al1_Daytime <- apply(temp, 1

max, na.rm=TRUE)
min, na.rm=TRUE)

# The Nighttime Data

temp <- datal[, ..nighttime_indices]
results_matrix$Max_AT11_Nighttime <- apply(temp, 1, max, na.rm=TRUE)
results_matrixSMin_Al1_Nighttime <- apply(temp, 1, min, na.rm=TRUE)

# The Four Combinations of Daytime/Nighttime, Weekend/Weekday

temp <- data[, ..weekend_daytime_indices]
results_matrix$Max_Wweekend_Daytime <- apply(temp, 1, max, na.rm=TRUE)
results_matrixSMin_Weekend_Daytime <- apply(temp, 1, min, na.rm=TRUE)
temp <- data[, ..weekday_daytime_indices]
results_matrix$Max_weekday_Daytime <- apply(temp, 1, max, na.rm=TRUE)
results_matrix$Min_weekday_Daytime <- apply(temp, 1, min, na.rm=TRUE)
temp <- datal, ..weekend_nighttime_indices]
results_matrix$Max_Weekend_Nighttime <- apply(temp, 1, max, na.rm=TRUE)
results_matrixSMin_weekend_Nighttime <- apply(temp, 1, min, na.rm=TRUE)
temp <- data[, ..weekday_nighttime_indices]
results_matrix$Max_weekday_Nighttime <- apply(temp, 1, max, na.rm=TRUE)
results_matrixiMin_weekday_Nighttime <- apply(temp, 1, min, na.rm=TRUE)

return(results_matrix)

}
(b)
Figure 37. Function ‘getMatrix’
7. Statistical Computation Function: The getMatrix (Figure 37) function aggregates the data

to produce sums, averages, maximums, and minimums for the various time categories, thus
enabling the Project Team to perform a comprehensive analysis.

Data Aggregation Workflow: The Project Team utilizes a nested loop to iterate through the
years and months, systematically processing hourly data into a structured statistical matrix.
This approach allows for efficient categorization and computation of aggregated statistics.
Spatial Data Integration: In the integration process, the Project Team leverages an
id_match.csv file, as indicated in Step 4 of the Data Conversion section, to map each
precipitation data point to its corresponding geographic identifier.

10. Seasonal Data Aggregation: Acknowledging the significance of seasonal variations in

11.

weather patterns, the developed coding script groups data by meteorological seasons. This
step involves recalculating aggregated statistics to capture variations during distinct periods.
Data Exportation: In the final phase of the process, the Project Team exports the
synthesized data into CSV files. These files serve as a comprehensive and accessible record
for subsequent analysis, reporting, and peer review.
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3.5.4 Driveway Density

The Project Team used Longitudinal Employer-Household Dynamics (LEHD) (USCB, 2024)
and Smart Location Database (SLD) (EPA, 2013) to determine driveway density type. An
interactive tool (https://aitlab.shinyapps.io/DrivewayDensity V03/) has been developed to show
driveway types. Figure 38 shows the interface of the tool.

TX Driveways Visualization

Choose a TxDOT District:

Bryan -

Available Classifications: Added Classifications:
O Major Residential
O Minor Residential
O Major Commercial

Add Selected

([ Minor Commercial
O Major Industrial
([J Minor Industrial

O Major Other
(O Minor Other
[ Other Other
G Remove Selected \J 3 Bryan Classification
M Major Commercial
\ Major Industrial
. ., Z, Major Other
Instructions: : - Il VMajor Residential
—_— 9 Minor Commercial
Add C Select any from the 'Available N o b
Classifications' list and use the ' Add Selected ' button to include them on ~ Minor Other
the map. i K

: I Minor Residential
Remove Classifications: To remove, select any classifications from the g . Other Other
'Added Classifications' list and use the ' Remove Selected * button.

: & ) 3
Meis Uikt 1= ke wil o2 biclly bt i o i e oot P <t | Tiles © Esri — Source: Esii, i-cubed, USDA, USGS, AEX, GeoEye, Getmapping, Aerogrid, IGN, IGP, UPR-EGP, and the GIS User Community
classifications.

Figure 38. Interface of Driveway Density Type Interactive Tool.

3.6 SUMMARY

Chapter 3 focuses on the data preparation process for the safety evaluation of urban roadways.
The Project Team gathered and integrated various datasets, including traffic crash data from the
CRIS, roadway inventory data from the RHiNO, speed data from the NPMRDS and INRIX XD,
and weather data from the C3S and CAMS. A comprehensive data conflation framework was
developed to merge these diverse datasets. The preparation involved assigning speed measures,
integrating crash data, and processing weather data, such as precipitation from Copernicus, to
enhance the overall quality of the dataset. Additionally, both annual and short-duration data were
processed to support long-term safety evaluation and real-time risk analysis.
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https://aitlab.shinyapps.io/DrivewayDensity_V03/

CHAPTER 4:
DATA ANALYSIS AND MODEL DEVELOPMENT

4.1 INTRODUCTION

This chapter offers a concise overview of the exploratory data analysis conducted on the
databases created for both annual and short-duration data. It also includes annual-level SPFs for
urban two-lane and multilane roadways.

4.2 ANNUAL LEVEL DATABASES

The predictive method in HSM Chapter 12 addresses the following urban and suburban arterial
facilities: two- and four-lane undivided facilities, four-lane divided facilities, and three- and five-
lane facilities with center two-way left-turn lanes. Divided arterials are defined as nonfreeway
facilities with travel lanes in both directions separated by a raised or depressed median and may
include occasional grade-separated interchanges that are not the primary form of access. These
predictive models exclude arterial sections within interchange limits that have free-flow ramp
terminals. Arterials with a flush separator (painted median) between travel lanes are classified as
undivided facilities, not divided. Separate prediction models are provided for arterials with a
flush separator functioning as a center two-way left-turn lane. The specific site types are defined
as follows:

* Two-lane undivided arterial (2U): A roadway consisting of two lanes with a continuous
cross-section providing two directions of travel, in which the lanes are not physically
separated by distance or a barrier.

= Three-lane arterial (3T): A roadway consisting of three lanes with a continuous cross-
section providing two directions of travel, in which the center lane is a TWLTL.

* Four-lane undivided arterial (4U): A roadway consisting of four lanes with a
continuous cross-section providing two directions of travel, in which the lanes are not
physically separated by distance or a barrier.

* Four-lane divided arterial (4D): A roadway consisting of four lanes with a continuous
cross-section providing two directions of travel, in which opposing directions are
physically separated by a raised or depressed median or by distance.

= Five-lane arterial with center TWLTL (5T): A roadway consisting of five lanes with a
continuous cross-section providing two directions of travel, in which the center lane is a
TWLTL.

This section presents the descriptive statistics of the key variables used for the annual level
analysis. Table 29 lists crash frequencies by different crash severity type levels and roadway
facility types. Figure 39 displays the distribution of urban roadways by facility types. Table 29
through Table 34, list descriptive statistics of the key variables for annual level analysis.
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Table 29. Total Road Length and Crash Counts by Facility Types for the Annual Model.

Facility Type Total Length ~ Total Number of Crashes (By Crash Severity Type)
(miles) K A B C 0
Two-lane undivided roadways (2U) 28,265.17 773 3,175 10,368 14,771 63,537
Three-lane roadways (3T) 115.47 24 54 217 340 1,197
Four-lane divided roadways (4D) 671.00 1,259 5,109 24,170 42,247 150,939
Four-lane undivided roadways (4U) 2,632.00 1,378 5,805 28,226 49509 177,286
Five-lane roadways (5T) 170.00 216 702 3,017 4,448 15,148
All 31,853.63 3,650 14,845 65,998 111,315 408,107
M
Esri CGIAR, USGS, Texas
A Okiaiiana Parks & Wikdife, Esri. TomToh,
s Garmin, FRO, NOAA, USHs, EPAZEIPS
1 - g s SFWS
02040 80 Miles : 3 ,
Lol &
New Mexico
*
. .-.
ey + ) P
e s R
5 T & Texas " L’ g ‘:‘ I s T
'.- QUISIanas
G, T

LI - - t-
' _h ﬁ‘smﬂ%’
. %

BV -2 Facility Types
— 2
— P=fiE
—— 4D
. —4u

5 . *" 1 - ST
_Monterrey

Figure 39. Distribution of Urban Roadways by Facility Types.

Table 30. Descriptive Statistics of Urban Two-lane Undivided Roadways (Annual Level

Data).
Variables Code Mean SD Min Max
AADT (vpd) ADT CUR 5003.42 4927.74 2 56535.00
Truck proportion TRK _AAD 6.55 6.55 0 94.10
Lane width (ft) LANE WI 12.06 3.34 4 20.00
Inside shoulder width (ft) S WID 1 2.04 3.60 0 30.00
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Outside shoulder width (ft) S WID O 2.08 3.62 0 32.00
K-factor K FAC 10.79 2.88 3.9 99.90
Minor Commercial Driveway MnrCmmr 1.87 3.33 0 55.00
Major Commercial Driveway MjrCmmr 1.06 2.82 0 110.00
Minor Other Driveway MnrOthr 0.07 0.55 0 31.00
Major Industrial Driveway Mjrinds 0.16 0.85 0 26.00
Minor Industrial Driveway MnrInds 0.19 1.01 0 27.00
Minor Residential Driveway MnrRsdn 0.50 1.53 0 25.00
Average operating speed (mph) SpdAve 64.75 11.34 0 75.00
85 percentile speed (mph) SEF 69.78 12.24 0 75.00
Sum of precipitation (in) pS 34.23 20.13 0 66.60
Average of precipitation (in) pA 0.01 0.00 0 0.02

Table 31. Descriptive Statistics of Urban Three-lane Roadways (Annual Level Data).

Variables Code Mean SD Min Max
AADT (vpd) ADT_CUR 12361.88 6649.54 1035 41353.00
Truck proportion TRK AAD 7.88 5.04 1.6 32.10
Lane width (ft) LANE WI 12.74 3.13 10 20.00
Inside shoulder width (ft) S WID 1 4.32 3.97 0 14.00
Outside shoulder width (ft) S WID O 4.31 3.91 0 13.00
K-factor K FAC 9.63 1.99 6 21.70
Minor Commercial Driveway ~ MnrCmmr 0.09 0.47 0 5.00
Major Commercial Driveway MjrCmmr 1.62 1.48 0 7.00
Minor Other Driveway MnrOthr 0.01 0.12 0 1.00
Major Industrial Driveway MjrInds 0.25 0.69 0 5.00
Minor Industrial Driveway MnrInds 0.01 0.08 0 1.00
Minor Residential Driveway MnrRsdn 0.12 0.45 0 4.00
Average operating speed (mph) SpdAve 70.67 9.25 0 75.00
85 percentile speed (mph) SEF 72.23 8.89 0 75.00
Sum of precipitation (in) pS 29.37 18.79 0 45.78
Average of precipitation (in) pA 0.02 0.01 0 0.05

Table 32. Descriptive Statistics of Urban Four-Lane Undivided Roadways (Annual Level

Data).

Variables Code Mean SD Min Max
AADT (vpd) ADT CUR 13357.15 8762.67 2 71576.00
Truck proportion TRK AAD 6.31 5.85 0 81.40
Lane width (ft) LANE WI 12.05 2.60 4 20.00
Inside shoulder width (ft) S WID 1 2.22 3.89 0 30.00
Outside shoulder width (ft) S WID O 2.38 4.08 0 26.00
K-factor K FAC 9.81 1.94 4.3 50.00
Minor Commercial Driveway MnrCmmr 0.75 2.47 0 47.00
Major Commercial Driveway MjrCmmr 3.17 4.95 0 77.00
Minor Other Driveway MnrOthr 0.04 0.35 0 12.00
Major Industrial Driveway MjrInds 0.53 1.90 0 48.00
Minor Industrial Driveway Mnrlnds 0.11 0.94 0 29.00
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Minor Residential Driveway
Average operating speed (mph)
85 percentile speed (mph)

Sum of precipitation (in)
Average of precipitation (in)

MnrRsdn
SpdAve
SEF

pS

pPA

0.12

69.86
74.41

33.31
0.03

0.57

12.14
13.21

15.13
0.01

S O oo O

17.00

80.00
80.00

51.00

Table 33. Descriptive Statistics of Urban Four-Lane Divided Roadways (Annual Level

Data).

Variables Code Mean SD Min Max
AADT (vpd) ADT CUR 20158.73 12155.84 250 140415.00
Truck proportion TRK AAD 9.48 8.01 0.1 81.40
Lane width (ft) LANE WI 12.41 1.56 6 20.00
Inside shoulder width (ft) S WID 1 6.07 5.43 0 30.00
Outside shoulder width (ft) S WID O 12.30 7.64 0 44.00
K-factor K FAC 9.52 1.43 6 21.20
Minor Commercial Driveway MnrCmmr 0.08 0.45 0 8.00
Major Commercial Driveway MjrCmmr 1.73 2.88 0 31.00
Minor Other Driveway MnrOthr 0.04 0.27 0 6.00
Major Industrial Driveway MjrInds 1.12 1.89 0 23.00
Minor Industrial Driveway MnrInds 0.02 0.22 0 5.00
Minor Residential Driveway MnrRsdn 0.03 0.22 0 5.00
Average operating speed (mph) SpdAve 70.23 11.45 0 80.00
85 percentile speed (mph) SEF 72.12 12.75 0 80.00
Sum of precipitation (in) pS 33.31 15.13 0 51.00
Average of precipitation (in) pPA 0.03 0.01 0 0.02

Table 34. Descriptive Statistics of Urban Five-lane Roadways (Annual Level Data).
Variables Code Mean SD Min Max
AADT (vpd) ADT _CUR 19439.50 11000.37 2099 71576.00
Truck proportion TRK _AAD 7.509 4.739 1.3 51.50
Lane width (ft) LANE WI 13.354 2.581 10 20.00
Inside shoulder width (ft) S WID I 4.344 4.379 0 18.00
Outside shoulder width (ft) S WID O 4.859 4.496 0 20.00
K-factor K FAC 9.198 1.384 6.4 21.50
Minor Commercial Driveway MnrCmmr 0.027 0.170 0 2.00
Major Commercial Driveway MjrCmmr 1.570 1.818 0 12.00
Minor Other Driveway MnrOthr 0.006 0.077 0 1.00
Major Industrial Driveway Mjrinds 0.529 1.102 0 8.00
Minor Industrial Driveway MnrInds 0.004 0.067 0 1.00
Minor Residential Driveway MnrRsdn 0.028 0.198 0 2.00
Average operating speed (mph) SpdAve 71.22 10.45 0 80.00
85 percentile speed (mph) SEF 73.27 12.71 0 80.00
Sum of precipitation (in) pS 34.72 13.39 0 57
Average of precipitation (in) pA 0.009 0.004 0 0.02
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4.3 ANNUAL LEVEL SAFETY PERFORMANCE FUNCTIONS

The Project Team populated a list of speed measures that quantify speed with respect to different
aspects. Given a long list, it is imperative to select a measure that is appropriate and meaningful
to include in the SPF development. The team conducted the correlation analysis between speed
measures for the year 2018 and calculated the Pearson correlation coefficient, as shown in Table
35. The speed measures are highly correlated, and it was decided to use the 85th percentile speed
where the operational speeds are higher than the posted speed limit and the standard deviation in
the speed (SpdStd) in SPFs, given their wide range of use.

Table 35. Correlation Analysis Results.

sod | Sod Spd | Spd | Spd | Spd i‘i‘: szg Spd | Spd | Spd
Variable A‘ie s?d Spd8s | Ave | S | Ave | Sid | o | S | Ave | Sid | FF | PSL
Day Day | Night | Night T T FSS FSS Ave
Spd 1
Ave
Spd
o 0.437 1
Spd8s | 0.995 | 0.516 1
SpdAve | 998 | 0403 | 0.989 1
Day
SpdStd | 439 | 0975 | 0511 | 0405 | 1
Day
SpdAve | 90¢ | 0470 | 0997 | 0991 | 0472 | 1
Night
SpdStd 1 4aa | 0948 | 0521 | 0419 | 0.871 | 0469 | 1
Night
SpdAve
MMWT | 1:000 | 0430 | 0994 | 0.998 | 0.432 | 0.997 | 0.439 1
Spdstd
VVwT | 0428 | 0.995 | 0505 | 0.393 | 0978 | 0.462 | 0.929 | 0.420 1
Sfijlg'éve 1.000 | 0.447 | 0.995 | 0.997 | 0.449 | 0.998 | 0.451 | 0.999 | 0.438 1
SpdStd
bog | 0441 | 0.983 | 0.520 | 0.408 | 0.943 | 0.472 | 0.960 | 0435 | 0960 | 0448 | 1
SpdFF
e | 0994 | 0510 | 0.998 | 0.987 | 0.504 | 0.996 | 0.517 | 0.993 | 0500 | 0994 | 0.514 | 1
PSL | 0.989 | 0.538 | 0.997 | 0.982 | 0.529 | 0.992 | 0.548 | 0.988 | 0.527 | 0.989 | 0.544 | 0.998 | 1

4.3.1 SPFs for Freeways

For the SPF development, the team developed adjustment factors for different number of lanes
since each type of cross section has different safety performance. Since PDO crashes are usually
under-reported, it was decided to develop separate models for FI and PDO crashes. The Project
Team first examined different functional forms with various combinations of variables while
modeling the FI crashes. It is assumed that the FI crash model provides a true relationship
between crashes and independent variables. The form presented below reflects the findings from
several preliminary regression analyses. The same form is also used for modeling the PDO
crashes, even if some variables are insignificant or counter-intuitive. The predicted crash
frequency is calculated as follows using Equation (41).
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N = L X y X ebot+bels*bsls+biolio+baaar In(AADT) 5 CMF,, x CMF,,, X CMFs,, X CME,g, (41)
X CMFpp,, X CMFpq

With,
CMF,, = ebtk(tk_perc)

CMF,, = {eblw;lw—“)., if lw < 12ft
e’wz iflw > 12f
CMF,, = {ebisv:,(.isw—4).' L:f sw < 4t
e’iswz if isw > 4ft
ebosw(0sW=8) i f oo < 8ft
CMFysy, = { Boswa i
e’oswz, if osw > 8ft
CMF _ { ebmb(mw—SO), if median barrier is present
mw ebmw(mw—SO), if median barrier is not present
CMFypq = ebspa(Sfef—PSL)
Where,
N = Predicted annual average crash frequency,
L = Segment length, miles,
Number of years of crash data,
I = Indicator variable for 6-lane section (1 if 6 lanes, 0 otherwise),
Ig = Indicator variable for 8-lane section (1 if 8 lanes, 0 otherwise),
I, = Indicator variable for 10+-lane section (1 if 10+ lanes, 0 otherwise),
AADT = Average Annual Daily Traffic, vehicles per day,
CMF,, = CMEF for truck proportion in the traffic mix,
CMF,, = CMF for lane width,
CMF,,,, = Crash Modification Factor for inside shoulder width,

CME,,, = CMF for outside shoulder width,
CME,,, = CMF for median width,
CMFs,q, = CMEF for excess speed,

tk_perc = Percent of trucks in the traffic mix, %,
lw = Lane width, feet,
isw = Inside shoulder width, feet,
osw = Outside shoulder width, feet,
mw = Median width when barrier is not present, feet,
PSL = Posted speed limit, mph,
b; = Calibrated coefficients.

Table 36 and Table 37 provide calibrated coefficients for FI crashes and PDO crashes,
respectively. A significance level of 5 percent is used to include the variables in the model.
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However, when the coefficient is not statistically significant but is intuitive and within logical
boundaries, then those variables are considered as well. The NonLinear MIXED-effects models
(NLMIXED) procedure in the Statistical Analysis System (SAS) software was used to estimate
the proposed model coefficients. This procedure was used because the proposed predictive
model is both nonlinear and discontinuous. The log-likelihood function for the al NB distribution
was used to determine the best-fit model coefficients.

Table 36. Calibrated Coefficients for Fatal and Injury Crashes on Freeways.

Coefficient | Variable Value Std. Dev | t-statistic | P
value
b, Intercept -5.380 0.189 -28.51 <.0001
be Adjustment factor for 6 lanes 0.216 0.026 8.29 <.0001
bg Adjustment factor for 8 lanes 0.359 0.035 10.18 <.0001
bio Adjustment factor for 10+ lanes 0.450 0.052 8.58 <.0001
baaat AADT 0.700 0.017 41.04 <.0001
by Truck proportion -0.022 0.001 -21.02 <.0001
by, Lane width (if <12ft) -0.101 0.051 -2.00 0.0457
b2 Lane width (if >12ft) 0.102 0.063 1.61 0.1084
bisw Inside shoulder width (if <4t) -0.021 0.004 -5.22 <.0001
bisw 2 Inside shoulder width (if >4ft) -0.011 0.027 -0.39 0.6935
bosw Outside shoulder width (if <8ft) -0.005 0.006 -0.92 0.3575
bosw.2 Outside shoulder width (if >8ft) 0.024 0.027 0.88 0.3785
by Median width (if barrier is present) | -0.168 0.034 -4.88 <.0001
b Median width (if barrier is not -0.481 0.038 -12.55 <.0001
mw present)
bspa Excess speed 0.972 0.334 291 0.0036
k Inverse dispersion parameter 1.714 0.017 100.77 <.0001
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Table 37. Calibrated Coefficients for Property Damage Only Crashes on Freeways.

Coefficient | Variable Value Std. Dev | t-statistic | 2
value
b Intercept -4.545 0.187 -24.27 <.0001
bg Adjustment factor for 6 lanes 0.164 0.026 6.32 <.0001
bg Adjustment factor for 8 lanes 0.286 0.035 8.15 <.0001
bio Adjustment factor for 10+ lanes 0.470 0.053 8.84 <.0001
baaat AADT 0.701 0.017 41.12 <.0001
by Truck proportion -0.014 0.001 -14.51 <.0001
by, Lane width (if <12ft) -0.041 0.050 -0.82 0.4144
byy.2 Lane width (if >12ft) 0.120 0.064 1.87 0.0618
bisw Inside shoulder width (if <4t) -0.013 0.004 -3.26 0.0011
bisw 2 Inside shoulder width (if >4ft) 0.011 0.028 0.4 0.6896
bosw Outside shoulder width (if <8ft) -0.011 0.006 -1.81 0.0696
bosw,2 Outside shoulder width (if >8ft) -0.030 0.027 -1.11 0.2659
by Median width (if barrier is present) | -0.201 0.032 -6.2 <.0001
b Median width (if barrier is not -0.583 0.034 -17.01 <.0001
mw present)
bspa Excess speed 0.103 0.324 0.32 0.7497
k Inverse dispersion parameter 1.628 0.015 110.44 <.0001

A comparison of different calibrated freeway SPFs for four-lane freeways is shown in Figure 40
and Figure 41 for FI crashes and total crashes, respectively. The SPFs developed in this project
are compared with the HSM-calibrated SPFs (Geedipally et al., 2022) and the Texas Roadway
Safety Design Workbook (called as Texas WB going forward) (Bonneson and Pratt, 2008). The
equations are plotted for the case of all CMFs equal to 1.0 (representing base conditions). It is
important to note that the SPFs do not include the same set of base conditions and thus they are
not directly comparable to each other. In addition, the Texas WB SPFs are not calibrated to the
current time period. The SPFs are shown for illustration purposes only. Since Texas WB includes
SPFs for FI crashes only, the comparison is made just with HSM SPFs for total crashes.
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Figure 40. SPF comparison for Fatal and Injury Crashes on Freeways.
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Figure 41. SPF comparison for Total Crashes on Freeways.

