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CHAPTER 1: 
INTRODUCTION 

1.1 BACKGROUND 

The identification of appropriate correlations between operating speed, roadway geometry, and 
traffic exposure can significantly contribute to the enhancement of roadway safety. A 
comprehensive understanding and characterization of these associations has the potential to 
advance existing safety improvement procedures leading to a reduction in both the frequency and 
severity of crashes. Therefore, it is imperative to employ data-driven methodologies to gain a 
better comprehension of these relationships. Traditional assessments primarily rely on corridor 
traffic volume and physical site characteristics. However, the lack of reliable data on operating 
speeds has been a major obstacle in developing robust models that depict this relationship, 
particularly for urban roadways. 

Despite the significance of including speed in safety evaluations, it is noteworthy that the first 
edition of the Highway Safety Manual (HSM) (as well as the upcoming second edition) does not 
directly employ speed as a measure in the safety performance functions (SPFs) for various types 
of road facilities (AASHTO, 2010). This omission mainly arises from the intricate interplay 
between roadway geometry, speed, and crash frequency. Furthermore, research findings have not 
provided conclusive evidence in determining appropriate speed measures. While some studies 
indicate that higher operating speeds result in more frequent and severe crashes, other studies 
have observed the opposite effect. Overall, it is evident that the existing models may not 
adequately account for the interconnectedness between speed measures, roadway factors, and 
safety. 

Traditional crash risk analysis methods often overlook crucial factors such as real-time speed, 
real-time volume, and weather conditions, resulting in limited effectiveness in predicting safety 
risks. To address this research gap, it is proposed to enhance existing state-specific traffic crash 
data by incorporating three national databases: 

 The NPMRDS: This database contains comprehensive travel time data for both passenger 
and freight vehicles, encompassing the National Highway System (NHS) as well as other 
roadways. By integrating NPMRDS data, researchers can gain valuable insights into the 
performance of transportation networks. INRIX XD data provides additional details on non-
NHS roadways. 

 The Travel Monitoring Analysis System (TMAS): TMAS provides traffic volume data 
through temporary traffic counting and continuous traffic counting programs. By 
incorporating TMAS data, researchers can access information regarding the flow of vehicles, 
enabling a more comprehensive analysis of crash risks. 
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 Real-time weather data from the National Oceanic and Atmospheric Administration 
(NOAA): Weather conditions significantly influence road safety, and the inclusion of real-
time weather data from NOAA enhances the accuracy of crash risk analysis. Factors such as 
precipitation, temperature, and visibility can now be considered, enabling a more holistic 
assessment. 

The 0-7144 research project aims to address these limitations by developing updated SPFs 
specifically tailored for urban roadways. Additionally, a decision support tool was developed to 
facilitate the exploration of segment-based crash risks for various types of urban roadway 
facilities. By leveraging these integrated datasets and tools, transportation professionals will have 
access to improved methodologies for assessing crash risks, allowing for more effective safety 
planning and decision-making processes. 

1.2 PROJECT GOAL AND RESEARCH TASKS 

The objective of this study is to develop annual and short duration SPF development for urban 
facilities. This project aims to answer the following three research questions: 

 To what extent can operational speed and weather variables be interpreted as directly 
affecting crash risk or crash severity on urban roadways? 

 To what extent can the decision criteria be developed in assigning the risk measures of 
the urban roadways for the decision support tool? 

 Can the decision support tool provide updated risk scores based on the new influx of 
data? 

To achieve the project goals, the Project Team has conducted five major tasks, and they are 
summarized as follows: 

 Task 2 – Literature Review: The Project Team conducted a broader overview of speed and 
safety on urban roadway networks.   

 Task 3 – Data Collection and Data Preparation: The Project Team conflated several data 
sources to develop the database for the safety evaluation of urban roadways. For traffic crash 
data, the Project Team used five years (2018-2022) of traffic crash data from Crash Records 
Information System (CRIS). 

 Task 4 – Safety Evaluation of Urban Roadway Networks: The Project Team conducted a 
safety evaluation of different urban facility types in this task. The Project Team developed 
models at two temporal levels: 

o Long duration analysis (e.g., multi-year