Crash Modification Factors (CMF)

CMFs were calibrated in conjunction with the SPFs. All of them were calibrated using the FI
crash data. Collectively, they describe the relationship between various operational and
geometric factors and crash frequency. These CMFs are described in this section and, where
possible, compared with the findings from HSM and Texas WB as a means of model validation.

Truck Proportion CMF

The truck proportion CMF is described using Equation 42:
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CMFtk — e—0.0ZZ(tk_perc) (42)

The base condition for this CMF is no trucks in the traffic mix. The truck proportion CMF is
shown in Figure 42. The CMF for truck proportion for urban arterials from Texas WB is used for
comparison. Both CMFs show similar trends. The CMF shows that the crashes decrease as the
proportion of trucks in traffic increases. Although this may seem counterintuitive, trucks usually
travel on high-standard roads and that is reflected in this CMF.
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0.2

0 5 10 15 20 25 30
Truck Percentage, %

Figure 42. CMF for Truck Proportion on Freeways.

Lane Width CMF

The lane width CMF is described using Equation 43:

CMF,, = {e-°~1°1xaw-_12>, if lw < 12ft (43)
1.0, if lw > 12ft
The base condition for this CMF is a 12-ft lane width. The lane width used in this CMF is an
average for all through lanes on the segment. The lane width CMF developed in this study is
shown in Figure 43 using a solid trend line. The lane widths used to calibrate this CMF range
from 10 to 13 ft. The coefficient for lane widths greater than 12ft is found to be statistically
insignificant and counterintuitive, so a value of 1.0 is used. Figure 43 also presents the CMFs
from HSM and the Texas WB. Broken lines are used to differentiate these CMFs from the one
proposed in this research project. The proposed CMF is shown to be more sensitive to lane width
than the CMFs in HSM and Texas WB.
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Figure 43. CMF for Lane Width on Freeways.

Inside Shoulder Width CMF

The inside shoulder width CMF is described using Equation 44:

_ {e—O.OZIX(isw—AL)' if isw < 4ft (44)

CMF,, = g
0.99, if isw > 4ft

The base condition for this CMF is a 4-ft inside shoulder width. The width used in this CMF is
an average for inside shoulders in both directions. The inside shoulder width CMF developed in
this study is shown in Figure 44 using a solid trend line. The inside shoulder widths used to
calibrate this CMF range from 2 to 8 ft. Also shown in Figure 44 are CMFs presented in the
HSM and Texas WB. Broken lines are used to differentiate these CMFs from the one proposed
in this research project. The proposed CMF closely tracks the CMFs presented in the HSM and
Texas WB, however this study found that the rate of improvement with increased shoulder width
diminishes after 4ft.
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Figure 44. CMF for Inside Shoulder Width on Freeways.

QOutside Shoulder Width CMF

The outside shoulder width CMF is described using Equation 45:

CME,g, = {7 i osw < Bt (45)
1.0, if osw > 8ft
The base condition for this CMF is an 8-ft outside shoulder width. The width used in this CMF is
average for outside shoulders in both directions. The outside shoulder width CMF developed in
this study is shown in Figure 45 using a solid trend line. The outside shoulder widths used to
calibrate this CMF range from 6 to 12 ft. The coefficient for shoulder widths greater than 8ft is
found to be statistically insignificant and counterintuitive, so a value of 1.0 is used. Also shown
in Figure 45 are CMFs presented in HSM and Texas WB. Since HSM and Texas WB have a 10-
ft base condition, the CMF developed in this study is adjusted accordingly. Broken lines are used
to differentiate these CMFs from the one proposed in this research project. The proposed CMF
closely tracks the CMFs presented in the Texas WB. The CMF presented in HSM is shown to be
more sensitive to outside shoulder width than the proposed CMF or the one in the Texas WB.
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Median Width CMF

The median width CMF is described using Equation 46.

e—0.168><0.01><(mw—30), if median barrier is present (46)
CME,,, =

e—0.481><0.01><(mw—30), if median barrier is not present

The base condition for this CMF is a 30-ft median width. The median width CMF is shown in
Figure 46 using a solid trend line. The CMF proposed in this research is compared with the CMF
in HSM and Texas WB in Figure 46. Broken lines are used to differentiate these CMFs from the
one proposed in this research project. The proposed CMF closely tracks the CMFs presented in
the HSM for medians with barriers present.
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Figure 46. CMF for Median Width on Freeways.

Excess Speed CMF

The excess speed CMF is described using Equation 47.
CMFg,q = 0-972x0.01x(Sfef~PSL) (47)

The base condition for this CMF varies according to the posted speed limit. Since the operating
speed CMF does not exist in HSM or Texas WB, a comparison could not be made. The CMF
shows that exceeding the PSL by 10 mph increases the crashes by 10% (see Figure 47).
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Figure 47. CMF for Operating Speeds on Freeways.
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4.3.2 SPFs for Multi-lane Divided Highways

For the SPF development, the team developed adjustment factors for different number of lanes
since each type of cross section has different safety performance. The predicted crash frequency

is calculated as follows in Equation (48);
N = L X y x ePot+bels+bsls*+Daaarn(AADT) 5 CMF,, X CMF,, X CMFjs,, X CMF,, X
CMFEy,, X CMFg,, X CMFg,q;

With,
CMFtk — ebtk(tk_perc)
b, (lw-12)
ebw , w <12ft
CMFIW = b . lf v f
e’wz iflw > 12ft
bisw(isw—4) ¢
elisw , If isw < 4ft
CMFgy =1 2 YW=
e’iswz if isw > 4ft
bosw(osw—-8) < 8ft
e , if osw <
CMF,,, = ) - U 4
e’oswz, if osw > 8ft
ebmb (mw=30), if median barrier is present
CMFmW = {ebmw(mw—30), if median barrier is not present
CMFdW — ebdw(0.0IXDD)
CMFspd = ebspd(sfef_PSL)
Where,
CMF,, = Crash Modification Factor for driveway density,

DD

Driveway density.

Table 38 and Table 39 provide calibrated coefficients for FI crashes and PDO crashes
respectively.
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Table 38. Calibrated Coefficients for FI Crashes on Multi-lane Divided Highways.

Coefficient | Variable Value Std. Dev | t-statistic | P
value
b, Intercept -5.083 0.221 -22.98 <.0001
be Adjustment factor for 6 lanes 0.330 0.032 10.15 <.0001
bg Adjustment factor for 8+ lanes 0.541 0.113 4.78 <.0001
baaat AADT 0.647 0.022 29.78 <.0001
by Truck proportion -0.017 0.002 -9.18 <.0001
by, Lane width (if <12ft) -0.098 0.032 -3.06 0.0022
b 2 Lane width (if >12ft) 0.100 0.041 2.44 0.0147
bisw Inside shoulder width (if <4t) -0.030 0.004 -7.84 <.0001
bisw > Inside shoulder width (if >4ft) 0.110 0.047 2.34 0.0193
bosw Outside shoulder width (if <8ft) -0.034 0.004 -7.79 <.0001
bosw.2 Outside shoulder width (if >8ft) 0.074 0.032 2.33 0.0199
by Median width (if barrier is present) | -0.265 0.051 -5.21 <.0001
b Median width (if barrier is not -0.213 0.030 -7.18 <.0001
mw present)
baw Driveway density 0.016 0.002 6.32 <.0001
bspa Excess speed 3.463 0.460 7.52 <.0001
k Inverse dispersion parameter 1.394 0.018 75.92 <.0001
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Table 39. Calibrated Coefficients for PDO Crashes on Multi-lane Divided Highways.

Coefficient | Variable Value Std. Dev | t-statistic | P

value
b, Intercept -4.723 0.203 -23.27 <.0001
be Adjustment factor for 6 lanes 0.320 0.031 10.23 <.0001
bg Adjustment factor for 8+ lanes 0.629 0.111 5.67 <.0001
baaat AADT 0.678 0.020 33.94 <.0001
by Truck proportion -0.011 0.002 -6.5 <.0001
by, Lane width (if <12ft) -0.140 0.031 -4.53 <.0001

byy.2 Lane width (if >12ft) 0.130 0.040 3.28 0.001
bisw Inside shoulder width (if <4t) -0.033 0.004 -9.01 <.0001

bisw 2 Inside shoulder width (if >4ft) 0.082 0.046 1.79 0.073
bosw Outside shoulder width (if <8ft) -0.033 0.004 -8.03 <.0001
bosw.2 Outside shoulder width (if >8ft) 0.090 0.030 297 0.0029
by Median width (if barrier is present) | -0.190 0.051 -3.74 0.0002
b Median width (if barrier is not -0.255 0.028 -9.07 <.0001

mw present)

by Driveway density 0.021 0.002 8.85 <.0001
bspa Excess speed 3.280 0.435 7.54 <.0001
k Inverse dispersion parameter 1.376 0.016 87.87 <.0001

A comparison of different calibrated multi-lane divided SPFs is shown in Figure 48 and Figure
49 for FI crashes and total crashes, respectively. The SPFs developed in this project are
compared with the calibrated HSM SPFs and Texas WB. The equations are plotted for the case
of all CMFs equal to 1.0 (representing base conditions). It is important to note that the SPFs do
not include the same set of base conditions and thus they are not directly comparable to each
other. In addition, the Texas WB SPFs are not calibrated to the current time period. The SPFs are
shown for illustration purposes only. Since Texas WB includes SPFs for FI crashes only, the
comparison is made just with HSM SPFs for total crashes.
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Figure 48. SPF Comparison for FI Crashes on Multi-lane Divided Highways.
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Figure 49. SPF Comparison for Total Crashes on Multi-lane Divided Highways.

Crash Modification Factors

Several CMFs were calibrated in conjunction with the SPFs. All of them were calibrated using
the FI crash data. These CMFs are described in this section and, where possible, compared with
the findings from the HSM and Texas WB as a means of model validation.

Truck Proportion CMF

The truck proportion CMF is described using Equation 49:

CMFtk — e—0.017(tk_perc) (49)
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The base condition for this CMF is no trucks in the traffic mix. The truck proportion CMF is
shown in Figure 50. The CMF for truck proportion for urban arterials from Texas WB is used for
comparison. Both CMFs show similar trends. The CMF shows that the crashes decrease with the
increase in truck proportion in traffic. Although this may seem counterintuitive, trucks usually
travel on high-standard roads, and that is reflected in this CMF.

14

0-7144 = = —=Texas WB

=
]

[y

o
00

Crash Modification Factor
(=] (=]
B o

©
o

]

0 5 10 15 20 25 30
Truck Percentage, %

Figure 50. CMF for Truck Proportion on Multi-Lane Divided Highways.

Lane Width CMF

The lane width CMF is described using Equation 50:

CMF,, = {9‘0'098(“’"‘.12), if lw<12ft (50)
1.0, if lw > 12ft
The base condition for this CMF is a 12-ft lane width. The lane width used in this CMF is an
average for all through lanes on the segment. The lane width CMF developed in this study is
shown in Figure 51 using a solid trend line. The lane widths used to calibrate this CMF range
from 10 to 13 ft. The coefficient for lane widths greater than 12ft is found to be marginally
significant and counterintuitive, so a value of 1.0 is used. Also shown in Figure 51 is the CMF
presented in the Texas WB. Broken lines are used to differentiate this CMF from the one
proposed in this research project. It is important to note that the HSM does not include a CMF
for lane width for urban arterials. The proposed CMF is shown to be more sensitive to lane width
than the CMF in the Texas WB.
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Figure 51. CMF for Lane Width on Multi-Lane Divided Highways.

Inside Shoulder Width CMF

The inside shoulder width CMF is described using Equation 51:

CMF,, = {e‘°'°3ox(i5""._4?, if isw < 4ft (51)
1.0, if isw > 4ft
The base condition for this CMF is a 4-ft inside shoulder width. The width used in this CMF is
an average for inside shoulders in both directions. The inside shoulder width CMF developed in
this study is shown in Figure 52 using a solid trend line. The coefficient for inside shoulder
widths greater than 4ft is found to be marginally significant and counterintuitive, so a value of
1.0 is used. The inside shoulder widths used to calibrate this CMF range from 2 to 10 ft. Also
shown in Figure 52 is the CMF presented in the Texas WB. It is important to note that the HSM
does not include a CMF for inside shoulder width for urban arterials. The proposed CMF tracks
well with the CMF in the Texas WB.
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Figure 52. CMF for Inside Shoulder Width on Multi-lane Divided Highways.

QOutside Shoulder Width CMF

The outside shoulder width CMF is described using Equation 52:

CME _ {8—0.034><(osw—8)' if osw < 8ft (52)
osw 1.0, if osw > 8ft
The base condition for this CMF is an 8-ft outside shoulder width. The width used in this CMF is
an average for outside shoulders in both directions. The outside shoulder width CMF developed
in this study is shown in Figure 53 using a solid trend line. The outside shoulder widths used to
calibrate this CMF range from 6 to 12 ft. The coefficient for outside shoulder widths greater than
8ft is found to be marginally significant and counterintuitive, so a value of 1.0 is used. Also
shown in Figure 53 are CMF presented in the Texas WB. Broken lines are used to differentiate
this CMF from the one proposed in this research project. It is important to note that the HSM
does not include a CMF for outside shoulder width for urban arterials. The proposed CMF is
more sensitive to the outside shoulder width than the Texas WB CMF.
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Figure 53. CMF for Outside Shoulder Width on Multi-lane Divided Highways.

Median Width CMF

The median width CMF is described using Equation 53.

e—0.265><0.01><(mw—30), if median barrier is present (53)
CME,,, =

e 02 13x0.01x(mw—-30), if median barrier is not present
The base condition for this CMF is a 30-ft median width. The median width CMF is shown in
Figure 54 using a solid trend line for median with barriers and with dotted lines for median
without barriers. The CMF proposed in this research is compared with the CMF in HSM. The
proposed CMFs are more sensitive to the median width than the CMF presented in the HSM.
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Figure 54. CMF for Median Width on Multi-lane Divided Highways.
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Excess Speed CMF

The excess speed CMF is described using Equation 54.

CMFypy = 3463x0.01x(Sfef—PSL) (54)

The base condition for this CMF varies according to the posted speed limit. Figure 55 shows the
CMF for excess speeds on multi-lane divided highways. Since the operating speed CMF does not
exist in HSM or Texas WB, a comparison could not be made. The CMF shows that exceeding
the PSL by 10 mph increases the crashes by 40%. Over speeding has a more pronounced effect
on multi-lane divided arterials than on freeways.
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Figure 55. CMF for Excess Speeds on Multi-Lane Divided Highways.

Driveway CMF

The driveway CMF is described using Equation 55.
CMF,,; = ¢°016(0.1xDD) (55)

The base condition for this CMF is no driveways. The driveway CMF is shown in Figure 56
using a solid trend line for residential driveway density. The Project Team developed an equation
to convert industrial and commercial driveways into equivalent residential driveways based on
traffic volumes in their previous research (Geedipally et al., 2021). Mainly, it was found that one
industrial driveway is equivalent to 3 residential and one commercial driveway is equivalent to
12 residential driveways.
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Figure 56. CMF for Driveway Density on Multi-lane Divided Highways.

4.3.3 SPFs for Multi-lane Undivided Highways

For the SPF development, the team just considered the four-lane highways, given the large
sample size in that category. The predicted crash frequency is calculated as follows in Equation
(56).

N =L X y X ePo+bacarn(44DT) 5 CMF,, x CMF,, X CMF,,, X CMFg,q X CMFy,, X (56)

CME,ye;
With,
CMF,, = ebiw(w=12)
CMF,, = elsw(sw—6)
CMFSpd — ebspd(Sfef—PSL)
CMFdW — ede(O.leDD)
CMFpre — ebpre(p‘r'e)XO.l
Where,
CMF,, = Crash Modification Factor for average shoulder width,
CMEF,,. = Crash Modification Factor for average daily precipitation,
sw = Average shoulder width, feet,
pre = Average yearly precipitation, inches,
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Table 40 and Table 41 provide calibrated coefficients for FI crashes and PDO crashes,
respectively.

Table 40. Calibrated Coefficients for FI Crashes on Multi-lane Undivided Highways.

Coefficient Variable Value Std. Dev t-statistic P
value
b Intercept -6.679 0.168 -39.75 <.0001
baaat AADT 0.863 0.017 50.28 <.0001
by Truck proportion -0.017 0.002 -10.49 <.0001
by, Lane width -0.015 0.013 -1.14 0.2528
bs Shoulder width -0.020 0.002 -9.32 <.0001
bspa Excess speed 0.025 0.003 8.1 <.0001
baw Driveway density 0.011 0.002 5.66 <.0001
byre Precipitation 0.076 0.019 4 <.0001
k Inverse dispersion 1.563 0.016 99.5 <.0001
parameter

Table 41. Calibrated Coefficients for PDO Crashes on Multi-lane Undivided Highways.

Coefficient Variable Value Std. Dev t-statistic P
value
b, Intercept -5.829 0.156 -37.4 <.0001
baaat AADT 0.857 0.016 53.71 <.0001
by Truck proportion -0.005 0.002 -3.48 0.0005
by, Lane width -0.069 0.013 -5.34 <.0001
bsy Shoulder width -0.020 0.002 -9.57 <.0001
bspa Excess speed 0.018 0.003 5.87 <.0001
baw Driveway density 0.011 0.002 6.17 <.0001
byre Precipitation 0.007 0.018 0.38 0.7072
k Inverse dispersion 1.520 0.013 117.21 <.0001
parameter

A comparison of different calibrated multi-lane undivided SPFs is shown in Figure 57 and Figure
58 for FI crashes and total crashes, respectively. The SPFs developed in this project are
compared with the HSM-calibrated SPFs and Texas WB. The equations are plotted for the case
of all CMFs equal to 1.0 (representing base conditions). It is important to note that the SPFs do
not include the same set of base conditions and thus they are not directly comparable to each
other. In addition, the Texas WB SPFs are not calibrated to the current time period. The SPFs are
shown for illustration purposes only. Since Texas WB includes SPFs for FI crashes only, the
comparison is made just with HSM SPFs for total crashes.
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Figure 57. SPF comparison for Fatal and Injury Crashes on Multi-lane Undivided
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Figure 58. SPF comparison for Total Crashes on Multi-lane Undivided Highways.

Crash Modification Factors

Several CMFs were calibrated in conjunction with the SPFs. All of them were calibrated using
the FI crash data. These CMFs are described in this section and, where possible, compared with
the findings from HSM and Texas WB as a means of model validation.

Truck Proportion CMF

The truck proportion CMF is described using Equation 57:
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CMFtk — e—0.017(tk_perc) (57)

The base condition for this CMF is no trucks in the traffic mix. The truck proportion CMF is
shown in Figure 59. The CMF for truck proportion for urban arterials from Texas WB is used for
comparison. Both CMFs show similar trends. The CMF shows that the crashes decrease with the
increase in truck proportion in traffic. Although this may seem counterintuitive, trucks usually
travel on high-standard roads.
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Figure 59. CMF for Truck Proportion on Multi-Lane Undivided Highways.

Lane Width CMF

The lane width CMF is described using Equation 58:
CMF,, = e~0.015(w=12) (58)

The base condition for this CMF is a 12-ft lane width. The lane width used in this CMF is an
average for all through lanes on the segment. The lane width CMF developed in this study is
shown in Figure 60 using a solid trend line. The lane widths used to calibrate this CMF range
from 10 to 13 ft. The coefficient for lane widths greater than 12ft is found to be marginally
significant and counterintuitive, so a value of 1.0 is used. Also shown in Figure 60 is the CMF
presented in the Texas WB. Broken lines are used to differentiate this CMF from the one
proposed in this research project. It should be noted that the HSM does not include CMF for lane
width for urban arterials. The proposed CMF is shown to be less sensitive to lane width than the
CMF in the Texas WB.
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Figure 60. CMF for Lane Width on Multi-Lane Undivided Highways.

Shoulder Width CMF

The shoulder width CMF is described using Equation 59:
CMFiSW — e—0.0ZOX(SW—6) (59)

The base condition for this CMF is a 6-ft shoulder width. The width used in this CMF is an
average for shoulders in both directions. The shoulder width CMF developed in this study is
shown in Figure 61 using a solid trend line. The shoulder widths used to calibrate this CMF
range from 0 to 8 ft. Also shown in Figure 61 is the CMF presented in the Texas WB. It should
be noted that HSM does not include CMF for shoulder width for urban arterials. The proposed
CMF is shown to be less sensitive to shoulder width than the CMF in the Texas WB.
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Figure 61. CMF for Shoulder Width on Multi-lane Undivided Highways.

Excess Speed CMF

The excess speed CMF is described using Equation 60.

CMFypq = 0-025X(Sfef~PSL) (60)
The base condition for this CMF varies according to the posted speed limit. Figure 62 shows the
CMF for excess speeds on multi-lane undivided highways. Since the operating speed CMF does
not exist in HSM or Texas WB, a comparison could not be made. The CMF shows that
exceeding the PSL by 10 mph increases the crashes by 30%.
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Figure 62. CMF for Excess Speeds on Multi-Lane Undivided Highways.

Driveway CMF

The driveway CMF is described using Equation 61.
CMF,,, = ¢%011(0:1xDD) 61)

The base condition for this CMF is no driveways. The driveway CMF is shown in Figure 63 for
residential driveway density.
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Figure 63. CMF for Driveway Density on Multi-lane Undivided Highways.

Precipitation CMF

The precipitation CMF is described using Equation 62.
CMFpre — e0.076(0.1><pre) (62)

The base condition for this CMF is an annual average precipitation of 0 inches. Since the
precipitation CMF does not exist in HSM or Texas WB, a comparison could not be made. The
precipitation CMF is shown in Figure 64 using a solid trend line. The CMF shows that
precipitation has a greater influence on the occurrence of crashes. For instance, every 1 inch of
rainfall increases crashes by 1 percent.
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Figure 64. CMF for Precipitation on Multi-lane Undivided Highways.

4.3.4 SPFs for Multi-lane Undivided Highways with Continuous Left Turn Lane

For the SPF development, the team considered all multi-lane highways that had a continuous left
turn lane. The predicted crash frequency is calculated as follows.
N =L X y x ePo+bacarIn(44DT) 5 CMF,, x CMFy,, X CMFgpq X CMFy,,; (63)

With,
CMFIW — eblw(lw—12)
CMF;W — ebsw(sw—é)
CMF,,q = ebspa(Sfef=PsL)

CMFdW — ebdw(0.0IXDD)

Table 42 and Table 43 provide calibrated coefficients for FI crashes and PDO crashes,
respectively.
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Table 42. Calibrated Coefficients for FI Crashes on Multi-lane Undivided Highways with
Continuous Turn Lane.

Coefficient Variable Value Std. Dev t-statistic p-
value

by Intercept -9.029 0.550 -16.41 <.0001

baaat AADT 1.030 0.056 18.30 <.0001

b, Lane width -0.028 0.011 -2.52 0.0117

bs,, Shoulder width -0.056 0.006 -8.69 <.0001

bspa Excess speed 0.038 0.012 3.18 0.0015

b, Driveway density 0.030 0.006 4.92 <.0001

k Inverse dispersion 1.671 0.049 34.19 <.0001

parameter

Table 43. Calibrated Coefficients for PDO Crashes on Multi-lane Undivided Highways
with Continuous Turn Lane.

Coefficient Variable Value Std. Dev t-statistic b
value

by Intercept -8.666 0.532 -16.28 <.0001

baaat AADT 1.061 0.055 19.44 <.0001

by, Lane width -0.040 0.010 -3.91 <.0001

bsy Shoulder width -0.057 0.006 -9.15 <.0001

bspa Excess speed 0.025 0.012 2.09 0.0366

baw Driveway density 0.037 0.006 6.52 <.0001

k Inverse dispersion 1.656 0.041 39.99 <.0001

parameter

A comparison of different calibrated multi-lane undivided with continuous turn lane SPFs is
shown in Figure 65 and Figure 66 for FI crashes and total crashes, respectively. The SPFs
developed in this project are compared with the calibrated HSM SPFs and Texas WB. The
equations are plotted for the case of all CMFs equal to 1.0 (representing base conditions). It is
important to note that the SPFs do not include the same set of base conditions and thus they are
not directly comparable to each other. In addition, the Texas WB SPFs are not calibrated to the

current time period. The SPFs are shown for illustration purposes only. Since Texas WB includes
SPFs for FI crashes only, the comparison is made just with HSM SPFs for total crashes.
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Figure 65. SPF comparison for Fatal and Injury Crashes on Multi-lane Undivided
Highways with Continuous Left Turn Lane.
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Figure 66. SPF comparison for Total Crashes on Multi-lane Undivided Highways with
Continuous Left Turn Lane.

Crash Modification Factors

Several CMFs were calibrated in conjunction with the SPFs. All of them were calibrated using
the FI crash data. These CMFs are described in this section and, where possible, compared with
the findings from HSM and Texas WB as a means of model validation.

Lane Width CMF

The lane width CMF is described using Equation 64:
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CMF,, = e —0.015(w—12) (64)

The base condition for this CMF is a 12-ft lane width. The lane width used in this CMF is an
average for all through lanes on the segment. The lane width CMF developed in this study is
shown in Figure 67 using a solid trend line. The lane widths used to calibrate this CMF range
from 10 to 13 ft. Also shown in Figure 67 is the CMF presented in the Texas WB. Broken lines
are used to differentiate these CMFs from the one proposed in this research project. It should be
noted that the HSM does not include CMF for the lane width for urban arterials. The proposed
CMF is shown to be less sensitive to lane width than the CMF in the Texas WB.
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Figure 67. CMF for Lane Width on Multi-Lane Undivided Highways with Continuous Left
Turn Lane.

Shoulder Width CMF

The shoulder width CMF is described using Equation 65:

CMFiSW — e—0.056><(SW—6) (65)
The base condition for this CMF is a 6-ft shoulder width. The width used in this CMF is an
average for shoulders in both directions. The shoulder width CMF developed in this study is

shown in Figure 68 using a solid trend line. The inside shoulder widths used to calibrate this
CMF range from 0 to 8 ft. Also shown in Figure 68 is the CMF presented in the Texas WB. It
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should be noted that the HSM does not include CMF for the shoulder width for urban arterials.
The proposed CMF is shown to be less sensitive to shoulder width than the CMF in the Texas
WB.
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Figure 68. CMF for Shoulder Width on Multi-lane Undivided Highways with Continuous
Left Turn Lane.

Excess Speed CMF

The excess speed CMF is described using Equation 66.
CMFypq = £0-038X(Sfef—PSL) (66)

The base condition for this CMF varies according to the posted speed limit. Figure 69 shows the
CMF for excess speeds on multi-lane, undivided highways with a continuous left turn lane. Since
the operating speed CMF does not exist in HSM or Texas WB, a comparison could not be made.
The CMF shows that exceeding the PSL by 10 mph increases the crashes by 45%.
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Figure 69. CMF for Excess Speeds on Multi-Lane Undivided Highways with Continuous
Left Turn Lane.

Driveway CMF

The driveway CMF is described using Equation 67.
CMFstd — e0.03(O.1XDD) (67)

The base condition for this CMF is no driveways. The driveway CMF is shown in Figure 70 for
residential driveway density.
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Figure 70. CMF for Driveway Density on Multi-lane Undivided Highways with Continuous
Left Turn Lane.

SPFs for Two-lane Undivided Highways with Continuous Left Turn Lane

For the SPF development, the team considered all two-lane highways that had a continuous left
turn lane. The predicted crash frequency is calculated as follows.
N =L X y x ePotbacacIn(A4DT) 5 CMF,, x CMFypq X CMFy,; (68)

With,

CMst — ebsw(sw—6)

CMFypq = ebspa(Sfef—PSL)

CMF,,, = ebaw(0.01xDD)
Table 44 and Table 45 provide calibrated coefficients for FI crashes and PDO crashes,
respectively.
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Table 44. Calibrated Coefficients for FI Crashes on Two-lane Undivided Highways with
Continuous Turn Lane.

Coefficient Variable Value Std. Dev t-statistic P
value

by Intercept -7.946 1.365 -5.82 <.0001

bagat AADT 0.895 0.146 6.14 <.0001

bs Shoulder width -0.036 0.020 -1.84 0.0664

bspa Excess speed 0.018 0.018 0.98 0.3279

baw Driveway density 0.048 0.014 3.56 0.0004

k Inverse dispersion 1.655 0.139 11.88 <.0001

parameter

Table 45. Calibrated Coefficients for PDO Crashes on Two-lane Undivided Highways with
Continuous Turn Lane.

Coefficient Variable Value Std. Dev t-statistic P
value
b, Intercept -6.349 1.183 -5.37 <.0001
baaat AADT 0.808 0.128 6.33 <.0001
bs, Shoulder width -0.031 0.017 -1.82 0.0698
bspa Excess speed -- -- -- --
baw Driveway density 0.050 0.012 4.04 <.0001
k Inverse dispersion 1.746 0.109 16.01 <.0001
parameter

A comparison of different calibrated two-lane undivided with continuous turn lane SPFs is
shown in Figure 71 and Figure 72 for FI crashes and total crashes, respectively. The SPFs
developed in this project are compared with the calibrated HSM SPFs and Texas WB. The
equations are plotted for the case of all CMFs equal to 1.0 (representing base conditions). It is
important to note that the SPFs do not include the same set of base conditions and thus they are
not directly comparable to each other. In addition, the Texas WB SPFs are not calibrated to the

current time period. The SPFs are shown for illustration purposes only. Since Texas WB includes
SPFs for FI crashes only, the comparison is made just with HSM SPFs for total crashes.
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Figure 71. SPF comparison for Fatal and Injury Crashes on Two-lane Undivided Highways
with Continuous Left Turn Lane.

12

0-7144 =— — H5M
10

Total Crash Frequency, crashes/yr/mile

0 5000 10000 15000 20000 25000 30000
Average Daily Traffic, veh/day

Figure 72. SPF comparison for Total Crashes on Two-lane Undivided Highways with
Continuous Left Turn Lane.
Crash Modification Factors
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Several CMFs were calibrated in conjunction with the SPFs. All of them were calibrated using
the FI crash data. These CMFs are described in this section and, where possible, compared with
the findings from HSM and Texas WB as a means of model validation.

Shoulder Width CMF

The shoulder width CMF is described using Equation 69:
CMFSW — e—0.036X(SW—6) (69)

The base condition for this CMF is a 6-ft shoulder width. The width used in this CMF is an
average for shoulders in both directions. The shoulder width CMF developed in this study is
shown in Figure 73 using a solid trend line. The inside shoulder widths used to calibrate this
CMF range from 0 to 8 ft. Also shown in Figure 73 is the CMF presented in the Texas WB. The
proposed CMF is shown to be less sensitive to shoulder width than the CMF in the Texas WB.
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Figure 73. CMF for Shoulder Width on Two-lane Undivided Highways with Continuous
Left Turn Lane.

Excess Speed CMF

The excess speed CMF is described using Equation 70.

CMFypy = £0.018X(Sfef—PSL) (70)

The base condition for this CMF varies according to the posted speed limit. Figure 74 shows the
CMF for excess speeds on multi-lane undivided highways. Since the operating speed CMF does
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not exist in HSM or Texas WB, a comparison could not be made. The CMF shows that
exceeding the PSL by 10 mph increases the crashes by 20%.
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Figure 74. CMF for Excess Speeds on Two-Lane Undivided Highways with Continuous
Left Turn Lane.

Driveway CMF

The driveway CMF is described using Equation 71.
CMFstd — e0.03(0.1><DD) (71)

The base condition for this CMF is no driveways. The driveway CMF is shown in Figure 75 for
residential driveway density.
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Figure 75. CMF for Driveway Density on Two-lane Undivided Highways with Continuous
Turn Lane.

4.3.5 SPFs for Two-lane Highways

The predicted crash frequency is calculated as follows.
N =L X y x ePotbaaarIn(44DT) 5 CMF,, x CMF,,, X CMF,,, X CMFg,q X CMFy, X (72)
CMPEyyre;
With,
CMF,, = ebiw(w=12)
CMF;W — ebsw(sw—é)
CMFgpy = ebspd(Sfef—PSL)
CMEF,,, = ebaw(0.01xDD)
CMFpre — ebpre(pre)xo.l
Table 46 and Table 47 provide calibrated coefficients for FI crashes and PDO crashes,
respectively.
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Table 46. Calibrated Coefficients for FI Crashes on Two-lane Highways.

Coefficient Variable Value Std. Dev t-statistic p-
value
b, Intercept -6.611 0.147 -45.07 <.0001
baaat AADT 0.797 0.016 48.68 <.0001
by Truck proportion -0.006 0.002 -3.55 0.0004
b, Lane width -0.025 0.043 -0.59 0.5523
bs,, Shoulder width -0.010 0.003 -3.30 0.001
bspa Excess speed - -- - -
baw Driveway density 0.034 0.003 10.82 <.0001
byre Precipitation 0.114 0.021 5.34 <.0001
k Inverse dispersion 1.230 0.022 56.13 <.0001
parameter

Table 47. Calibrated Coefficients for PDO Crashes on Two-lane Highways.

Coefficient Variable Value Std. Dev t-statistic P
value
b, Intercept -6.102 0.132 -46.18 <.0001
b,aat AADT 0.834 0.015 57.22 <.0001
b Truck proportion -0.002 0.001 -1.15 0.2497
by, Lane width 0.090 0.014 6.28 <.0001
b, Shoulder width -0.023 0.003 -7.81 <.0001
bspa Excess speed -0.007 0.004 -1.59 0.1111
baw Driveway density 0.042 0.003 14.39 <.0001
byre Precipitation 0.017 0.020 0.88 0.3814
K Inverse dispersion 1.164 0.016 72.03 <.0001
parameter

A comparison of different calibrated multi-lane undivided SPFs is shown in Figure 76 and Figure
77 for FI crashes and total crashes, respectively. The SPFs developed in this project are
compared with the calibrated HSM SPFs and Texas WB. The equations are plotted for the case
of all CMFs equal to 1.0 (representing base conditions). It is important to note that the SPFs do
not include the same set of base conditions and thus they are not directly comparable to each
other. In addition, the Texas WB SPFs are not calibrated to the current time period. The SPFs are
shown for illustration purposes only. Since Texas WB includes SPFs for FI crashes only, the
comparison is made just with HSM SPFs for total crashes.
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Figure 76. SPF comparison for FI Crashes on Two-lane Undivided Highways.
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Figure 77. SPF comparison for Total Crashes on Two-lane Undivided Highways.

Crash Modification Factors

Several CMFs were calibrated in conjunction with the SPFs. All of them were calibrated using
the FI crash data. These CMFs are described in this section and, where possible, compared with
the findings from the HSM and Texas WB as a means of model validation.

Truck Proportion CMF

The truck proportion CMF is described using Equation 73:
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CMFtk — e—0.006(tk_perc) (73)

The base condition for this CMF is no trucks in the traffic mix. The truck proportion CMF is
shown in Figure 78. The CMF for truck proportion for urban arterials from Texas WB is used for
comparison. Both CMFs show similar trends. The CMF shows that the crashes decrease with the
increase in truck proportion in traffic. Although this may seem counterintuitive, trucks usually
travel on high standard roads.
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Figure 78. CMF for Truck Proportion on Two-Lane Undivided Highways.

Lane Width CMF

The lane width CMF is described using Equation 74:
CMF,, = g —0-025(1w—12) (74)

The base condition for this CMF is a 12-ft lane width. The lane width used in this CMF is an
average for all through lanes on the segment. The lane width CMF developed in this study is
shown in Figure 79 using a solid trend line. The lane widths used to calibrate this CMF range
from 10 to 13 ft. Also shown in Figure 79 is the CMF presented in the Texas WB. Broken lines
are used to differentiate this CMF from the one proposed in this research project. The proposed
CMF is shown to be less sensitive to lane width than the CMF in the Texas WB.
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Figure 79. CMF for Lane Width on Two-Lane Undivided Highways.

Shoulder Width CMF

The shoulder width CMF is described using Equation 75:
CMFiSW — e—0.0lX(.S‘W—6) (75)

The base condition for this CMF is a 6-ft shoulder width. The width used in this CMF is an
average for shoulders in both directions. The shoulder width CMF developed in this study is
shown in Figure 80 using a solid trend line. The inside shoulder widths used to calibrate this
CMF range from 0 to 8 ft. Also shown in Figure 80 is the CMF presented in the Texas WB. The
proposed CMF is shown to be less sensitive to shoulder width than the CMF in the Texas WB.
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Figure 80. CMF for Shoulder Width on Two-lane Undivided Highways.
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Driveway CMF

The driveway CMF is described using Equation 76.
CMF,,y = 0-034(0.1xDD) (76)

The base condition for this CMF is no driveways. The driveway CMF is shown in Figure 81 for
residential driveway density.
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Figure 81. CMF for Driveway Density on Two-lane Divided Highways.

Precipitation CMF

The precipitation CMF is described using Equation 77.
CMFpre — eO.114(0.1><pre) (77)

The base condition for this CMF is an annual average precipitation of 0 inches. Since the
precipitation CMF does not exist in HSM or Texas WB, a comparison could not be made. The
precipitation CMF is shown in Figure 82 using a solid trend line. The CMF shows that
precipitation has a greater influence on the occurrence of crashes. For instance, every 2 inches of
rainfall increases crashes by 2 percent.
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Figure 82. CMF for Precipitation on Two-lane Undivided Highways.

4.4 SENSITIVITY ANALYSIS

The relationship between crash frequency and traffic volume for all facilities, as obtained from
the SPFs, is illustrated in Figure 83 for a 1-mile urban highway segment. The trend lines shown
in Figure 83 indicate that the 4-lane undivided (4U) highway has the worst performance and the
two-lane highway with a continuous left turn lane (2T) has the best performance, probably due to
lower speeds. The 4-lane divided (4D) highway also has a much lower crash frequency
compared to an undivided highway. It should be noted that the freeway SPF does not include
other influential variables such as ramp presence, distance to nearest ramps, and presence of
managed lanes, so the crashes on 4-lane freeways (4F) may be overestimated.
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Figure 83. SPF Comparison for All Facilities.
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Figure 84 shows the CMFs for the excess speed for all facilities. The trend lines shown in Figure
84 indicate that the excess speed has a more pronounced effect on 4T and the least on 4F.
Researchers were not able to quantify the effect of excess speed on 2U facilities.
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Figure 84. Excess Speed CMF Comparison Among All Facilities.

Figure 85 shows the CMFs for the precipitation for all facilities. The trend lines shown in Figure
85 indicate that precipitation has a more pronounced effect on 2U than on 4U. Researchers were
not able to quantify the effect of precipitation on other facilities.
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Figure 85. Precipitation CMF Comparison Among Undivided Facilities.
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4.5 SHORT DURATION LEVEL DATABASES

This section presents the descriptive statistics of key variables categorized by season, day of the
week, and time of day. Table 48 shows a sample of short-duration weather and speed
measurements for a specific road segment, with 45 rows per segment. Table 49 to Table 53
provide detailed descriptive statistics of the key variables for short-duration analysis.

Table 48. Sample Short-Duration Weather and Speed Measurements for a Specific Road

Segment.
Prcip Prcip Prcip
Year Season DOW TOD ~Sum Avg Max SpdAvg SpdStd PSL TTAvg
2019 All All All 1.84 0.00 0.01 46.60 6.39 50 4947
2019 Al All Daytime 0.64 0.00 0.01 48.94 5.77 50 46.88
2019 Al All Nighttime 1.20 0.00 0.01 43.83 5.96 50  52.53
2019 Al Weekday All 149 0.00 0.01 47.42 6.05 50  48.50
2019 Al Weekday Daytime 0.53  0.00 0.01 49.79 5.47 50  46.06
2019 All Weekday Nighttime 0.96 0.00 0.01 44.63 5.49 50 5137
2019 All Weekend All 035 0.00 0.01 44.54 6.73 50 51.92
2019 Al Weekend Daytime 0.11 0.00 0.00  46.83 5.94 50  48.94
2019 Al Weekend Nighttime 0.24 0.00 0.01 41.83 6.60 50 5545
2019 Fall All All 0.70  0.00 0.01 47.99 7.02 50  48.25
2019 Fall All Daytime 0.25 0.00 0.01 50.66 6.04 50 45.29
2019 Fall All Nighttime 0.45 0.00 0.01 44.83 6.78 50 51.76
2019 Fall Weekday All 0.64 0.00 0.01 48.90 6.50 50 47.12
2019 Fall Weekday Daytime 0.23 0.00 0.01 51.56 5.61 50 4443
2019 Fall Weekday Nighttime 0.41 0.00 0.01 45.77 6.08 50  50.30
2019 Fall Weekend All 0.06 0.00 0.00 4571 7.71 50  51.10
2019 Fall Weekend Daytime 0.02 0.00 0.00 4843 6.48 50 4743
2019 Fall Weekend Nighttime 0.04 0.00 0.00 42.49 7.82 50 5543
2019 Spring All All 0.50 0.00 0.00 44.74 5.15 50  51.18
2019 Spring All Daytime 0.20 0.00 0.00 46.76 4.58 50  48.85
2019 Spring All Nighttime 0.30 0.00 0.00 42.36 4.74 50  53.93
2019 Spring  Weekday All 038 0.00 0.00 45.59 4.92 50  50.18

2019 Spring  Weekday Daytime 0.16 0.00 0.00 47.67 4.35 50 47.92
2019 Spring  Weekday Nighttime 0.22 0.00 0.00  43.13 4.39 50 52.85
2019 Spring  Weekend All 0.12  0.00 0.00 42.60 5.09 50 53.72
2019 Spring  Weekend Daytime 0.04 0.00 0.00 44.45 4.35 50  51.22
2019 Spring  Weekend Nighttime 0.08 0.00 0.00  40.40 5.03 50  56.68
2019 Summer All All 0.52 0.00 0.01 47.53 6.71 50  48.58
2019 Summer All Daytime 0.15 0.00 0.00 50.09 6.08 50 45.94
2019 Summer All Nighttime 0.37 0.00 0.01 44.50 6.15 50 5171
2019 Summer Weekday All 036 0.00 0.01 48.21 6.45 50 47.84
2019 Summer Weekday Daytime 0.10 0.00 0.00 50.88 5.67 50  45.19
2019 Summer Weekday Nighttime 0.26 0.00 0.01 45.06 5.87 50  50.97
2019 Summer Weekend All 0.16 0.00 0.01 45.88 7.04 50  50.37
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2019 Summer Weekend Daytime 0.05 0.00 0.00  48.19 6.59 50  47.72
2019 Summer Weekend Nighttime 0.11 0.00 0.01 43.15 6.57 50  53.50
2019 Winter All All 0.12 0.00 0.00 46.14 5.99 50  49.87
2019 Winter All Daytime 0.04 0.00 0.00 48.26 5.39 50 47.45
2019 Winter All Nighttime 0.08 0.00 0.00  43.63 5.69 50  52.73
2019 Winter  Weekday All 0.11 0.00 0.00 47.01 5.68 50  48.82
2019 Winter Weekday Daytime 0.04 0.00 0.00 49.07 5.30 50  46.68
2019 Winter Weekday Nighttime 0.08 0.00 0.00 44.57 5.14 50 51.35
2019 Winter  Weekend All 0.01 0.00 0.00 43.87 6.18 50  52.58
2019 Winter Weekend Daytime 0.00 0.00 0.00 46.15 5.05 50 49.43
2019 Winter  Weekend Nighttime 0.01  0.00 0.00  41.19 6.31 50  56.30

Table 49. Descriptive Statistics of Urban Two-lane Undivided Roadways (Short Duration).

Variables Code Mean SD Min Max
AADT ADT_CUR 19439 11000 2099 71576
Truck proportion TRK AAD 7.509 4.739 1.3 51.50
Lane width LANE WI 13.354 2.581 10 20.00
Inside shoulder width S WID I 4.344 4.379 0 18.00
Outside shoulder width S WID O 4.859 4.496 0 20.00
K-factor K FAC 9.198 1.384 6.4 21.50
Minor Commercial Driveway MnrCmmr 0.027 0.170 0 2.00
Major Commercial Driveway MjrCmmr 1.570 1.818 0 12.00
Minor Other Driveway MnrOthr 0.006 0.077 0 1.00
Major Industrial Driveway Mjrinds 0.529 1.102 0 8.00
Minor Industrial Driveway MnrInds 0.004 0.067 0 1.00
Minor Residential Driveway MnrRsdn 0.028 0.198 0 2.00
Daytime 85 percentile speed (mph)  Spd85D 78.88 14.17 0 85.00
Nighttime 85 percentile speed (mph) Spd 85N 76.96 14.61 0 85.00
Weekday 85 percentile speed (mph)  Spd 85WD 78.08 14.39 0 85.00
Weekend 85 percentile speed (mph) Spd 8SWE 79.08 14.63 0 85.00
Daytime Sum of precipitation (in) PreD 8.76 4.40 0 1.74
Nighttime Sum of precipitation (in)  PreN 11.12 5.86 0 2.27

Table 50. Descriptive Statistics of Urban Three-lane Roadways (Short Duration).

Variables Code Mean SD Min Max
AADT ADT CUR 12361 6649 1035 41353
Truck proportion TRK _AAD 7.88 5.04 1.6 32.10
Lane width LANE WI 12.74 3.13 10 20.00
Inside shoulder width S WID I 4.32 3.97 0 14.00
Outside shoulder width S WID O 4.31 3.91 0 13.00
K-factor K FAC 9.63 1.99 6 21.70
Minor Commercial Driveway MnrCmmr 0.09 0.47 0 5.00
Major Commercial Driveway MjrCmmr 1.62 1.48 0 7.00
Minor Other Driveway MnrOthr 0.01 0.12 0 1.00
Major Industrial Driveway Mjrinds 0.25 0.69 0 5.00
Minor Industrial Driveway Mnrlnds 0.01 0.08 0 1.00
Minor Residential Driveway MnrRsdn 0.12 0.45 0 4.00
Daytime 85 percentile speed (mph)  Spd85D 68.77 41.05 0 80.00
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Nighttime 85 percentile speed (mph)
Weekday 85 percentile speed (mph)
Weekend 85 percentile speed (mph)
Daytime Sum of precipitation (in)
Nighttime Sum of precipitation (in)

Spd 85N
Spd 85WD
Spd 85WE
PreD

PreN

67.60
68.25
68.69
8.41

11.05

42.58
41.79
42.49
5.00
6.85

SO OO O

80.00
80.00
80.00
1.34
1.92

Table 51. Descriptive Statistics of Urban Four-Lane Undivided Roadways (Short

Duration).

Variables Code Mean SD Min Max

AADT ADT_CUR 13357 8762 2 71576
Truck proportion TRK AAD 6.31 5.85 0 81.40
Lane width LANE WI 12.05 2.60 4 20.00
Inside shoulder width S WID I 2.22 3.89 0 30.00
Outside shoulder width S WID O 2.38 4.08 0 26.00
K-factor K FAC 9.81 1.94 4.3 50.00
Minor Commercial Driveway MnrCmmr 0.75 2.47 0 47.00
Major Commercial Driveway MjrCmmr 3.17 4.95 0 77.00
Minor Other Driveway MnrOthr 0.04 0.35 0 12.00
Major Industrial Driveway Mjrinds 0.53 1.90 0 48.00
Minor Industrial Driveway Mnrlnds 0.11 0.94 0 29.00
Minor Residential Driveway MnrRsdn 0.12 0.57 0 17.00
Daytime 85 percentile speed (mph)  Spd85D 78.47 32.02 0 85.00
Nighttime 85 percentile speed (mph) Spd 85N 85.47 33.12 0 95.00
Weekday 85 percentile speed (mph)  Spd 85WD 78.00 32.53 0 85.00
Weekend 85 percentile speed (mph) Spd 85WE 78.39 33.15 0 85.00
Daytime Sum of precipitation (in) PreD 8.76 4.39 0 1.82

Nighttime Sum of precipitation (in)  PreN 11.05 5.81 0 2.37

Table 52. Descriptive Statistic of Urban Four-Lane Divided Roadways (Short Duration).

Variables Code Mean SD Min  Max
AADT ADT CUR 20158 12155 250 140415
Truck proportion TRK AAD 9.48 8.01 0.1 81.40
Lane width LANE WI 12.41 1.56 6 20.00
Inside shoulder width S WID I 6.07 543 0 30.00
Outside shoulder width S WID O 12.30 7.64 0 44.00
K-factor K FAC 9.52 1.43 6 21.20
Minor Commercial Driveway MnrCmmr 0.08 0.45 0 8.00
Major Commercial Driveway MjrCmmr 1.73 2.88 0 31.00
Minor Other Driveway MnrOthr 0.04 0.27 0 6.00
Major Industrial Driveway Mjrinds 1.12 1.89 0 23.00
Minor Industrial Driveway MnrInds 0.02 0.22 0 5.00
Minor Residential Driveway MnrRsdn 0.03 0.22 0 5.00
Daytime 85 percentile speed (mph) Spd85D 78.90 48.29 0 90.00
Nighttime 85 percentile speed (mph)  Spd 85N 76.49 48.94 0 85.00
Weekday 85 percentile speed (mph) Spd 85WD 77.89 48.66 0 85.00
Weekend 85 percentile speed (mph) Spd 85WE 78.54 49.32 0 85.00
Daytime Sum of precipitation (in) PreD 8.74 4.23 0 1.70
Nighttime Sum of precipitation (in) PreN 11.05 5.65 0 2.21
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Table 53. Descriptive Statistic of Urban Five-lane Roadways (Short Duration).

Variables Code Mean SD Min Max
AADT ADT CUR 19439 11000 2099 71576
Truck proportion TRK_AAD 7.509 4.739 1.3 51.50
Lane width LANE WI 13.354 2.581 10 31.00
Inside shoulder width S WID I 4.344 4.379 0 18.00
Outside shoulder width S WID O 4.859 4.496 0 20.00
K-factor K FAC 9.198 1.384 6.4 21.50
Minor Commercial Driveway MnrCmmr 0.027 0.170 0 2.00
Major Commercial Driveway MjrCmmr 1.570 1.818 0 12.00
Minor Other Driveway MnrOthr 0.006 0.077 0 1.00
Major Industrial Driveway Mjrinds 0.529 1.102 0 8.00
Minor Industrial Driveway Mnrlnds 0.004 0.067 0 1.00
Minor Residential Driveway MnrRsdn 0.028 0.198 0 2.00
Daytime 85 percentile speed (mph)  Spd85D 78.47 32.02 0 85.00
Nighttime 85 percentile speed (mph) Spd 85N 85.47 33.12 0 90.00
Weekday 85 percentile speed (mph)  Spd 85WD 78.00 32.53 0 85.00
Weekend 85 percentile speed (mph) Spd 85WE 78.39 33.15 0 85.00
Daytime Sum of precipitation (in) PreD 8.76 4.39 0 1.82
Nighttime Sum of precipitation (in)  PreN 11.05 5.81 0 2.37

4.6 SHORT DURATION SAFETY PERFORMANCE FUNCTIONS

The negative binomial Lindley model is preferred over the traditional negative binomial model for
datasets associated with preponderant zeros. To begin, we document the formulation of the NB.
The NB model can either be formulated as a sequence of Bernoulli trials or a mixture of the Poisson
and gamma distributions. The Poisson-gamma mixture is normally used for analyzing crash data.
The NB Generalized Linear Model (GLM) is formulated as follows:

. _ _ T+ d \*/ oo\ (78)

where, 1 = mean response of the observation and ¢ = inverse of the dispersion parameter. The p
is assumed to have a loglinear relationship with the covariates as shown in Equation (79):

m (19)
In(w) = By + ) BX
=1

where X= explanatory variables considered for the study, B, is the intercept and f; is the
regression coefficient for the j-th covariate, and m = total number of covariates in the model.
For NBL models, the Lindley distributions provide extra flexibility to address the excess zeros
problems. The NBL is the mixture of the NB and Lindley distributions. The NB-L model can be
formulated as follows:

P(Y =y; u,$,6) = [ NB(y; ¢, ep)Lindley(e ; 0) de (80)
where ¢ is the frailty term and 0 is the Lindley parameter. Equation (80) however does not have a
closed form. Therefore, it is often rewritten as a multi-level hierarchical structure, as shown in
Equation (81) to Equation (84):
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yileini, ~NB(g;p;, ) (81)
&ilz;, 6~ gamma(l + z;, 0) (82)

) (83)

z;|6~Bernoulli (1 1o

m (84)
InGiulBo, By -+ B) = Bo + By
=1

As short duration weather data is not available for 2018, the Project Team developed yearly
models for the following urban roadways for 2022, 2021, 2020, and 2019 separately.

4.6.1 Short Duration SPFs (2022 Data)
2U Roadways

Considering crashes occurring on urban 2-way undivided roads, the crash variables were
separated into two parts. The variables that were fixed over the months, like shoulder width and
surface width and variables that were observed to change over months, like standard deviation of
speed, standard deviation of travel time, monthly average daily traffic (MADT) and sum of
monthly precipitation. As shown in Table 54, the variable for shoulder width had a negative
relationship with crash count, indicating that an increase in shoulder width is likely to result in a
reduction in the number of crashes. On the other hand, an increase in road surface width (i.e.,
cross-sectional width of the road without shoulders) is likely to increase the number of crashes.
For variables that changed with months, the standard deviation of speed and travel time had a
negative relationship with crash frequency, meaning an increase in the standard deviation of
speed and travel time is likely to reduce the number of crashes. The MADT and the sum of
precipitation have a positive association with the number of crashes, indicating that an increase
in those variables increases the number of crashes. Finally, the variable for minor commercial
driveways had a positive association with crash counts. The results indicate the number of
crashes is likely to increase in minor commercial areas.

Table 54. Short duration SPFs (2022 Data) for 2U Roadways.

. .. Credible interval
Variables Mean Standard deviation 2 5% 97 5%
Intercept -9.925 0.145 -10.200 -9.641
Shoulder width -0.013 0.001 -0.016 -0.010
Surface width 0.009 0.001 0.007 0.012
Speed standard deviation -0.001 0.009 -0.018 0.015
Travel time standard deviation -0.004 0.002 -0.009 0.000
Log (MADT) 1.001 0.016 0.971 1.033
Sum precipitation 0.077 0.017 0.044 0.107
MnrCmmr (1 if MnrCmmr is 4, 0 otherwise) 0.206 0.126 -0.021 0.504
Dispersion parameter 6.047 0.909 4.614 8.111
Model Performance
DIC 71,020
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| WAIC | 73,030 |

4U Roadways

For short duration SPFs for four-lane undivided (4U) roadways, as presented in Table 55, the
analysis indicates that shoulder width has a negligible effect on crash counts, evidenced by a
mean close to zero and a credible interval that crosses zero. This contrasts with the findings for
2U roadways, where shoulder width showed a more significant impact. The average speed of
vehicles has a negative relationship with crash counts, as indicated by the negative mean value.
This suggests that higher average speeds are associated with a reduction in the number of
crashes. In contrast, the standard deviation of speed shows a positive relationship with crash
counts. A higher variability in speed among vehicles is associated with an increase in crashes.
The standard deviation of travel time has a negative relationship with crash frequency. This
means that greater variability in travel time is linked to a decrease in the number of crashes,
possibly due to drivers adjusting their behavior in response to varying conditions. (MADT)
shows a positive association with crash counts. This indicates that as traffic volume increases, so
does the likelihood of crashes. Similarly, the sum of precipitation is positively associated with
crash counts, suggesting that more precipitation leads to a higher number of crashes, likely due
to reduced visibility and more slippery road conditions.

Table 55. Short duration SPFs (2022 Data) for 4U Roadways.

Variables Mean Standard Credible interval
deviation 2.50% 97.50%

Intercept -6.124 0.138 -6.388 -5.871

Shoulder width -2.49E-04 9.52E-04 -0.002 0.002

Average speed -0.051 8.53E-04 -0.052 -0.049

Speed standard deviation 0.102 0.008 0.087 0.118

Travel time standard deviation -0.007 0.002 -0.01 -0.004

Log (MADT) 0.817 0.014 0.790 0.845

Sum precipitation 0.071 0.012 0.047 0.092

Dispersion Parameter 93.980 22.200 58.680 143.900

Model Performance

DIC 71,210

WAIC 92,710

4D Roadways

The results of short-duration SPFs for four-lane divided (4D) roadways, as shown in Table 56,
highlight key factors related to crash risk. Wider road surfaces and higher average speeds are
linked to fewer crashes. In contrast, greater speed variability increases crash risk, emphasizing
the importance of maintaining consistent speeds. Average travel time does not significantly
affect crash counts, as its impact is minimal. However, MADT is associated with an increase in
crashes, pointing to the influence of traffic density on safety. Additionally, increased
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precipitation correlates with higher crash counts, likely due to reduced visibility and slippery

conditions in wet weather.

Table 56. Short duration SPFs (2022 Data) for 4D Roadways.

Variables Mean Standard Credible interval
deviation 2.50% 97.50%

Intercept -6.300 0.222 -6.732 -5.859
Surface width -0.004 0.001 -0.006 -0.002
Average speed -0.038 0.001 -0.039 -0.036
Speed standard deviation 0.091 0.006 0.078 0.102
Average travel time 0.001 0.001 -0.001 0.002
Log (MADT) 0.790 0.021 0.748 0.832
Sum Precipitation 0.062 0.020 0.023 0.099
Dispersion parameter 22.590 7.907 12.270 43.490
Model Performance
DIC 37280
WAIC 47260

3T Roadways

As shown in Table 57, various factors affect crash counts on three-lane roadways with a center
left turn lane. The results indicate that wider road surfaces are linked to more crashes, while
higher average speeds tend to reduce crash counts, possibly due to better road design or
management. However, increased variability in vehicle speeds leads to more crashes,
highlighting the importance of maintaining consistent speeds for safety. Higher traffic volumes
are also associated with an increase in crashes, emphasizing the role of traffic density in crash
risk. In contrast, the width of the shoulder does not significantly impact crash counts. In
summary, these findings suggest that maintaining consistent speeds and managing traffic
volumes are essential for enhancing safety on 3T roadways.

Table 57. Short duration SPFs (2022 Data) for 3T Roadways.

Variables Mean Standard Credible interval
deviation 2.50% 97.50%
Intercept -14.040 1.643 -17.300 -10.930
Surface width 0.031 0.007 0.016 0.045
Shoulder width 0.008 0.012 -0.016 0.032
Average speed -0.022 0.009 -0.039 -0.006
Speed standard deviation 0.222 0.059 0.110 0.340
Log (MADT) 1.293 0.161 0.992 1.623
Dispersion Parameter 12.040 8.268 3.051 34.820
Model Performance
DIC 1,245
WAIC 1,270
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5T Roadways

The factors influencing crash counts on five-lane roadways with a center turn lane indicate that
higher average speeds are associated with fewer crashes, suggesting that effective road design or
traffic management may contribute to safer conditions at these speeds. However, increased
variability in vehicle speeds is linked to more crashes, emphasizing the need for consistent
driving speeds to enhance safety. Lane width does not significantly impact crash counts, as
indicated by the near-zero mean and credible interval crossing zero. In contrast, MADT are
associated with a greater number of crashes, underscoring the impact of traffic density on crash
risk. These findings are presented in Table 58.

Table 58. Short duration SPFs (2022 Data) for ST Roadways.

Variables Mean Standard Credible interval
deviation 2.50% 97.50%
Intercept -6.545 0.527 -7.531 -5.536
Lane width -0.004 0.010 -0.024 0.017
Average speed -0.052 0.002 -0.057 -0.047
Speed standard deviation 0.090 0.021 0.051 0.132
Log (MADT) 0.851 0.050 0.757 0.953
Dispersion Parameter 37.790 14.310 17.340 71.500
Model Performance
DIC 10,900
WAIC 11,060

4.6.2 Short Duration SPFs (2021 Data)
2U Roadways

The factors affecting crash counts on two-lane undivided roadways show that increasing
shoulder width is associated with fewer crashes, suggesting that wider shoulders can enhance
safety. Variability in vehicle speed (speed standard deviation) also has a negative relationship
with crash counts, indicating that more consistent driving speeds can reduce crash risk.
Conversely, higher ADT and increased precipitation are linked to more crashes, emphasizing the
influence of traffic volume and weather conditions on safety. Lane width has a slight positive
relationship with crash counts, though its impact is uncertain as the credible interval includes
zero. The presence of minor commercial driveways is positively associated with crash counts,
suggesting these areas may have a higher risk of crashes, though this effect is not particularly
strong. These findings are outlined in Table 59.

Table 59. Short duration SPFs (2021 Data) for 2U Roadways.

Variables Mean Standard Credible interval
deviation 2.50% 97.50%
Intercept -9.178 0.151 -9.480 -8.894
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Shoulder width -0.014 0.001 -0.017 -0.011
Average speed 0.001 0.001 -0.001 0.003
Speed standard deviation -0.040 0.008 -0.056 -0.027
Lane width 0.007 0.005 -0.002 0.017
Average travel time -0.002 0.000 -0.003 -0.001
MnrCmmr (1 if MnrCmmr is 4, 0 otherwise) 0.209 0.138 -0.068 0.469
Log (MADT) 0.975 0.015 0.945 1.003
Sum precipitation 0.045 0.014 0.020 0.074
Dispersion Parameter 4.835 0.639 3.813 6.313
Model Performance

DIC 69,250

WAIC 71,240

4U Roadways

The factors influencing crash counts on four-lane undivided roadways indicate that both surface
width and shoulder width have a slight negative relationship with crash counts, suggesting that
wider surfaces and shoulders may help reduce crashes, though these effects are minimal and less
certain. Higher average speeds are associated with fewer crashes, possibly due to better road
conditions or traffic management, while variability in vehicle speed (speed standard deviation) is
linked to more crashes, highlighting the importance of consistent driving speeds. Average travel
time is negatively related to crash counts, implying that longer travel times might be associated
with fewer crashes, potentially due to more careful driving or less congestion. Higher traffic
volumes, indicated by the log of MADT, correlate with more crashes, underscoring the role of
traffic density in crash risk. Increased precipitation is also associated with a higher number of
crashes, pointing to the influence of weather conditions on safety. Interestingly, the presence of
minor industrial areas has a slight negative association with crash counts, suggesting that these
areas may experience fewer crashes, although this effect is not particularly strong. These
findings are shown in Table 60.

Table 60. Short duration SPFs (2021 Data) for 4U Roadways.

Variables Mean Standard Credible interval

deviation 2.50% 97.50%
Intercept -5.662 0.142 -5.959 -5.387
Surface width -0.001 0.001 -0.003 0.000
Shoulder width -0.002 0.001 -0.004 0.000
Average speed -0.046 0.001 -0.048 -0.044
Speed standard deviation 0.062 0.007 0.049 0.075
Average travel time -0.002 0.000 -0.002 -0.001
Log (MADT) 0.788 0.015 0.760 0.818
Sum precipitation 0.028 0.010 0.008 0.047
Mnrinds (1 if Mnrinds is 1, 0 otherwise) -0.146 0.073 -0.294 -0.005
Dispersion Parameter 74.910 19.080 44.250 119.200
Model Performance
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DIC 91290
WAIC 92990

4D Roadways

The factors affecting crash counts on four-lane divided roadways show that both surface width
and shoulder width have a slight negative relationship with crash counts, suggesting that wider
road surfaces and shoulders can help reduce crashes, although these effects are relatively small.
Higher average speeds are associated with fewer crashes, which may indicate that roads designed
for higher speeds have better safety features or conditions. However, greater variability in speed
(speed standard deviation) is linked to more crashes, emphasizing that inconsistent driving
speeds increase crash risk. Average travel time shows a slight positive relationship with crash
counts, indicating that longer travel times might be associated with a higher likelihood of
crashes, potentially due to driver fatigue or other factors. Increased MADT is positively
associated with crash counts, demonstrating that higher traffic volumes lead to more crashes. The
sum of precipitation has a small positive relationship with crash counts, suggesting that weather
conditions might slightly influence crash risk. The presence of minor commercial areas is also
positively associated with crash counts, implying that these areas could experience more crashes,
possibly due to increased traffic and turning movements. These findings are outlined in Table 61.

Table 61. Short duration SPFs (2021 Data) for 4D Roadways.

Variables Mean Standard Credible interval
deviation 2.50% 97.50%

Intercept -5.796 | 0.217 -6.230 -5.347
Surface width -0.003 | 0.001 -0.005 -0.001
Shoulder width -0.002 | 0.001 -0.005 0.000
Average speed -0.036 | 0.001 -0.038 -0.034
Speed standard deviation 0.076 0.007 0.063 0.089
Average travel time 0.001 0.001 0.000 0.003
Log (MADT) 0.732 0.021 0.690 0.774
Sum precipitation 0.021 0.016 -0.007 0.052
MnrCmmr (1 if MnrCmmr is 1, 0 otherwise) 0.170 0.059 0.053 0.282
Dispersion Parameter 6.243 0.927 4.761 8.396
Model Performance
DIC 46,740
WAIC 48,050

3T Roadways

For three-lane roadways with a center turn lane, increasing surface and shoulder width is
associated with more crashes, suggesting that wider roads may lead to riskier driving behavior.
Higher average speeds are linked to fewer crashes, indicating these roads may be designed for
safer high-speed travel. However, greater variability in speed increases crash risk, highlighting
the importance of consistent driving speeds. Greater variability in travel time is slightly
associated with fewer crashes, possibly encouraging more cautious driving. Higher traffic
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volumes are linked to an increase in crashes, emphasizing the role of traffic density in crash risk.
These findings are presented in Table 62.

Table 62. Short duration SPFs (2021 Data) for 3T Roadways.

Variables Mean Standard Credible interval
deviation 2.50% 97.50%

Intercept -9.523 1.515 -12.48 -6.51

Surface width 0.02718 0.007503 0.012 0.04181

Shoulder width 0.03241 0.01304 0.007037 0.05775

Average speed -0.04703 0.007619 -0.06185 -0.03174

Speed standard deviation 0.1928 0.06302 0.06364 0.3119

Travel time standard deviation -0.02939 0.01865 -0.06618 0.007677

Log (MADT) 0.9531 0.1586 0.6477 1.264

Dispersion Parameter 6.994 6.061 1.543 22.88

Model Performance

DIC 1,236

WAIC 1,267

5T Roadways

The factors influencing crash counts on three-lane roadways with a center turn lane suggest that
lane width has a slight negative relationship with crash counts, indicating that wider lanes might
help reduce crash risk. However, the effect is not strong, and the credible interval crosses zero,
showing some uncertainty. Higher average speeds are linked to fewer crashes, suggesting that
these roads may be better designed or offer conditions that support safer travel at higher speeds.
The travel time standard deviation shows a slight positive relationship with crash counts, but this
effect is weak, and the credible interval includes zero, indicating that variability in travel time
has a limited impact on crash risk. Higher traffic volumes are associated with more crashes,
highlighting the impact of traffic density on crash occurrence. These findings are presented in
Table 63.

Table 63. Short duration SPFs (2021 Data) for ST Roadways.

Variables Mean Standard Credible interval
deviation 2.50% 97.50%
Intercept -6.338 0.512 -7.375 -5.363
Lane width -0.016 0.010 -0.036 0.004
Average speed -0.045 0.003 -0.050 -0.040
Travel time standard deviation 0.007 0.004 -0.002 0.015
Log (MADT) 0.853 0.048 0.762 0.948
Dispersion Parameter 33.920 13.400 15.120 66.950
Model Performance
DIC 10600
WAIC 10810
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4.6.3 Short Duration SPFs (2020 Data)
2U Roadways

The factors affecting crash counts on two-lane undivided roadways suggest that wider shoulders
and more consistent driving speeds help reduce crashes, while wider lanes might increase crash
risk. Average speed and travel time have minimal effects on crash counts, with slight indications
that longer travel times might improve safety. Higher traffic volumes are linked to more crashes,
highlighting the role of traffic density. Precipitation does not have a significant impact on crash
counts. These findings are outlined in Table 64.

Table 64. Short duration SPFs (2020 Data) for 2U Roadways.

Variables Mean Standard Credible interval
deviation 2.50% 97.50%

Intercept -9.066 0.169 -9.385 -8.732
Shoulder width -0.013 0.002 -0.016 -0.010
Average speed -0.002 0.001 -0.004 0.000
Speed standard deviation -0.019 0.008 -0.035 -0.004
Lane width 0.028 0.005 0.016 0.038
Average travel time -0.002 0.000 -0.003 -0.001
Log (MADT) 0.930 0.017 0.896 0.962
Sum precipitation 0.008 0.016 -0.024 0.042
Dispersion Parameter 4.494 0.637 3.473 6.018
Model Performance
DIC 61100
WAIC 62870

4U Roadways

The factors influencing crash counts on four-lane undivided roadways suggest that increasing
surface and shoulder widths slightly reduces crashes. Higher average speeds are linked to fewer
crashes, while greater speed variability increases crash risk. More variability in travel time may
be associated with safer driving, possibly due to cautious behavior in changing conditions.
Higher traffic volumes lead to more crashes, highlighting the impact of traffic density.
Precipitation has a slightly negative effect on crash counts but is not a major factor. The presence
of minor industrial areas has a weak negative association with crash risk, but this impact is not
significant. These findings are presented in Table 65.

Table 65. Short duration SPFs (2020 Data) for 4U Roadways.

Variables Mean Standard Credible interval
deviation 2.50% 97.50%
Intercept -5.440 0.149 -5.728 -5.144
Surface width -0.001 0.001 -0.002 0.000
Shoulder width -0.002 0.001 -0.004 0.000
Average speed -0.050 0.001 -0.051 -0.048

163




Speed standard deviation 0.110 0.006 0.098 0.123
Travel time standard deviation -0.011 0.002 -0.014 -0.008
Log (MADT) 0.743 0.016 0.712 0.773
Sum precipitation -0.018 0.013 -0.043 0.005
Mnrinds( 1 if Mnrinds is 1, 0 otherwise) -0.088 0.078 -0.243 0.075
Dispersion Parameter 71.300 18.510 42.750 112.400
Model Performance
DIC 81700
WAIC 83390

4D Roadways

The factors affecting crash counts on four-lane divided roadways suggest that wider road and
shoulder widths may slightly reduce crashes, although the effects are minimal. Higher average
speeds are linked to fewer crashes, likely due to better road design or management, while
increased speed variability raises crash risk, highlighting the need for consistent speeds.
Variability in travel time is slightly associated with more crashes, possibly due to unpredictable
traffic conditions. Higher traffic volumes also lead to more crashes, emphasizing the role of
traffic density in crash risk. Minor commercial areas are associated with higher crash counts,
likely due to increased traffic and turning movements. These findings are outlined in Table 66.

Table 66. Short duration SPFs (2020 Data) for 4D Roadways.

Variables Mean Standard Credible interval
deviation 2.50% 97.50%

Intercept -6.836 | 0.244 -7.331 -6.350
Surface width -0.002 | 0.001 -0.005 0.000
Shoulder width -0.001 | 0.001 -0.004 0.001
Average speed -0.033 0.001 -0.035 -0.031
Speed standard deviation 0.096 0.009 0.078 0.114
Travel time standard deviation 0.005 0.003 0.000 0.011
Log (MADT) 0.803 0.024 0.755 0.853
MnrCmmr (1 if MnrCmmr is 1, 0 otherwise) 0.205 0.059 0.091 0.322
Dispersion Parameter 4.608 0.602 3.617 5.974
Model Performance
DIC 42,090
WAIC 43,310

3T Roadways

Wider road surfaces on three-lane roadways with a center turn lane are associated with more
crashes, while higher average speeds tend to reduce crash counts. Variability in driving speeds
increases crash risk, highlighting the importance of maintaining consistent speeds. Variations in
travel time may slightly reduce crashes, but this effect is weak. Higher traffic volumes lead to
more crashes, underlining the need to manage traffic levels on these roads. These findings are
indicated in Table 67.
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Table 67. Short duration SPFs (2020 Data) for 3T Roadways.

Variables Mean Standard Credible interval
deviation 2.50% 97.50%

Intercept -7.106 2.164 -11.490 -2.936
Surface width 0.023 0.009 0.005 0.040
Shoulder width 0.008 0.014 -0.018 0.035
Average speed -0.030 0.009 -0.046 -0.011
Speed standard deviation 0.140 0.079 -0.012 0.299
Travel time standard deviation -0.033 0.024 -0.084 0.014
Log(MADT) 0.667 0.227 0.226 1.126
Dispersion Parameter 7.850 6.856 1.491 26.720
Model Performance
DIC 950.5
WAIC 972.6

5T Roadways

For five-lane roadways with a center turn lane, higher average speeds are linked to fewer
crashes, suggesting these roads can safely handle higher speeds. Variability in travel time
increases crash risk, indicating that inconsistent travel times may lead to more crashes. Lane
width has little impact on crash counts, while higher traffic volumes are associated with more
crashes, highlighting the need to manage traffic density. These findings are shown in Table 68.

Table 68. Short duration SPFs (2020 Data) for ST Roadways.

Variables Mean Standard Credible interval
deviation 2.50% 97.50%
Intercept -7.454 0.577 -8.532 -6.239
Lane width -0.012 0.010 -0.032 0.008
Average speed -0.044 0.003 -0.050 -0.039
Travel time standard deviation 0.024 0.005 0.015 0.034
Log (MADT) 0.938 0.055 0.831 1.043
Dispersion Parameter 27.580 11.680 11.580 57.720
Model Performance
DIC 9,613
WAIC 9,828

4.6.4 Short Duration SPFs (2019 Data)
2U Roadways

For two-lane undivided roadways, increasing shoulder width is linked to fewer crashes,
suggesting that wider shoulders improve safety. Higher average speeds have little impact on
crash counts. Variability in speed slightly increases crash risk, while greater variability in travel
time is associated with fewer crashes, possibly due to safer driving behaviors. Wider road
surfaces are linked to more crashes, indicating potential for riskier driving. Higher traffic
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volumes also lead to more crashes, emphasizing the impact of traffic density on safety. Increased

precipitation is associated with more crashes, highlighting the role of weather conditions in crash

risk. These findings are indicated in Table 69.

Table 69. Short duration SPFs (2019 Data) for 2U Roadways.

Variables Mean Standard Credible interval
deviation 2.50% 97.50%

Intercept -9.642 0.149 -9.932 -9.354
Shoulder width -0.009 0.002 -0.013 -0.006
Average speed -0.001 0.001 -0.003 0.001
Speed standard deviation 0.012 0.007 -0.001 0.025
Surface width 0.007 0.001 0.004 0.010
Travel time standard deviation -0.007 0.002 -0.011 -0.003
Log (MADT) 0.978 0.016 0.946 1.009
Sum precipitation 0.036 0.015 0.004 0.067
Dispersion Parameter 9.902 2.786 6.265 16.980
Model Performance
DIC 63210
WAIC 65010

4U Roadways

Increasing shoulder width on four-lane undivided roadways is linked to fewer crashes,

suggesting that wider shoulders enhance safety, while surface width has no significant impact.
Higher average speeds are associated with fewer crashes, indicating these roads may handle
higher speeds safely. However, variability in speed leads to more crashes, highlighting the risk of
inconsistent driving speeds. Greater variability in travel time appears to reduce crashes, possibly
by encouraging safer driving behaviors. Higher traffic volumes are linked to more crashes,

emphasizing the role of traffic density in crash risk. The impact of precipitation on crash counts
is minimal. These findings are highlighted in Table 70.

Table 70. Short duration SPFs (2019 Data) for 4U Roadways.

Variables Mean Standard Credible interval
deviation 2.50% 97.50%
Intercept -6.922 0.153 -7.211 -6.630
Surface width 0.000 0.001 -0.001 0.001
Shoulder width -0.004 0.001 -0.006 -0.001
Average speed -0.051 0.001 -0.052 -0.049
Speed standard deviation 0.099 0.007 0.086 0.112
Travel time standard deviation -0.006 0.001 -0.009 -0.003
Log (MADT) 0.896 0.016 0.866 0.925
Sum precipitation 0.001 0.011 -0.022 0.023
Dispersion Parameter 62.840 17.470 36.110 103.400
Model Performance
DIC 89,360
WAIC 91,110
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4D Roadways

Increasing both surface width and shoulder width on four-lane divided roadways is linked to a
reduction in crashes, suggesting that wider roads and shoulders enhance safety. Higher average
speeds are associated with fewer crashes, indicating these roads can safely accommodate higher
speeds. However, increased speed variability is linked to more crashes, highlighting the need for
consistent driving speeds. The effect of the average travel time on crash counts is minimal, with
a slight tendency to reduce crashes. Higher traffic volumes lead to more crashes, underscoring
the impact of traffic density on safety. The presence of minor commercial areas is associated
with more crashes, likely due to increased traffic and turning movements. These findings are
outlined in Table 71.

Table 71. Short duration SPFs (2019 Data) for 4D Roadways.

Variables Mean Standard Credible interval
deviation 2.50% 97.50%

Intercept -6.441 | 0.250 -6.927 -5.972
Surface width -0.002 | 0.001 -0.005 0.000
Shoulder width -0.004 | 0.001 -0.006 -0.002
Average speed -0.035 0.001 -0.037 -0.033
Speed standard deviation 0.103 0.007 0.088 0.116
Average travel time -0.001 | 0.001 -0.002 | 0.000
Log (MADT) 0.783 0.025 0.736 0.833
MnrCmmr (1 if MnrCmmr is 1, 0 otherwise) 0.138 0.059 0.022 0.253
Dispersion Parameter 4.018 0.446 3.268 4.988
Model Performance
DIC 43900
WAIC 45180

3T Roadways

Higher average speeds on three-lane roadways with a center turn lane are linked to fewer
crashes, suggesting these roads may allow safer driving at higher speeds. In contrast, speed
variability increases crash risk, indicating that inconsistent speeds are a concern. Greater
variability in travel time is associated with fewer crashes, possibly encouraging more cautious
driving. The effects of surface width and shoulder width on crash counts are positive but not
strong, with credible intervals including zero, indicating uncertainty in their impact. Higher
traffic volumes lead to more crashes, emphasizing the need to manage traffic density on these
roads. These findings are shown in Table 72.

Table 72. Short duration SPFs (2019 Data) for 3T Roadways.

Variables Mean Standard Credible interval
deviation 2.50% 97.50%
Intercept -11.000 1.922 -14.730 -7.347
Surface width 0.011 0.009 -0.006 0.029
Shoulder width 0.015 0.013 -0.011 0.041
Average speed -0.021 0.006 -0.034 -0.009
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Speed standard deviation 0.258 0.064 0.134 0.378
Travel time standard deviation -0.039 0.018 -0.074 -0.004
Log (MADT) 1.061 0.190 0.688 1.437
Dispersion Parameter 2.842 2.558 0.875 9.657
Model Performance
DIC 1,185
WAIC 1,218

5T Roadways

Higher traffic volumes, measured by the log of MADT, are associated with an increase in
crashes, emphasizing the importance of managing traffic density to enhance safety on these
roads. Higher average speeds on five-lane roadways with a center turn lane are associated with
fewer crashes, suggesting these roads may support safer high-speed driving. Increased variability
in travel time leads to more crashes, highlighting the risk posed by inconsistent travel times.
Lane width has minimal impact on crash counts, indicating it does not significantly affect safety.
Higher traffic volumes are linked to more crashes, underscoring the need to manage traffic
density to improve safety on these roads. These findings are identified in Table 73.

Table 73. Short duration SPFs (2019 Data) for ST Roadways.

Variables Mean Standard Credible interval
deviation 2.50% 97.50%
Intercept -8.979 0.523 -10.030 -7.966
Lane width -0.009 0.009 -0.027 0.010
Average speed -0.042 0.002 -0.046 -0.037
Travel time standard deviation 0.022 0.003 0.015 0.028
Log (MADT) 1.069 0.048 0.976 1.161
Dispersion Parameter 32.400 12.810 14.760 61.790
Model Performance
DIC 11,170
WAIC 11,400

4.7 SUMMARY

This chapter provides an in-depth analysis of SPFs for various urban roadways in Texas,
exploring factors influencing crash frequencies across different roadway configurations, such as
two-lane undivided, four-lane divided, and multi-lane facilities with center turn lanes. The
analysis includes annual-level data for SPFs and examines the influence of roadway
characteristics, traffic volumes, and environmental conditions on crash occurrences. The study
identifies critical variables, such as lane width, shoulder width, average speed, speed variability,
and precipitation, that significantly affect crash frequencies. Additionally, the chapter discusses
the calibration of CMFs for different road types and presents comparisons with existing models
to validate findings. In addition, short duration yearly models were developed for five urban
roadway facilities. The annual and short-duration SPFs are used for developing the decision
support tool.
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CHAPTER S
DECISION SUPPORT TOOL

5.1 INTRODUCTION

This chapter presents a brief overview of the developed decision support tool (P2). The Project
Team developed a geographic information system (GIS)-based prototype decision support tool
that can estimate and visually illustrate the expected number of annual crashes on the roadway
network. Segments with a high number of expected crashes have the highest potential for
improvement.

5.2 DECISION SUPPORT TOOL

The Project Team used the open-source software platform Shiny to develop the decision support
tool. Two versions of the tool were developed to accommodate different user needs: one with a
data upload option and another without it. The version with the data upload option is accessible
via the following link: https://aitlab.shinyapps.io/0_7144 VO03/. The version without the data
upload option can be accessed here: https://aitlab.shinyapps.io/7144Tool/. This chapter can be
considered as a software manual that guides the use of the interactive tool developed for this
project.

5.2.1 Interface

Figure 86 shows the interface of the opening page for the decision support tool. This page
includes a brief introduction to this project, the components of the tool, and the basic steps of
using the tool.

Introduction  0-7144Too

Texas Interactive Decision Support Tool to Improve Safety for Urban Roads with Speed Data

This project aims to provide an interactive tool to identify crash hotspots on Texas urban state-maintained roadways. Six different roadway facility types (Urban Two-lane, Urban Two-lane with a TWLTL, Urban Interstate, Urban Multilane Divided, Urban
Multilane Undivided, Urban Multilane with a TWLTL) are included in this tool. The tool can provide 5 years observed number of crashes and 5 years expected number of crashes for each roadway segment. Moreover, geometric and speed distribution
information are also available in this tool to help support safety decisions.

The current tool has one tab. Users need to follow some steps to make the tool interactive:
* Select District
o Select County
® Select Facility Type
* Select AADT Range
o Select Crash Severity Level
* Click 'Refresh Map' (will take some time to load the map)
* Detailed Data can be downloaded by clicking the download button
* Detailed definitions of the variable names can be downloaded after refreshing the map
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Figure 86. Interface of the 0-7144 Decision Support Tool.
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The web interface has two tabs:
» Introduction (the interface shown in Figure 86)
= (0-7144 Tool (users can go to this page by clicking on the tab)

5.2.2 Decision Support Tool

The team developed two versions of the decision support tool: one without a data upload option
and another with a data upload option. The version without data upload enables the visualization
of urban roads using existing data and predictions. The version with data upload allows users to
update the existing dataset and generate estimates based on the newly uploaded information.

Without Data Upload Option

Figure 87 shows the interface of the decision support tool. This page contains two components in

the top panel: the map (on the left side) and the drop-down selection panel (on the right side).

After selecting the filters and clicking the ‘Refresh Map’ button, an interactive table will appear

below the top panel. The top panel has the following features:

= Filtering option selection: several drop-down panels (District, County, Facility, AADT
Ranges, and Crash Severity).

= Plot: “Refresh Map” button under the drop-down panels.

* Data download: ‘Download Data’ button to download data after the filters are selected.

= Note: Two notes providing instruction on the data dictionary and interactive table.

= Zoom in/out in the map: Plus/minus button on the top left side of the map.

= Popup information in the map: Hovering on a segment to see the information of the segment
(will show up after selecting the filters and map refreshing).

Introduction 0-7144 Tool

Texas Interactive Decision Support Tool to Improve Safety for Urban Roads with Speed Data (0-7144 Tool)

Crash Severity

@ Total O FatalandInjury O No Injury
[EESIVERE L Download Data

Note:

1. Detailed definitions of the variable names can be downloaded here

(Please refresh map first before downloading)

2. Please use the arrows beside column names to rank top sites

Figure 87. Decision Support Tool without Data Upload Option.
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With Data Upload Option

Compared to the data upload version, the version (see Figure 88) with uploaded data includes the
following features in the top panel after selecting ‘District’:
=  Upload Your CSV: data uploading from a local device

Introduction 0-7144 Tool

Texas Interactive Decision Support Tool to Improve Safety for Urban Roads with Speed Data (0-7144 Tool)

Facility

All Facilities

AADT Ranges

All Levels

Crash Severity

@ Total O Fataland Injury O No Injury
Refresh Map & Download Data

Note:

Figure 88. Decision Support Tool with Data Upload Option.
5.2.3 Map Generation Steps

Detailed explanation of the tool

Six different roadway facility types are included in this tool: Urban Two Lane, Urban Two Lane
with a TWLTL, Urban Interstate Highway, Urban Multilane Divided, Urban Multilane
Undivided, and Urban Multilane with a TWLTL. The tool provides the 5-year observed number
of crashes and the 5-year expected number of crashes for each roadway segment. The tool is
based on 5 years of crash data (2018-2022) from CRIS (Texas Department of Transportation,
2025b). Other sources of data include roadway inventory data from the RHiNO database,
weather data from the NOAA, and operating speed data from the NPMRDS/INRIX XD (Texas
A&M Transportation Institute, 2025; Texas Department of Transportation, 2025a).

The results can be filtered by the following in the 0-7144 Tool tab:

= District (TxDOT districts)

= County (Counties in Texas)

= Facility Type (All facilities; Urban Two Lane, Urban Two Lane with a TWLTL, Urban
Interstate Highway, Urban Multilane Divided, Urban Multilane Undivided, and Urban
Multilane with a TWLTL)
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= AADT Ranges (Less than 2000 vehicles per day or vpd, 2,001-10,000 vpd, and greater than
10,000 vpd)
= Crash Severity Level (Total, fatal and injury, and no injury)

Once the levels are selected, the user needs to:
= Click ‘Refresh Map’ (in the blue box) [It is important to note that it may take some time to
load the map]

The results can be filtered by the following in the 0-7144 Tool tab:

= Detailed data can be downloaded by clicking the ‘Download Data’ button (grey box below
blue box).

= Data dictionary (see Appendix B: Data Dictionary) can be downloaded after refreshing the
map (see Note 1 in the 0-7144 Tool tab).

= Results can be shown in lists of 10, 25, 50, or 100 entries.

= Results can be sorted (up or down) by using the arrows at the top of each variable’s column.

= A search box provides the opportunity to search for the results.

Figure 89 shows the image of the interface after selecting ‘all’ from the four drop-down panels.
The map shows the entire state-maintained urban roadway networks. The color of the segments
is based on the number of estimated/expected crashes on the individual segment. Below the
interactive map, an interactive table produces the result of the final selection. The column names
and associated descriptions can be downloaded by clicking the ‘Data Dictionary’ button ‘here’ in
Note 1. The interactive table can display 10, 25, 50, or 100 entries using the drop-down menu to
the left. Each column in the table can be sorted using the up or down arrows at the head of the
column, or the data can be searched using the search box below.
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Texas Interactive Decision Support Tool to Improve Safety for Urban Roads with Speed Data (0-7144 Tool)

District

Al Districts -
County

All Counties -
Facility

Al Facilities -
AADT Ranges

All Levels -

Crash Severity

® Total O Fataland Injury O No Injury
LRSS L Download Data
Note

1. Detailed definitions of the variable names can be downloaded here
refresh map first before downloading)

2. Please use the arrows beside column names to rank top sites

Search:

un_d_nw District County FRM_DFO TODFO  CSEC total EB_fi £8_pdo EB_total
20_100 Laredo Webb 0.6 1703 | 0018-08 165 103.1208627 103.1208627 206
2U_1000 Pharr Cameron 1777 1928 | 0327-08 4511275009 4511275009 9
2U_10000 Fort Worth Palo Pinto 2502 259 | 3124-01 0 001 001 0
2U_10001 Atlanta Bowie 0382 0675 | 2878-01 3 2.637461047 2.637461047 5

Figure 89. Interface of the Tool after Selecting ‘all’ from the Four Drop-down Panels.

After the generation of the map, the user can hover over a segment to see the segment-specific
information (see Figure 90).
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Texas Interactive Decision Support Tool to Improve Safety for Urban Roads with Speed Data (0-7144 Tool)

District
County: Travis
Median Width: 60 AllDistricts -
Number of Lanes: 6
Surt
County
All Counties -
Facility
AllFacilities -
AADT Ranges
Al Levels -

Crash Severity

@ Total O Fataland Injury O No Injury
(SR L Dovnload Data

Note:

Detailed definitions of the variable names can be downloaded here
ease refresh map first before downloading)

2. Please use the arrows beside column names to rank top sites

Search:

un_d_nw District County FRM_DFO TODFO  C_SEC total EB_fi £B_pdo £B_total
20_100 Laredo webb 06 165 103.1208627 103.1208627 206
2U_1000 Pharr Cameron 177 4.511275009 4.511275009 9
2U_10000 Fort Worth Palo Pinto 2.59 0 001 0.01 0
2U_10001 Atlanta Bowie 0.382 0575 | 287801 5 2.637461947 2.637461947 5

Figure 90. Hovering Option Details.

Example #1

A Safety Engineer from the Houston District wants to explore the tool to understand the safety
condition of the median-volume urban two-lane roadways.

The safety engineer needs to select the following options:
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= District: Houston

= County: All Counties

» Facility: Urban Two-lane

=  AADT Ranges: 2,001 to 10,000

The user can select the ‘Crash Severity’ option as needed. For example, if ‘Total’ is selected
from ‘Crash Severity,” a map will be generated after clicking ‘Refresh Map.” Figure 91 displays
the map generated after selecting the options. The red boundary indicates the boundary of the
district, and the green boundaries indicate the boundaries of the counties. The segments are
color-coded based on the total number of expected crashes. The lighter yellow color indicates a
lower number of expected crashes, and the darker red indicates a higher number of expected
crashes.

Introduction | 0-7144 Tool

Texas Interactive Decision Support Tool to Improve Safety for Urban Roads with Speed Data (0-7144 Tool)

Facility
Total Crashes Urban Two-lane -

AADT Ranges

2001 to 10000 -

un_d_nw District FRM_DFO TODFO  C_SEC total EB_fi EB_pdo EB_total

2U_10063 Houston 7.704 7.998 274401 5 5.160182862 5.169182862 10

2U 10070 Houston

4403 5.25:

Figure 91. District Sp

1 3.188615878 3.188615878

The user also have options to explore a specific county. For example, if the user selects Harris
County, the map will display only urban two-lane median volume roadways in Harris County
(see Figure 92). The user can also download the data after finalizing the selection by clicking the
‘Download Data’ button. To get more details on the segment, the user can zoom in or out of the
map by clicking the plus or minus buttons on the top left of the map. As mentioned earlier, the
map is interactive, and it has a hovering option to get more details on a particular segment.
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Total Crashes

-10
20
-30
-40

RefreshMap | & Download Data

Note

1. Detailed definitions of the varial

un_d_nw District County FRM_DFO TODFO  C_SEC total EB_fi EB_pdo EB_total

20_1021 Houston Harris 12018 12,039 002801 0 0052543318 0.052543318 0

Figure 92. County Specific Map Details.
Crash Estimation Update with New Data: The tool provides users with the option to upload
data. For example, if the user wants to update historical data and predict crashes in a particular
county in the Houston District, the data can be uploaded by “Upload Your CSV” (see Figure 93).
To begin, users must select a district and county from the dropdown menus provided. This initial
step is crucial as it narrows the dataset to specific geographic segments, ensuring the results are
relevant to the selected area. The dropdown menus allow for easy navigation through the various
districts and counties available in the dataset.

When a user needs to update the crash data for road segments in a county, the application offers
the option to upload custom CSV files. These files may contain specific roadway or crash data,
enabling users to enhance the analysis with modified information. However, to ensure successful
integration, the uploaded data must include specific columns, such as County, ADT, Control
Section, FromDFO, ToDFO, MedType (Median Type), NumLane (Number of Lanes), and
SpdAve (Speed Average). A built-in validation mechanism automatically checks the presence of
these columns and notifies users if any required fields are missing. This ensures that only
properly formatted data is processed. Once the custom data is uploaded, the application proceeds
to verify its consistency with the district and county selected earlier. This validation step includes
checking whether the number of rows in the uploaded dataset corresponds to the selected
geographic parameters. If any discrepancies are detected, the system promptly alerts users,
ensuring that the analysis remains accurate and aligned with the selected district and county.

With the data validated, the application begins processing the crash data. During this phase, it
calculates the expected number of crashes, including Fatal/Injury crashes (FICrE), Property
Damage Only crashes (PDOCTE), and Total crashes (TotalCrE). While these calculations are
being performed, a spinning ‘busy’ icon appears on the screen, signaling to users that the
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processing is underway. This visual feedback helps manage user expectations during potentially
time-consuming operations. Upon completing the calculations, the application generates a
detailed hotspot map. This map highlights areas within the selected district and county that are
prone to crashes, based on the uploaded data and calculated metrics. Users can refine the
visualization by applying filters for factors such as Facility Type, AADT Range, and Crash
Severity. This flexibility allows for a more targeted analysis, enabling users to focus on specific
safety concerns or roadway conditions. After the analysis is done, the application provides
options to download the results. The processed data can be saved as a CSV file, along with a
detailed map of crash hotspots. Additionally, a downloadable spreadsheet containing definitions
for all variable names is available, ensuring users have a comprehensive understanding of the
data and its context.

The user also have options to upload the data they have. For example, if the user wants to update
historical data and predict crashes in Harris County, the data can be uploaded by “Upload Your
CSV” (see Figure 93).

Texas Interactive Decision Support Tool to Improve Safety for Urban Roads with Speed Data
(0-7144 Tool)

District

Houston v

County

Harris ~

Upload Your CSV/
Browse...  demo_data_harris.csv

Upload complete

Facility

Total Crashes

All Facilities v

AADT Ranges

All Levels A

Crash Severity

@ Total O FatalandInjury O No Injury
Refresh Map &, Download Data

Note:

1. Detailed definitions of the variable names can be
downloaded here . (Please refresh map first before
downloading)

2. Please use the arrows beside column names to rank
top sites

Figure 93. County Specific Map with Uploaded Data.
Figure 94 illustrates the attributes of a specific segment in the default database before and after

new data is uploaded. Upon uploading new data, the number of crashes is updated based on
historical records.
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b) Aftef New Data is Loaded
Figure 94. Comparison of Segment Attributes Before and After Data Uploaded.

Example #2

A Safety Engineer from the Wichita Falls District wants to explore the tool to understand the
safety condition of urban interstate highways.
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The safety engineer needs to select the following options:
= District: Wichita Falls

= County: All Counties

»  Facility: Urban Interstate Highways

»  AADT Ranges. All levels

The user can select the ‘Crash Severity’ option as needed. For example, if ‘Fatal and injury’ is
selected from ‘Crash Severity,” a map will be generated after clicking ‘Refresh Map.” Figure 95
displays the generated map after selecting the options. The red boundary indicates the boundary
of the district and the green boundaries indicate the boundaries of the counties. The segments are
color-coded based on the total number of expected crashes. The lighter yellow color indicates a
lower number of expected crashes and a darker red indicates a higher number of expected
crashes.

Introduction 0-7144 Tool

Texas Interactive Decision Support Tool to Improve Safety for Urban Roads with Speed Data (0-7144 Tool)

Facility

Urban Interstate Highway
Fatal and Injury Crashes

AADT Ranges

All Levels

nd injury O No Injury

Refresh Map | & Download Data

un_d_nw District County FRM_DFO TODFO  C_SEC EB_total

UFE_10083 Wichita Falls Wichita 0.341 0374 | 068501

UEE 10121 Wichita Falls 0.005 | 0ARS-01 0072080038 0.0022216 0

Figure 95. Screenshot Showing Wichita Falls District.

Example #3

A Safety Engineer from the Austin District wants to explore the tool to understand the safety
condition of high-volume urban roadways.

The safety engineer needs to select the following options:
= District: Austin

= County: All Counties

=  Facility: All Facilities

»  AADT Ranges: Greater than 10,000
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The user can select the ‘Crash Severity’ option as needed. For example, if ‘Fatal and injury’ is
selected from ‘Crash Severity,” a map will be generated after clicking ‘Refresh Map.” Figure 96
displays the generated map after selecting the options. The red boundary indicates the boundary
of the district, and the green boundaries indicate the boundaries of the counties. The segments
are color-coded based on the total number of expected crashes. The lighter yellow color indicates
a lower number of expected crashes and a darker red indicates a higher number of expected
crashes.
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;;;;;;

Fatal and Injury Crashes

Facility

All Facilities

AADT Ranges

Greater than 10000

ndinjury O Nolnjury

un_d_nw District County FRM_DFO TO.DFO  CSEC total EB_fi EB_pdo £B_total

2U_10375 Austin Hays 20744 20851 0016-17 13 10.9496694 10.9496694 21

Figure 96. Screenshot Showing Austin District.
5.3 SUMMARY

This chapter presents the development of the Decision Support Tool for assessing safety risks on
urban roadways. This tool was developed to assist transportation professionals visualize and
analyze crash risks across different roadway segments. The tool integrates data from various
sources, including crash data, speed data, and weather conditions, and uses these inputs to
calculate and display SPFs for each roadway segment. It includes an interactive, map-based
interface built using GIS technology, which allows users to view risk assessments for urban
roadways, prioritize high-risk areas, and make data-driven decisions about where to implement
safety improvements. The decision support tool is dynamic, with the capability to update risk
scores as new data is integrated into the system. The platform includes three key components: a
cloud-based data warehouse, a computational platform, and a web server. This chapter describes
how the tool was developed, its functionality, and its potential impact on urban roadway safety
planning.
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CHAPTER 6
CONCLUSIONS AND RECOMMENDATIONS

6.1 INTRODUCTION

Texas Strategic Highway Safety Plan (SHSP) has identified speeding related crashes as one of
the seven research emphasis areas for 2018-2022. The conventional crash risk analysis method
typically omits real-time speed, real-time volume, and weather data. This can significantly limit
their predictive performances. To address this gap, in this study, the Project Team utilized data
from several sources: (1) NPMRDS and INRIX XD (real-time speed data); (2) TMAS (traffic
volume data), CRIS (Crash data), RHiNO (roadway inventory data), and NOAA (precipitation
data). For annual level data analysis, the Project Team developed SPFs for five distinct urban
facility types: freeways, multi-lane divided highways, multi-lane undivided highways, multi-lane
undivided highways with continuous left-turn lanes (CLTL), and two-lane highways. Moreover,
since the annual level safety prediction model can limit the SPFs’ performance to reflect the
effects of time-sensitive variables such as operating speeds, operating speed variance, and
weather condition factors, the Project Team applied the NB-Lindley model to develop a monthly
level model by year as well. In the final step, the Project Team developed an interactive decision
support tool using the open-source software platform Shiny.

6.2 RESEARCH PRODUCTS

Annual SPFs for Urban Facilities: The annual-level SPFs were generated for five distinct
urban facility types: freeways, multi-lane divided highways, multi-lane undivided highways,
multi-lane undivided highways with CLTL, and two-lane highways. These models incorporated
factors such as lane and shoulder width, average speed, speed variability, and precipitation to
analyze their influence on crash frequency.

Short-duration SPFs for Urban Facilities: In contrast, short-duration SPFs were developed for
the same five facility types using year-specific data from 2019 to 2022, allowing for an
assessment of temporal variability and seasonal effects.

Decision Support Tool: The decision support tool developed in TxDOT Project 0-7144
represents a significant advancement in crash risk analysis by integrating traditionally
overlooked but critical variables such as operating speed, traffic volume, and weather data.
Developed using the open-source Shiny platform, the GIS-based tool estimates and visualizes
expected crash frequencies across various urban roadway types in Texas. Users can interactively
explore roadway safety conditions using filters like district, county, facility type, AADT range,
and crash severity. One version of the tool operates on built-in datasets and offers visualization,
filtering, and downloading capabilities. The inclusion of multiple national datasets
(NPMRDS/INRIX XD) for speed data, TMAS for traffic volume, and NOAA for real-time
weather) enhances the analytical power of the tool, addressing the complex interdependencies
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among roadway geometry, speed, and crash frequency, which are often ignored in conventional
models and even in HSM’s SPFs.

What sets this tool apart is its ability to consider user-upload data for customized crash
estimation, making it a highly adaptable and dynamic platform for transportation agencies. Users
can upload CSV files containing local or updated traffic and roadway characteristics to produce
refined crash predictions specific to their area of interest. The tool validates the structure of the
uploaded data, aligns it with the selected geographic scope, and updates crash predictions in real
time, distinguishing between fatal/injury crashes, property damage only crashes, and total
crashes. The platform also provides downloadable outputs and documentation to support
decision-making and facilitate transparency in safety planning efforts.

6.3 FINDINGS AND CONCLUSIONS

The Project Team developed SPFs using the crash data with an annual aggregation interval. The

SPFs are developed for FI and PDO crashes, and both types together. The findings from the

annual level model are as follows:

= The freeway SPFs showed that higher AADT and excess speed significantly increase crash
frequency, while wider lanes, shoulders, and medians reduce it. Truck-heavy routes showed
lower crash rates, likely due to higher roadway standards. The developed CMFs were more
sensitive than those in national models, offering improved calibration for Texas-specific
conditions.

= Key findings for multi-lane divided highways include increased AADT, a higher number of
lanes, excess speed, and driveway density significantly increase crash risk, while wider
shoulders, medians, and lane widths generally reduce it. CMFs for factors such as truck
proportion, shoulder widths, and excess speed were shown to be more sensitive and context-
specific than those in the HSM and Texas WB, indicating the models’ improved calibration
for Texas conditions.

= The SPFs for multi-lane undivided highways focused on four-lane segments and incorporated
CMFs for factors like shoulder width, speed, truck proportion, and precipitation. AADT,
excess speed, driveway density, and precipitation were significant predictors of increased
crash frequency, while wider shoulders helped reduce crashes. Compared to HSM and Texas
WB models, the proposed CMFs offer enhanced sensitivity to local conditions, particularly
for precipitation and excess speed, which showed a 30—40% crash increase per 10 mph over
the limit.

= The SPFs for multi-lane undivided highways with continuous left turn lanes showed that
AADT, excess speed, and driveway density significantly increase crash risk, while wider
shoulders and lanes help reduce it. A 10 mph increase over the speed limit raises crash risk
by 45%, highlighting the sensitivity of these segments to speeding. Compared to Texas WB
and HSM models, the proposed CMFs offer updated, locally calibrated insights that better
reflect the safety impacts of geometric and operational features on these roadway types.
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The SPFs for two-lane undivided highways with continuous left turn lanes showed that
AADT and driveway density significantly increased crash risk, while wider shoulders
reduced it. Excess speed was not statistically significant for FI crashes and was excluded
from the PDO model. Compared to standard two-lane highways, the influence of driveways
was more pronounced, and the models emphasized the critical role of access management
and cross-sectional design in improving safety.

The key findings from short duration analysis are below:

Crash risk is consistently increased by higher MADT, greater speed variability, and
precipitation, while wider shoulders and higher average speeds (in well-designed roads) tend
to reduce crash counts. Surface width has a mixed impact, often increasing crashes on narrow
roads (e.g., 2U, 3T) but reducing them on divided roadways.

While core predictors remain stable (MADT, speed variability), their magnitudes and
significance vary by year. For instance, shoulder width had a stronger negative impact on
crash counts in 2019-2021 than in 2022 for certain facilities (e.g., 2U roads), and the effect
of precipitation fluctuated across years, sometimes becoming non-significant (e.g., in 2020).
2U roads are more sensitive to shoulder width and commercial driveways, while 4U and 4D
roadways show pronounced effects from speed variability. Three- and five-lane roads (3T,
5T) exhibit the highest crash increases from travel time variability, suggesting a need for
better signal timing and access control.

The study used Negative Binomial-Lindley models to better handle excess zeros in crash
data, outperforming traditional NB models. This hierarchical modeling approach improves fit
and interpretability for short-duration monthly datasets.

Unlike traditional SPFs based on yearly averages, these short-duration SPFs capture seasonal
dynamics, monthly variability in traffic, speed, and weather, enabling more targeted, time-
sensitive safety interventions at a granular level for each road type.

6.4 RECOMMENDATIONS

6.4.1 Recommendations for TxXDOT Implementation

Update urban roadway SPFs for Texas by incorporating key operational parameters such as
operating speed, speed variability, travel time variability, monthly traffic volumes, and
precipitation. These variables demonstrated a strong influence on crash frequency across
urban road types, including 2U, 4U, 4D, 3T, and 5T facilities.

Refine safety analysis guidelines to emphasize not just average speed but also speed
consistency (standard deviation of speed) and travel time variability, especially for urban
multilane and turn-lane facilities where crash risk increases significantly with inconsistent
flow patterns.

Leverage the decision support tool to enable countermeasures for urban corridors, such as
adjusting signal timing, access management, and cross-section design. The tool should
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provide roadway-specific risk profiles at both annual and short-duration (e.g., monthly or
seasonal) levels.

6.4.2 Updated Recommendations for Future Tool Enhancements

Enhance the decision support tool’s data integration features, allowing TxDOT engineers and
planners to upload short-duration datasets (e.g., monthly or daily MADT, weather, speed
profiles) for real-time or retrospective evaluations.

Integrate short-duration SPFs into the tool, enabling evaluation of monthly/seasonal crash
patterns and temporal safety diagnostics (e.g., AASHTOWare Safety Analyst does not
currently support at such a fine resolution).

Build modules for daily-level modeling by incorporating emerging data sources (e.g., probe-
based traffic counts, connected vehicle data) to evaluate rapidly changing urban conditions
like peak-period safety performance.

Develop a dedicated urban safety evaluation module within the web-based decision support
tool, enabling facility-type specific recommendations (e.g., 3T roads needing consistent
speed management vs. 2U roads sensitive to commercial access). This module should offer
interactive visualization and intervention simulation capabilities.

6.4.3 Comparison with AASHTOWare Safety Analyst

Unlike AASHTOWare, which primarily relies on annualized SPFs and lacks weather or
short-duration modeling integration, the TxDOT Decision Support Tool incorporates both
annual and short-duration SPFs, flexible covariate structures (e.g., MADT, speed variability),
and support for operational data fusion (weather, driveway density, etc.).

0-7144 project’s use of Negative Binomial-Lindley (NBL) models provides superior
handling of overdispersion and excess zeros, offering more robust predictions than the
standard GLM-based AASHTOWare approach.

The urban-specific modules in the TxDOT tool address key facility design variations (e.g.,
continuous left-turn lanes, multilane undivided/divided configurations), providing TxDOT
with a more granular, localized, and adaptable solution for urban safety planning.

Conduct an implementation project on the comparison between AASHTOWare safety scores
with safety scores generated from 0-7144 project.
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APPENDIX A: HSM SAFETY PERFORMANCE FUNCTIONS

Predictive models can be used to estimate total average crashes (i.e., all crash severities and
collision types) or can be used to predict the average frequency of specific crash severity types
or specific collision types. The predictive model for an individual roadway segment or
intersection combines the SPF, CMFs, and a calibration factor. Chapter 12 of the HSM
contains separate predictive models for roadway segments and for intersections. The predictive
models for roadway segments estimate the predicted average crash frequency of non-
intersection-related crashes. Non-intersection-related crashes may include crashes that occur
within the limits of an intersection but are not related to the intersection. The roadway segment
predictive models estimate crashes that would occur regardless of the presence of the
intersection.

In the predictive method, the appropriate SPFs are used to predict crash frequencies for
specific base conditions. SPFs are regression models that estimate the predicted average crash
frequency of individual roadway segments or intersections. Each SPF in the predictive method
was developed with observed crash data for a set of similar sites. The SPFs, like all regression
models, estimate the value of a dependent variable as a function of a set of independent
variables. In the SPFs developed for the HSM, the dependent variable estimated is the
predicted average crash frequency for a roadway segment or intersection under base
conditions, and the independent variables are the AADTs of the roadway segment or
intersection legs (and, for roadway segments, the length of the roadway segment). The effect of
traffic volume (AADT) on crash frequency is incorporated through the SPF, while the effects
of geometric design and traffic control features are incorporated through the CMFs.

SPFs and adjustment factors are provided for five types of roadway segments on urban and
suburban arterials:

= Two-lane undivided arterials (2U)

= Three-lane arterials including a center two-way left-turn lane (TWLTL) (3T)
=  Four-lane undivided arterials (4U)

» Four-lane divided arterials (i.e., including a raised or depressed median) (4D)
= Five-lane arterials including a center TWLTL (5T)

The SPFs for roadway segments on urban and suburban arterials are applicable to the
following AADT ranges:

= 2U: 0 to 32,600 vehicles per day
= 3T:0to 32,900 vehicles per day
= 4U: 0 to 40,100 vehicles per day
= 4D: 0 to 66,000 vehicles per day
= 5T:0to 53,800 vehicles per day
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Application to sites with AADTs substantially outside these ranges may not provide reliable
results. Other types of roadway segments may be found on urban and suburban arterials but are
not addressed by the predictive model in Chapter 12 of HSM. The procedure addresses five
types of collisions.

=  Multiple-vehicle non-driveway collisions

= Single-vehicle crashes

= Multiple-vehicle driveway-related collisions
= Vehicle-pedestrian collisions

= Vehicle-bicycle collisions

The effect of traffic volume on predicted crash frequency is incorporated through the SPFs,
while the effects of geometric design and traffic control features are incorporated through the
CMFs. SPFs are provided for multiple-vehicle non-driveway collisions and single-vehicle
crashes. Adjustment factors are provided for multi-vehicle driveway-related, vehicle-
pedestrian, and vehicle-bicycle collisions.

Multiple-Vehicle Non-driveway Collisions

The SPF for multiple-vehicle non-driveway collisions is applied as follows:

Nyrmy = €xp (a + b X In(AADT) + In(L)) (85)
Where,
(AADT) = Average annual daily traffic volume (vehicles/day) on roadway
segment,
L = Length of roadway segment (mi), and
a,b = Regression coefficients.

Equation (85) is first applied to determine N,,,,, using the coefficients for total crashes.
Nprmyu(rry 18 then divided into components by severity level, for fatal-and-injury crashes and
Nprmv(ppoy> designated as N’y rry and N'ppmpppoy in Equation (86), are determined with
Equation (85) using the coefficients for fatal-and-injury and property-damage-only crashes,
respectively. The following adjustments are then made to assure that Ny, ry and Nppmpppo)
sum to Nypmop:

Nlbrmv(FI) ) (86)

brmv(FI) + Nlbrmv(PDO)

Nbrmv(FI) = Nbrmv(total) (N'

Nbrmv(PDO) = Nbrmv(total) - Nbrmv(FI) (87)

Single-Vehicle Crashes

SPFs for single-vehicle crashes for roadway segments are applied as follows:
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Nprs» = €xp (a + b X In(AADT) + In(L)) (88)
Equation (88) is first applied to determine Ny, using the coefficients for total crashes. Ny,
is then divided into components by severity level, Ny, gy for fatal-and-injury crashes and
Nprsv(ppoy for property-damage-only crashes. Preliminary values of Ny gy pry and Nprsyppoy.
designated as N'pys,(rry and N'pp6(ppoy in Equation (89), are determined with Equation (88)
using the coefficients for fatal-and-injury and property-damage-only crashes, respectively. The
following adjustments are then made to assure that Ny,;.s,(pry and Nypspppoy SUM t0 Nppgyy:

N’ prsu(rn (89)

brsv(FI) + N’brsv(PDO)

Nbrsv(FI) = Nbrsv(total) (N,

Nbrsv(PDO) = Nbrsv(total) - Nbrsv(FI) (90)
Multiple-Vehicle Driveway-Related Collisions

The model presented above for multiple-vehicle collisions addressed only collisions that are

not related to driveways. Driveway-related collisions also generally involve multiple vehicles,
but are addressed separately because the frequency of driveway-related collisions on a roadway
segment depends on the number and type of driveways. Only unsignalized driveways are
considered; signalized driveways are analyzed as signalized intersections. The total number of
multiple-vehicle driveway-related collisions within a roadway segment is determined as:

AADT XC 1)
15,000

Nbrdwy = Z n; ><Nj X (

all
driveway

types
Where,

N; = Number of driveway-related collisions per driveway per year
for driveway type ],
n; = Number of driveways within roadway segment of driveway
type j including all driveways on both sides of the road, and
t = Coefficient for traffic volume adjustment.
The number of driveways of a specific type, n, is the sum of the number of driveways of that
type for both sides of the road combined. The number of driveways is determined separately
for each side of the road and then added together.
Seven specific driveway types have been considered in modeling. These are:
* Major commercial driveways
=  Minor commercial driveways
=  Major industrial/institutional driveways
= Minor industrial/institutional driveways
= Major residential driveways
= Minor residential driveways
= Other driveways
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Major driveways are those that serve sites with 50 or more parking spaces. Minor driveways
are those that serve sites with less than 50 parking spaces. It is not intended that an exact count
of the number of parking spaces be made for each site. Driveways can be readily classified as
major or minor from a quick review of aerial photographs that show parking areas or through
user judgment based on the character of the establishment served by the driveway. Commercial
driveways provide access to establishments that serve retail customers. Residential driveways
serve single- and multiple-family dwellings. Industrial/institutional driveways serve factories,
warehouses, schools, hospitals, churches, offices, public facilities, and other places of
employment. Commercial sites with no restriction on access along an entire property frontage
are generally counted as two driveways.

Driveway-related collisions can be separated into components by severity level as follows:

Nbrdwv(FI) = Nbrdwv(total) X fawv 92)
Nbrdwv(PDO) = Nbrdwv(total) X Nbrdwv(FI) 93)
Where,
fawy = Proportion of driveway-related collisions that involve fatalities

or injuries,
Vehicle-Pedestrian Collisions

The number of vehicle-pedestrian collisions per year for a roadway segment is estimated as:

Npedr = Npyr X fpedr (%94)
Where,

fpear = Pedestrian crash adjustment factor.

Vehicle-Bicycle Collisions

The number of vehicle-bicycle collisions per year for a roadway segment is estimated as:
Npiker = Npr X fpiker (95)
Where,

friker = Bicycle crash adjustment factor.
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APPENDIX B: DATA DICTIONARY

Column Name Details Source
UnglID Unique 1D TXST generated
GID RDBD GMTRY LN ID RHiNO
Frm Dfo FROM-DFO RHiNO
To Dfo TO-DFO RHiNO
C Sec CONTROL-SECTION RHiNO
Hwy SIGNED-HIGHWAY RHiNO
Ste Nam STREET-NAME RHiNO
District Code DISTRICT-ID RHiNO
District DISTRICT-NAME RHiNO
County Code COUNTY-NUMBER RHiNO
County COUNTY-NAME RHiNO
City CITY-NUMBER RHiNO
Ru RURAL-URBAN-CODE RHiNO
F Syste FUNCTIONAL-CLASSIFICATION RHiNO
Ru F Sy FUNCTIONAL-CLASSIFICATION RHiNO
Spd Max SPEED-LIMIT-MAXIMUM RHiNO
Med Typ MEDIAN-TYPE RHiNO
Med Wid MEDIAN-WIDTH RHiNO
Num Lan NUMBER-OF-THROUGH-LANES RHiNO
Hov Lan HOV-LANES RHiNO
Hov Typ HOV-TYPE RHiNO
Rb Wid ROADBED-WIDTH RHiNO
Sur W SURFACE-WIDTH RHiNO
S Type 1 SHOULDER-TYPE-INSIDE RHiNO
S Wid I SHOULDER-WIDTH-INSIDE RHiNO
S Use I SHOULDER-USE-INSIDE RHiNO
S Type O SHOULDER-TYPE-OUTSIDE RHiNO
S Wid O SHOULDER-WIDTH-OUTSIDE RHiNO
S Use O SHOULDER-USE-OUTSIDE RHiNO
Curb L CURB-TYPE-LEFT RHiNO
Srf Typ SURFACE-TYPE RHiNO
Adt Yea YEAR-OF-ANNUAL-AVERAGE-DAILYTRAFFIC RHiNO
Adt Cur AADT-CURRENT RHiNO
Adt Adj AADT-ADJUST-CURRENT RHiNO
K Fac PEAK-FACTOR RHiNO
D Fac DIRECTIONAL-DISTRIBUTION-FACTOR RHiNO
Trk Aad TRUCK-AADT-PCT RHiNO
Hy 1 ADT-HISTORY-YEAR-1 RHiNO
Hy 2 ADT-HISTORY-YEAR-2 RHiNO
Hy 3 ADT-HISTORY-YEAR-3 RHiNO
Hy 4 ADT-HISTORY-YEAR-4 RHiNO
Hy 5 ADT-HISTORY-YEAR-5 RHiNO
Hy 6 ADT-HISTORY-YEAR-6 RHiNO
Hy 7 ADT-HISTORY-YEAR-7 RHiNO
Hy 8 ADT-HISTORY-YEAR-8 RHiNO
Hy 9 ADT-HISTORY-YEAR-9 RHiNO
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Desgn Y DESIGN-YEAR RHiINO

Len Sec LENGTH-OF-SECTION RHiINO

Ln Mile LANE-MILES RHiINO

Dvmt DAILY-VEHICLE-MILES-OF-TRAVEL RHiINO
Fclty C Facility type of each RHiINO segement RHiINO
Spd18 Average speed in 2018 (mph) INRIX XD
Ss18 Speed standard deviation in 2018 (mph) INRIX XD
Spd19 Average speed in 2019 (mph) INRIX XD
Ss19 Speed standard deviation in 2019 (mph) INRIX XD
Spd20 Average speed in 2020 (mph) INRIX XD
Ss20 Speed standard deviation in 2020 (mph) INRIX XD
Spd21 Average speed in 2021 (mph) INRIX XD
Ss21 Speed standard deviation in 2021 (mph) INRIX XD
Spd22 Average speed in 2022(mph) INRIX XD
Ss22 Speed standard deviation in 2022 (mph) INRIX XD
Sef22 85 percentile speed in 2022 (mph) INRIX XD
PrcSum19 Sum of precipitation in 2019 (in) NOAA (CDS)
PrcAvgl9 Average of precipitation in 2019 (in) NOAA (CDS)
PrcSum20 Sum of precipitation in 2020 (in) NOAA (CDS)
PrcAvg20 Average of precipitation in 2020 (in) NOAA (CDS)
PrcSum21 Sum of precipitation in 2021 (in) NOAA (CDS)
PrcAvg21 Average of precipitation in 2021 (in) NOAA (CDS)
PrcSum22 Sum of precipitation in 2022 (in) NOAA (CDS)
PrcAvg2?2 Average of precipitation in 2022 (in) NOAA (CDS)
A 18 Number of Incapacitating injury crashes in 2018 CRIS

B 18 Number of non-incapacitating injury crashes in 2018 CRIS

C 18 Number of possible injury crashes in 2018 CRIS

K 18 Number of fatal crashes in 2018 CRIS

O 18 Number of not injured crashes in 2018 CRIS

U 18 Number of unknown crashes in 2018 CRIS

A 19 Number of Incapacitating injury crashes in 2019 CRIS

B 19 Number of non-incapacitating injury crashes in 2019 CRIS

C 19 Number of possible injury crashes in 2019 CRIS

K 19 Number of fatal crashes in 2019 CRIS

O 19 Number of not injured crashes in 2019 CRIS

U 19 Number of unknown crashes in 2019 CRIS

A 20 Number of Incapacitating injury crashes in 2020 CRIS

B 20 Number of non-incapacitating injury crashes in 2020 CRIS

C 20 Number of possible injury crashes in 2020 CRIS

K 20 Number of fatal crashes in 2020 CRIS

0 20 Number of not injured crashes in 2020 CRIS

U 20 Number of unknown crashes in 2020 CRIS

A 21 Number of Incapacitating injury crashes in 2021 CRIS

B 21 Number of non-incapacitating injury crashes in 2021 CRIS

C 21 Number of possible injury crashes in 2021 CRIS

K 21 Number of fatal crashes in 2021 CRIS

0 21 Number of not injured crashes in 2021 CRIS

U 21 Number of unknown crashes in 2021 CRIS

A 22 Number of Incapacitating injury crashes in 2022 CRIS
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B 22 Number of non-incapacitating injury crashes in 2022 CRIS

C 22 Number of possible injury crashes in 2022 CRIS

K 22 Number of fatal crashes in 2022 CRIS

0 22 Number of not injured crashes in 2022 CRIS

U 22 Number of unknown crashes in 2022 CRIS

MnrCmmr Count of Minor Commercial Driveway TXST generated
MjrCmmr Count of Major Commercial Driveway TXST generated
Mnrinds Count of Minor Industrial Driveway TXST generated
MnrRsdn Count of Minor Residential Driveway TXST generated
Mijrlnds Count of Major Industrial Driveway TXST generated
Other Count of Other Driveway TXST generated
MjrRsdn Count of Major Residential Driveway TXST generated
Fclty Cl Facility Codes TXST generated
Facility Facility Names TXST generated
Crl8 22 FI Count of Fatal and Injury Crashes (2018 - 2022) TXST generated
Crl8 22 PDO Count of PDO Crashes (2018 - 2022) TXST generated
TotalCrash Count of Total Crashes (2018 - 2022) TXST generated
Pav S Wid Paved Shoulder Width (ft) TXST generated
Sw* Weight Factor TXST generated
Equi Dwy Count of Equivalent Driveway TXST generated
Equi Dwy M* Weight Factor TXST generated
Spd* Weight Factor TXST generated
Prc_Avg* Weight Factor TXST generated
Site No* Weight Factor TXST generated
Predicted FI SPF-based Predicted Fatal and Injury Crashes TXST generated
Estimated FI EB based Estimated Fatal and Injury Crashes TXST generated
Predicted PDO SPF based Predicted PDO Crashes TXST generated
Estimated PDO | EB based Estimated PDO Crashes TXST generated
Estimated Total | EB based Estimated Total Crashes TXST generated
UngID Unique Segment [D2 TXST generated

* indicates weight factor used for normalization of variable measures.
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APPENDIX C: DECISION SUPPORT TOOL SCRIPTS

# Developed by Subasish Das and David Mills

# With Data Upload Option.

# 1. After selecting District and County, user has option to upload
custom data.

# 2. App checks for required Columns for CSV file upload to make sure
we can match data to shapefile.

# County - ADT, ControlS - ToDFO, MedType, NumLane, SpdAve <- Look
at yellow columns in 7144.

# 3. App checks # of rows for district/county selection to make sure
data matches.

# 4. App provides a notice to user if the selection # is different.

# 5. App processes function to calculate Expected Crashes based on
user uploaded data.

# 6. Busy icon spins while processing data.

# 7. Hot spot map loads for user to view and data can be downloaded.
# 8. Output only shows FICrE, PDOCrE, TotalCrE.

library
library
library
library
library
library
library
library
library
library
library
library

shiny)
shinydashboard)
shinyjs)

sf)

leaflet)
leaflet.extras)
dplyr)

DT)

htmltools)
shinybusy)
data.table)
openxlsx)

~ o~ o~~~ o~~~ o~~~ —~

options (shiny.maxRequestSize = 105%102472) # Sets the limit to 105MB

# Read State/Counties CSV File
StateCountyData = read.csv("County District List/CountyList.csv")

# Create State and Initial County List

StateCountyData$District <- as.character (StateCountyData$District)
StateCountyData$County <- as.character (StateCountyData$County)

DistrictList <- unique (StateCountyData$District)
CountyList <- StateCountyData$County

DistrictNamelist <- data.frame (
unique (StateCountyData[c ("District","DistrictID") ])
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# Load custom shapefile and CSV
shapefile <- st_transform(st_read("O_data/tmc_shapefile.shp"), 4326)
demo data <- read.csv("O_data/demo_data.csv")

# Save original column names for restoration
original demo_ colnames <- names (demo_data)

# Merge without unnecessary suffixes
TX shp <- shapefile %>%
left join(demo data, by = "un d nw")

# Join displaydata with StateCountyData using district and county IDs
TX shp <- left join(TX shp, StateCountyData, by = c("DI" =
"DistrictID"™, "CO"™ = "CountyID"))

# Function to update crashes by adding new values
update crashes <- function(existing data, new data) ({
tryCatch ({
# Ensure both datasets are data.tables
existing data <- as.data.table(existing data)
new data <- as.data.table(new data)

print (head (new _data))

# Required columns for crash data
required columns <- c("GID", "FRM DFO", "TO DFO", "C_ SEC", "FI",
IIPDO")

# Check for required columns
if (!all(required columns %in% names (new_data))) {
stop ("New data is missing required columns.")

}

# Replace NA values with 0 for new crash data
new datal[, “:="(

FI = fifelse(is.na(FI1), 0, FI),

PDO = fifelse(is.na(PDO), 0, PDO)
) ]

print ("This Worked.")

# Merge with existing data, ensuring FI maps to EB fi and PDO maps
to EB pdo

updated data <- merge(existing data, new data, by = c("GID",
"FRM DFO", "TO DFO", "C SEC"), all.x = TRUE, suffixes = c("", ".new"))

# Update EB fi and EB pdo
updated datal, ":="(
EB fi = as.integer(fifelse(is.na(FI), EB fi, (EB fi + FI) * 0.5
+ pred fi * 0.5)),
EB pdo = as.integer(fifelse(is.na(PDO), EB pdo, (EB pdo + PDO) *
0.5 + pred pdo * 0.5)),
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EB total = EB fi + EB pdo # Ensure EB total is recalculated
properly
) ]

# Remove unnecessary columns
updated datal, c("FI", "PDO") := NULL]

return (updated data)
}, error = function(e) {
print ("Error updating crashes:")
print (eSmessage)
stop (e)
})
}

update demo _data and shapefile <- function (uploaded file) {
if (!is.null (uploaded file)) {
uploaded data <- fread(uploaded fileS$datapath)

# Ensure required columns exist
required columns <- c("GID", "FRM DFO", "TO DFO", "C SEC", "FI",
"PDO")

if (!all(required columns %in% names (uploaded data))) {
showNotification ("Uploaded data is missing required columns.",
type = "error")
return ()

}

# Create a copy of the original data before modifying
modified demo data <- demo data

# Update the copied data instead of overwriting the original
modified demo data <- update crashes(modified demo data,
uploaded data)

# Merge updated demo data back into the shapefile
modified TX shp <- shapefile %>%

left join(as.data.frame (modified demo data), by = "un d nw") $>%
left join(StateCountyData, by = c("DI" = "DistrictID", "CO" =
"CountyID"))

# Assign modified data
demo data <<- modified demo data
TX shp <<- modified TX shp
return (TX shp)

}

# Read District SHP file
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TXDistricts shp =
st transform(st read("ShapeFiles/Texas Districts/District Poly.shp"),
4326)

TXDistricts_ shp =
st as sf(select(as.data.frame (TXDistricts shp),c('DIST NBR', 'geometry'
)))

# Read Counties SHP file
TXcounties shp =
st_transform(st_read("ShapeFiles/Texas_Counties/County.shp"), 4326)

TXcounties shp =
st as sf(select(as.data.frame (TXcounties shp),c('CNTY NBR', 'DIST NBR',
'geometry')))

# UI Code
body <- dashboardBody (
useShinyjs (),
add busy spinner ("fulfilling-bouncing-circle"),
tabsetPanel (
tabPanel (HTML (paste (tags$span (style="font-size: 18px",
"Introduction™))),
tagsSbr (),
tags$h2 (tagss$b ("Texas Interactive Decision Support Tool
to Improve Safety for Urban Roads with Speed Data")),
h2 (),
div(style = "font-size: 18px;", HTML("This project aims
to provide an interactive tool to identify crash hotspots on Texas
urban state-maintained roadways. Six different roadway facility types
(Urban Two-lane, Urban Two-lane with a TWLTL, Urban Interstate, Urban
Multilane Divided, Urban Multilane Undivided, Urban Multilane with a
TWLTL) are included in this tool. The tool can provide 5 years
observed number of crashes and 5 years expected number of crashes for
each roadway segment. Moreover, geometric and speed distribution
information are also available in this tool to help support safety
decisions.")),
h2 (),
div(style = "font-size: 18px;", HTML("The current tool
has one tab. Users need to follow some steps to make the tool
interactive:", "<br>")),
tagsS$span(style = "font-size: 18px", tagsSul (
tags$li("Select District"),
tags$li("Select County"),
tags$li("Select Facility Type"),
tags$li("Select AADT Range"),
tags$li ("Select Crash Severity Level"),
tags$li("Click 'Refresh Map' (will take some time to
load the map)"),
tags$li ("Detailed Data can be downloaded by clicking
the download button"),
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tags$li("Detailed definitions of the variable names can
be downloaded after refreshing the map")

) ),
tags$h3 (tagss$b ("Acknowledgments") ),

h2 (),

div(style = "font-size: 18px;", HTML ("The project was
funded by Texas Department of Transportation (TXDOT).")),

h2 (),

div(style = "font-size: 18px;", HTML ("The project was
conducted by Texas State University (TXST) and Texas A&M
Transportation Institute (TTI). The interactive online tool was

developed by the TXST project team members Dr. Subasish Das and Mr.
David Mills. Questions about the tool can be sent to the Principal
Investigator, Dr. Subasish Das at <a
href='mailto:subasish@txstate.edu'>subasishltxstate.edu</a>")),
hr (),
tags$img (src='txdot Logo.png', height=120), HTML("&nbsp
&nbsp"),
tags$img (src='txstLogo.png', height=80),
tags$img (src="'TTI Logo.png', height=80),
hr (),
div(style = "font-size: 18px;", HTML ("Last updated:
January 28, 2025."))
) 4
tabPanel (HTML (paste (tags$span (style="font-size: 18px", "0-7144

Tool"))), id="UrbanSpeedTool",
tags$hl (tags$b ("Texas Interactive Decision Support Tool
to Improve Safety for Urban Roads with Speed Data (0-7144 Tool)")),
fluidRow (
column (width = 8,
box (width = NULL, solidHeader = TRUE,
div (
id = "noDataNotice",
style = "position: absolute; top: 50%;

left: 50%; transform: translate (-50%, -50%);

text-align: center; background-
color: rgba (255, 255, 255, 0.8);

padding: 20px; border: 2px solid
#d9534f; border-radius: 8px;

font-size: 18px; color: #d9534f;
z-index: 1000; display: none;",

"No applicable state maintained
roadways."

),
leafletOutput ("MapOut", height = 500),

h2 ()
)
) s
column (width = 3,
box (width = NULL, status = "warning",
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selectInput ("DistrictInput","District",choices = c("All

Districts",sort (DistrictlList)),selected = "All Districts"),
selectInput ("CountyInput", "County",choices =
c("All Counties",sort (CountyList)),selected = "All Counties"),

# Conditional file input except when All
Districts is selected.
conditionalPanel (

condition = "input.DistrictInput !== 'All
Districts' && (input.CountyInput === 'All Counties' ||
input.CountyInput !== 'All Counties')",
fileInput ("user file", "Upload Your CSV",
accept = ".csv")
),
selectInput ("FacilityInput", "Facility",
choices = c("All Facilities",
"Urban Two-lane",
"Urban Two-lane with
a TWLTL",
"Urban Interstate
Highway",
"Urban Multilane
Divided",

"Urban Multilane
Undivided",
"Urban Multilane
with a TWLTL"),
selected = "All Facilities"),
selectInput ("AADTInput", "AADT Ranges",
choices = c("All Levels", "Less than 2000", "2001 to 10000", "Greater
than 10000"), selected = "All"),
radioButtons ("Severity", label = "Crash
Severity", choices = list("Total", "Fatal and Injury","No Injury"),
inline=TRUE),
actionButton ("resetData", "Reset to Original
Data", class = "butt"),
actionButton (inputId = "RefreshMap", label =
"Refresh Map", class = "butt"),
tagsShead (tags$Sstyle (".butt{background-
color:#0000FF;} .butt{color: white;}")), # background color and font
color
downloadButton ("downloadData", label
="Download Data"),

hr (),
HTML ("Note:"),
h2 (),

HTML ("1. Detailed definitions of the
variable names can be downloaded"),

downloadLink ("downloadDefination", label
="here"),
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HTML (". (Please refresh map first before

downloading) "),
h2 (),
HTML ("2. Please use the arrows beside column
names to rank top sites")
)
)

)y
DT::DTOutput ('outputDT'),

h2 (), tags$br (),
h2 (), tagsSbr ()

)

# Put them together into a dashboardPage
ui <- dashboardPage (
#header,
dashboardHeader (disable = TRUE),
dashboardSidebar (disable = TRUE),
body
)

server <- function (input, output, session) {
# Store original copies of data
original demo data <<- demo data
original TX shp <<- TX shp

# Watch for file upload event and call update function
observeEvent (inputSuser file, ({

tryCatch ({
uploaded data <- read.csv(inputSuser fileSdatapath)

required columns <- c("di", "co", "frm dfo", "to dfo", "c sec")

colnames (uploaded data) <- tolower (colnames (uploaded data))
colnames (demo_data) <- tolower (colnames (demo data))

missing columns <- setdiff (required columns,
colnames (uploaded data))
if (length(missing columns) > 0) {
showNotification (paste ("Missing columns:",

paste (missing columns, collapse = ", ")), type = "error")
return ()
}
if (inputS$CountyInput == "All Counties") {

# When 'All Counties' is selected, filter by District
district id <- unique(filter (StateCountyData, District ==
input$DistrictInput) $DistrictID) [1]
uploaded data <- uploaded data %>% filter(di == district id)
}
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TX shp <<- update demo data and shapefile(inputSuser file)

showNotification ("Data successfully uploaded and processed.",
type = "message")

}, error = function(e) {
showNotification ("Error processing the uploaded file.", type =
"error")
})
})

observeEvent (inputS$resetData, {
# Restore original data
demo data <<- original demo_ data
TX shp <<- original TX shp

# Clear the file input field using JavaScript
runjs ("document.getElementById ('user file').value = '';")

# Refresh the map automatically
shinyjs::click ("RefreshMap")

showNotification ("Data reset to original state. Map refreshed.",
type = "message™)

)

observeEvent (input$DistrictInput, {
if (input$DistrictInput != "All Districts") {
updateSelectInput (session, "CountyInput","County",choices
c("All Counties", subset (StateCountyData$County,
StateCountyData$District == input$DistrictInput)))
}
else{
updateSelectInput (session, "CountyInput","County",choices =
c("All Counties"))
}
}

)

output$MapOut <- renderLeaflet ({
leaflet () %>%
addTiles (urlTemplate = "//cartodb-basemaps-
{s}.global.ssl.fastly.net/dark all/{z}/{x}/{y}{r}.png", layerId =
'Carto DB Dark Matter') %>%
setView(lng = -95.7129, lat = 37.0902, zoom = 4)
})

observeEvent (input$RefreshMap, {
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# Get District Code based on District name input
Districtin <- input$DistrictInput
if (Districtin != "All Districts") {
# Retrieve the District ID corresponding to the selected
District name
Districtin Code <- unique(filter (StateCountyData, District ==
Districtin) $DistrictID) [1]
} else {
Districtin Code <- 0
}

# Get County Code based on County name input
COUNTYin <- input$CountyInput
if (COUNTYin != "All Counties") {
# Retrieve the County ID corresponding to the selected County
name and District ID
Countyin Code <- filter (StateCountyData, DistrictID ==
Districtin Code, County == COUNTYin) $CountyID[1]
} else {
Countyin Code <- 0
}

# Map input Facility selection to the updated facility codes
Facilityin Code <- switch(input$FacilityInput,
"All Facilities" = 0,
"Urban Two-lane" = "20",
"Urban Two-lane with a TWLTL" = "2T",
"Urban Interstate Highway" = "IH",
"Urban Multilane Divided" = "MD",
"Urban Multilane Undivided" = "MU",
"Urban Multilane with a TWLTL" = "MT"

)

AADTin Code <- switch (input$AADTInput,

"All Levels" = 0,

"Less than 2000" = 1,
"2001 to 10000"™ = 2,
"Greater than 10000™ = 3

MapOutputData <- TX shp

# Filter MapOutputData based on Districtin Code using "di’ column
in MapOutputData
if (Districtin Code == 0) {
MapOutputDataTempDistrict <- MapOutputData
TXdistricts shp selected <-
st as_sf(as.data.frame (TXDistricts shp))
} else {
# Filter for the selected district code in both MapOutputData
and TXDistricts shp
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MapOutputDataTempDistrict <-
st _as_sf(filter(as.data.frame (MapOutputData), DI == Districtin Code))
TXdistricts shp selected <-
st as _sf(filter(as.data.frame (TXDistricts shp), DIST NBR ==
Districtin Code))

}

# Filter MapOutputDataTempDistrict based on Countyin Code using
"co’ column in MapOutputData
if (Countyin Code == 0) {
MapOutputDataTempCounty <- MapOutputDataTempDistrict

# Further filter TXcounties shp based on Districtin Code if
District is specified
if (Districtin Code != 0) {
TXcounties shp selected <-
st as sf(filter(as.data.frame (TXcounties shp), DIST NBR ==
Districtin Code))
corr <-
as.data.frame (st coordinates (st centroid(TXdistricts shp selected)))

LATzoom <- corrS$SY
LONzoom <- corrS$X
zoomLevel <- 8

} else {
TXcounties shp selected <-
st as sf(filter(as.data.frame (TXcounties shp), DIST NBR == 0))

LATzoom <- 31.9686
LONzoom <- -99.9018
zoomLevel <- ©

} else {

# Filter MapOutputDataTempDistrict for the selected county code
in “co’ column

MapOutputDataTempCounty <-
st as sf(filter(as.data.frame (MapOutputDataTempDistrict), CO ==
Countyin Code))

TXcounties shp selected <-
st as sf(filter(as.data.frame (TXcounties shp), CNTY NBR ==
Countyin Code))

# Get coordinates for centering map based on the selected county
corr <-

as.data.frame (st coordinates (st centroid(TXcounties shp selected)))
LATzoom <- corr$SY
LONzoom <- corr$X
zoomLevel <- 9

}

# Filter MapOutputDataTempCounty based on Facilityin Code using
the “facility  column
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if (Facilityin Code == 0) {
MapOutputDataTempFacility <- MapOutputDataTempCounty
} else {
# Filter for the selected facility code in “facility® column
MapOutputDataTempFacility <-
st as sf(filter(as.data.frame (MapOutputDataTempCounty), facility ==
Facilityin Code))
}

# Filter MapOutputDataTempFacility based on AADTin Code using the
"ADT CUR" column

if (AADTin Code == 0) {
MapOutputDataTempAADT <- MapOutputDataTempFacility
} else if (AADTin Code == 1) {

# Filter for AADT <= 2000
MapOutputDataTempAADT <-
st as sf(filter(as.data.frame (MapOutputDataTempFacility), ADT CUR <=
2000))
} else if (AADTin Code == 2) {
# Filter for 2000 < AADT <= 10000
MapOutputDataTempAADT <-
st as sf(filter (as.data.frame (MapOutputDataTempFacility), ADT CUR >
2000 & ADT CUR <= 10000))
} else {
# Filter for AADT > 10000
MapOutputDataTempAADT <-
st as sf(filter(as.data.frame (MapOutputDataTempFacility), ADT CUR
10000))
}

\Y

# Final assignment for MapOutputDataFinal after all filtering
steps
MapOutputDataFinal <- MapOutputDataTempAADT

# Convert MapOutputDataFinal to a data frame
displaydata <- as.data.frame (MapOutputDataFinal)

# Observe the displaydata row count and toggle the noDataNotice
div visibility
observe ({

if (nrow(displaydata) == 0) {
shinyjs::show ("noDataNotice") # Show the notification if no
data
} else {
shinyjs::hide ("noDataNotice") # Hide the notification if data

is available
}
)

# Map facility codes to descriptive names in the “facility® column
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displaydata <- within(displaydata, facility[facility == '20'] <-
'Urban Two-lane')

displaydata <- within(displaydata, facility[facility == '2T'] <-
'Urban Two-lane with a TWLTL')

displaydata <- within(displaydata, facility[facility == "'IH'] <-
'Urban Interstate Highway')

displaydata <- within(displaydata, facility[facility == 'MD'] <-
'Urban Multilane Divided')

displaydata <- within(displaydata, facility[facility == 'MU'] <-
'Urban Multilane Undivided')

displaydata <- within(displaydata, facility[facility == 'MT'] <-

'Urban Multilane with a TWLTL')

# Set a minimum value of 0.01 for EB total, EB pdo, and EB fi if
they are less than 0.01

displaydata <- within(displaydata, EB total[EB total < 0.01] <-
0.01)

displaydata <- within(displaydata, EB pdo[EB pdo < 0.01] <- 0.01)

displaydata <- within(displaydata, EB fi[EB fi < 0.01] <- 0.01)

#print (head (displaydata))
displaydata$EB total <- as.integer (displaydata$SEB fi +
displaydata$EB pdo)

# Ensure column names in displaydata are clear and consistent
displaydata <- displaydata %>%
rename (
District Code = DI,
County Code = CO,
District = District,
County = County

District code from "di°
County code from "co’
Descriptive district name
Descriptive county name

S oS e

)

# Select the appropriate column in MapOutputDataFinal based on the
selected severity
DataForPal <- switch (input$Severity,
"Total" = MapOutputDataFinal$EB total,
"Fatal and Injury" =
MapOutputDataFinalSEB fi,
"No Injury" = MapOutputDataFinal$EB pdo
)

pal Total <- colorNumeric ("Y1lOrRd", DataForPal)

# Define a named vector mapping each column to its display name
column names <- c(

"un d nw" = "Segment ID",
"HWY" = "Highway Number",
"District" = "District",
"County" = "County",

"MED WID" = "Median Width",
"NUM LAN" = "Number of Lanes",
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"SUR W" = "Surface Width",

"DHV" = "Daily Hourly Volume",

"LEN SEC" = "Segment Length",

"MnrCmmr" = "Minor Commercial Driveway",

"MjrCmmr" = "Major Commercial Driveway",

"MnrInds" = "Minor Industrial Driveway",

"MnrRsdn" = "Minor Residential Driveway",
"MjrInds" = "Major Industrial Driveway",

"MjrRsdn" = "Major Residential Driveway",
"Other" = "Other Driveway",

"facility" = "Facility Type",

"equi dwy" = "Equivalent Driveway",

"EB fi" = "Expected FI Crashes",

"EB pdo" = "Expected PDO Crashes",

"EB total" = "Expected Total Crashes"

)

# Generate labelOut dynamically based on columns present in
displaydata
labelOut <- lapply(names (column names), function(col) {
if (col %in% names (displaydata)) {
pastel (column names[col], ": ", displaydata[[col]], "<br>")
} else {
NULL
1
})

# Combine all elements of labelOut into a single list with HTML
labelOut <- as.list(do.call (pastelO, labelOut))

# Create popup content with expected and observed crashes
information
popupOut <- pastel (

"<div style='max-height: 300px; overflow-y: auto;'>", # Start
scrollable div

'Segment ID: ', displaydata$un d nw, "<br>",

'"Highway Number: ', displaydataS$HWY, "<br>",

'District: ', displaydata$District, "<br>",

'County: ', displaydata$County, "<br>",

'Median Width: ', displaydata$MED WID, "<br>",

'Number of Lanes: ', displaydata$NUM LAN, "<br>",

'Surface Width: ', displaydata$SUR W, "<br>",

'Daily Hourly Volume: ', displaydata$DHV, "<br>",

'Segment Length: ', format (round(displaydata$SLEN SEC, 3), nsmall
= 3), "<br>",

'"Minor Commercial Driveway: ', displaydataSMnrCmmr, "<br>",

'"Major Commercial Driveway: ', displaydataSMjrCmmr, "<br>",

'Minor Industrial Driveway: ', displaydataSMnrInds, "<br>",

'"Minor Residential Driveway: ', displaydata$MnrRsdn, "<br>",

'"Major Industrial Driveway: ', displaydata$MjrInds, "<br>",

'Major Residential Driveway: ', displaydata$MjrRsdn, "<br>",

'Other Driveway: ', displaydata$Other, "<br>",
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'"Facility Type: ', displaydataS$facility, "<br>",

'Equivalent Driveway: ', displaydataSequi dwy, "<br>",

'Expected FI Crashes: ', format(round(displaydata$EB_fi, 2),
nsmall = 2), "<br>",

'Expected PDO Crashes: ', format(round(displaydata$EB_pdo, 2),
nsmall = 2), "<br>",

'Expected Total Crashes: ', format (round(displaydata$SEB total,
2), nsmall = 2), "<br>",

"</div>" # End scrollable div

)

leafletProxy ("MapOut") %>%

clearPopups () %>%

clearGroup ("Total/Fata/Injury"™) %$>%

clearGroup ("CountiesSHP") %>%

clearGroup ("DistrictsSHP") %>%

clearControls () %>%

setView (lng = LONzoom, lat = LATzoom, zoom = zoomLevel) %>%

# Add polylines for MapOutputDataFinal with updated columns for
crash data
addPolylines (
data = MapOutputDataFinal,
color = ~pal Total(
switch (input$Severity,

"Total" = MapOutputDataFinal$EB total,
"Fatal and Injury" = MapOutputDataFinal$SEB fi,
"No Injury" = MapOutputDataFinal$EB pdo)

),

group = "Total/Fata/Injury",

popup = popupOut,

label = lapply(labelOut, HTML)

) 5>%

# Add county boundaries
addPolylines (
data = TXcounties shp selected,
color = '#81A88D',
group = "CountiesSHP",
weight = 1

o) o)
) $>%

# Add district boundaries

addPolylines (
data = TXdistricts shp selected,
color = '#C93312"',
group = "DistrictsSHP",

weight = 2.5

o) o)
) $>%

# Add legend for crash severity based on updated columns
addLegend (
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"bottomright",
pal = pal Total,
values = switch (input$Severity,
"Total" = MapOutputDataFinal$EB total,
"Fatal and Injury" = MapOutputDataFinalS$SEB fi,
"No Injury" = MapOutputDataFinal$EB pdo),
title = pastel (input$Severity, " Crashes")

if (nrow(displaydata) > 0) {
MapOutputDataFinalDTtemp <- cbind (
select (displaydata,

c(

'un d nw', # Segment ID

'District’', # District

'County', # County

"HWY', # Highway Number

'facility', # Facility Type

'LEN_SEC', # Segment Length

'ADT CUR', # AADT

'Spdl8"', # Average Operating Speed

'ssi18’', # Standard Deviation of Operating
Speed

'PSL18"', # PSL Equivalent from INRIX

'pre avg', # Average Precipitation

'pred fi', # Predicted FI Crashes

'pred pdo', # Predicted PDO Crashes

'EB_total', # Expected Total Crashes

'EB pdo', # Expected PDO Crashes

'"EB fi', # Expected FI Crashes

'total' # Observed Total Crashes

# 'Crash 18 22 pdo', # Observed PDO Crashes
# 'Crash 18 22 fi' # Observed FI Crashes
)

)

# Remove duplicates based on the Segment ID (un _d nw) and keep
all other columns

MapOutputDataFinalDTtemp <- distinct (MapOutputDataFinalDTtemp,
un_d nw, .keep all = TRUE)

# Format specific columns to ensure consistent numeric
formatting

MapOutputDataFinalDTtempS$Sspdl8 <-
format (round (MapOutputDataFinalDTtemp$Spdl8, 2), nsmall = 2) #
Average Operating Speed

MapOutputDataFinalDTtemp$Sssl8 <-
format (round (MapOutputDataFinalDTtemp$SS18, 2), nsmall = 2) #
Standard Deviation of Operating Speed
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MapOutputDataFinalDTtempSpre avg <-
format (round (MapOutputDataFinalDTtempSpre avg, 2), nsmall = 2) #
Average Precipitation

MapOutputDataFinalDTtemp$SEB total <-
format (round (MapOutputDataFinalDTtemp$SEB total, 2), nsmall = 2) #
Expected Total Crashes

MapOutputDataFinalDTtemp$SEB pdo <-
format(round(MapOutputDataFinalDTtemp$EB_pdo, 2), nsmall = 2) #
Expected PDO Crashes

MapOutputDataFinalDTtemp$SEB fi <-
format(round(MapOutputDataFinalDTtemp$EB_fi, 2), nsmall =
Expected FI Crashes

MapOutputDataFinalDTtempStotal <-
format (round (MapOutputDataFinalDTtemp$total, 2), nsmall = 2) #
Observed Total Crashes

# MapOutputDataFinalDTtempS$SCrash 18 22 pdo <-
format (round (MapOutputDataFinalDTtempSCrash 18 22 pdo, 2), nsmall = 2)
# Observed PDO Crashes

# MapOutputDataFinalDTtemp$Crash 18 22 fi <-
format(round(MapOutputDataFinalDTtemp$Crash_l8_22_fi, 2), nsmall = 2)
# Observed FI Crashes

MapOutputDataFinalDTtemp$len sec <-
format (round (MapOutputDataFinalDTtemp$SLEN SEC, 3), nsmall = 3) #
Segment Length

|
N
=

} else {
# Define the column names expected in MapOutputDataFinalDTtemp
column names <- c(

'un d nw', # Segment ID

'District’, # District

'County’', # County

"HWY ', # Highway Number
'facility', # Facility Type

'LEN SEC', # Segment Length

'ADT CUR', # AADT

'Spdl8’, # Average Operating Speed
'ssi8’', # Standard Deviation of Operating Speed
'PSL18"', # PSL Equivalent from INRIX
'pre_avg', # Average Precipitation
'pred fi', # Predicted FI Crashes
'pred pdo', # Predicted PDO Crashes

'EB total'’, # Expected Total Crashes
'EB pdo', # Expected PDO Crashes

'EB _fi', # Expected FI Crashes
'total' # Observed Total Crashes

# 'Crash 18 22 pdo', # Observed PDO Crashes
# 'Crash 18 22 fi' # Observed FI Crashes
)

# Create an empty data frame with "None" for each column
MapOutputDataFinalDTtemp <- data.frame (matrix ("None", nrow = 1,
ncol = length (column names)))
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names (MapOutputDataFinalDTtemp) <- column names

}

MapOutputDataFinalDT <- datatable (MapOutputDataFinalDTtemp,
class = 'cell-border
stripe', rownames = FALSE

)

# Render the data table with the expected and observed crashes
columns and enable single-row selection
output$outputDT <- DT::renderDT ({
displaydata selected <- displaydata %>%

select (
un_d nw, # Segment ID
District, # District
County, # County
FRM DFO, # From DFO
TO_DFO, # To DFO
C_SEC, # Control Section
total, # Observed Total Crashes
EB fi, # Expected FI Crashes
EB pdo, # Expected PDO Crashes
EB total # Expected Total Crashes
) $>%
rename (

Segment ID = un_d nw,

From DFO = FRM DFO,

To DFO = TO_DFO,

Control Section = C_SEC,

Observed Total Crashes = total,

Expected FI Crashes = EB fi,

Expected PDO Crashes = EB pdo,

Expected Total Crashes = EB total
)

datatable (
displaydata selected,
class = 'cell-border stripe’',
rownames = FALSE,
options = list(lengthChange = FALSE),
selection = 'single' # Enable single-row selection

)
1)

# Observe the selected row in the data table and show the popup
observeEvent(input$outputDT_rows_selected, {
selected row <- input$outputDT rows selected

if (length(selected row) > 0) {
# Get the Segment ID of the selected row
selected id <- displaydata[selected row, "un d nw"]
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# Filter TX shp to get the corresponding feature
selected feature <- TX shp %>% filter (un d nw == selected id)

# Get the coordinates for centering the map

selected coords <- st centroid(st geometry(selected feature))
%>% st coordinates ()

Ing <- selected coords[1]

lat <- selected coords([2]

# Create popup content with expected and observed crashes
information
popupOut <- pasteOl (

"<div style='max-height: 300px; overflow-y: auto;'>", #
Start scrollable div

'Segment ID: ', displaydataSun d nw, "<br>",

'"Highway Number: ', displaydata$HWY, "<br>",

'District: ', displaydata$District, "<br>",

'County: ', displaydata$County, "<br>",

'Median Width: ', displaydata$MED WID, "<br>",

'Number of Lanes: ', displaydata$NUM LAN, "<br>",

'Surface Width: ', displaydata$SUR W, "<br>",

'"AADT: ', displaydataS$SADT CUR, "<br>",

'K-Factor: ', displaydata$K FAC, "<br>",

'D-Factor: ', displaydata$D FAC, "<br>",

'Daily Hourly Volume: ', displaydataS$DHV, "<br>",

'Segment Length: ', format (round(displaydataSLEN SEC, 3),
nsmall = 3), "<br>",

'Average Operating Speed: ', format (round(displaydata$Spdls,
2), nsmall = 2), "<br>",

'Standard Deviation of Operating Speed: ',
format (round (displaydata$ss18, 2), nsmall = 2), "<br>",

'PSL Equivalent from INRIX: ',
format (round (displaydata$PSL18, 2), nsmall

'Free Flow Operating Speed: ',
format (round (displaydata$SFF18, 2), nsmall = 2), "<br>",

'Major Commercial Driveway: ', displaydata$MnrCmmr, "<br>",

'"Minor Commercial Driveway: ', displaydata$MjrCmmr, "<br>",

'Minor Industrial Driveway: ', displaydata$MnrInds, "<br>",

'"Minor Residential Driveway: ', displaydataSMnrRsdn, "<br>",

'"Major Industrial Driveway: ', displaydata$MjrInds, "<br>",

'Other Driveway: ', displaydata$Other, "<br>",

'"Major Residential Driveway: ', displaydata$MjrRsdn, "<br>",

'Facility Type: ', displaydataS$facility, "<br>",

# 'FI Crashes: ', displaydata$Crash 18 22 fi, "<br>",

# 'PDO Crashes: ', displaydata$Crash 18 22 pdo, "<br>",

'Total Crashes: ', displaydataS$Stotal, "<br>",

'Equivalent Driveway: ', displaydataSequi dwy, "<br>",

'Average Precipitation: ', displaydataSpre avg, "<br>",

'Predicted FI Crashes: ', format (round(displaydata$pred fi,
2), nsmall = 2), "<br>",

2) , "<b]f>",
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'Expected FI Crashes: ', format(round(displaydata$EB_fi, 2),
nsmall = 2), "<br>",

'Predicted PDO Crashes: ',
format(round(displaydata$pred_pdo, 2), nsmall = 2), "<br>",

'Expected PDO Crashes: ', format (round(displaydata$SEB pdo,
2), nsmall = 2), "<br>",

'Expected Total Crashes: ',
format(round(displaydata$EB_total, 2), nsmall = 2), "<br>",

"</div>" # End scrollable div

)

# Update the map: clear previous popups and add a new one

leafletProxy ("MapOut") %>%
clearPopups () %>%
setView (lng = lng, lat = lat, zoom = 12) %>
addPopups (1lng, lat, popupOut, options =

popupOptions (closeButton = TRUE))
}
})

o°

if (nrow(displaydata) > 0) {
# Remove the geometry column and ensure distinct rows based on
‘un d nw’
outputDTdownload <- displaydata %>%
select (-geometry) %>%
distinct (un_d nw, .keep all = TRUE) %>%

# Relocate District and County names (assuming names are
"District Name  and "County Name')

relocate (District, .after = District Code) %>%

relocate (County, .after = County Code)

} else {
# Create a single-row data frame with "None" for each column if
there is no data
outputDTdownload <- data.frame (matrix ("None", nrow = 1, ncol =
ncol (displaydata) - 1))
colnames (outputDTdownload) <- setdiff (names (displaydata),
"geometry")

}

# Define download handler for output data with updated facility
codes
output$downloadData <- downloadHandler (
filename = function() {
pastel (
gSU.b(" u, nu, paste(

input$DistrictInput, " ",
input$CountyInput, " ",
switch (input$FacilityInput,
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"All Facilities"™ = "All",
"Urban Two-lane" = "2U",
"Urban Two-lane with a TWLTL" = "2T",
"Urban Interstate Highway" = "IH",
"Urban Multilane Divided" = "MD",
"Urban Multilane Undivided" = "MU",
"Urban Multilane with a TWLTL" = "MT"
) 4
input$YearInput
) )
".csv

)

by

content = function(file) {
required columns <- c(

"un d nw", "GID", "FRM DFO", "TO DFO", "C_SEC", "HWY",
"STE NAM", "District Code",

"District", "County Code", "County", "CITY", "RU",
"F_SYSTE", "RU F SY", "SPD MAX",

"MED TYP", "MED WID", "NUM LAN", "HOV LAN", "HOV TYP",
"RB_WID", "SUR W", "S TYPE I",

"S WID I", "S USE I", "s TYPE O", "S WID O", "S USE O",
"CURB L", "SRF TYP",

"ADT YEA", "ADT CUR", "ADT ADJ", "K FAC", "D FAC",
"TRK AAD", "HY 1", "HY 2", "HY 3",

"HY 4", "HY 5", "HY 6", "HY 7", "HY 8", "HY 9", "DESGN Y",
"LEN SEC", "LN MILE",

"DVMT", "Fclty C", "Spdlg", "sSs18", "Spdl9", "Ss19",
"Spd20", "sSs20", "Spd21", "ss21",

"Spd22", "SS22", "X2019pS", "X2019pA", "X2020pS", "X2020pA",
"X2021pS", "X2021pA",

"X2022ps", "X2022pA", "X2018 A", "X2018 B", "X2018 C",
"X2018 K", "X2018 O", "xX2018 U",

"X2019 A", "X2019 B", "X2019 C", "X2019 K", "X2019 o",
"X2019 U", "X2020 A", "X2020 B",

"X2020_c", "X2020 K", "X2020 _O", "X2020 U", "X2021 A",
"X2021 B", "X2021 C", "X2021 K",

"X2021 Oo", "X2021 U", "X2022 A", "X2022 B", "X2022 C",
"X2022 K", "X2022 Oo", "X2022 U",

"MnrCmmr", "MjrCmmr", "MnrInds", "MnrRsdn", "MjrInds",
"Other", "MjrRsdn", "fclty cl",

"facility", "Crash 18 2", "Crash 18 1", "total",
"pav_s wid ", "sw",

"equi dwy", "equi dwy m", "spd", "pre avg", "Site no",
"pred fi", "EB fi", "pred pdo",

"EB pdo", "EB total"

)

# Corresponding new column names
new column names <- c(
HUanDH, "GID", "Frm_Dfo", "TO_DfO", "C_Sec", "HWy",
"Ste Nam", "District Code",

226



"District", "County Code", "County", "City", "Ru",
"F Syste", "Ru F Sy", "Spd Max",

"Med Typ", "Med Wid", "Num Lan", "Hov_Lan", "Hov Typ",
"Rb Wid", "Sur W", "S Type I",

"S Wid I", "S Use I", "S Type O", "S Wid O", "S Use O",
"Curb L", "Srf Typ",

"Adt Yea", "Adt Cur", "Adt Adj", "K Fac", "D Fac",
"Trk Aad", "Hy 1", "Hy 2", "Hy 3",

"Hy 4", "Hy 5", "Hy 6", "Hy 7", "Hy 8", "Hy 9", "Desgn Y",
"Len Sec", "Ln Mile",

"Dvmt", "Fclty C", "Spdl8", "Ssl1l8", "Spdl9", "Ssl1l9",
"Spdz20", "Ss20", "Spdz21", "Ss21",

"Spd22", "Ss22", "PrcSuml9", "PrcAvgl9", "PrcSum20",
"PrcAvg20", "PrcSum21",

"PrcAvg2l", "PrcSum22", "PrcAvg22", "A 18", "B 18", "C 18",
"K 18", "O 18", "U 18",

"A 19", "B 19", "C 19", "K 19", "O_19", "u 19", "A 20",
"B_20", "C_20", "K_20",

110_20", "U_20", "A_21H, "B_21", "C_21", "K_21", "0_21",
"U_Zl", "A_22", "B_22",

"c 22", "K 22", "o 22", "U 22", "MnrCmmr", "MjrCmmr",
"MnrInds", "MnrRsdn", "MjrInds",

"Other", "MjrRsdn", "Fclty Cl1", "Facility", "Crl8 22 FI",
"Crl8 22 PDO", "TotalCrash",

"Pav_S wid", "Sw", "Equi Dwy", "Equi Dwy M", "Spd",
"Prc Avg", "Site No", "Predicted FI",

"Estimated FI", "Predicted PDO", "Estimated PDO",
"Estimated Total"

)

# Subset and rename the columns

outputDTdownload <- outputDTdownload[, required columns, drop
= FALSE]

colnames (outputDTdownload) <- new column names

write.csv (outputDTdownload, file, row.names = FALSE)
}
)

# Define download handler for variable definitions
output$downloadDefination <- downloadHandler (
filename = function() {
pastel ("VariableCodes 7144.x1sx")
b
content = function(file) {
file.copy("ShapeFiles/VariableCodes 7144.x1lsx", file)
}
)
1)
}

shinyApp (ui, server)
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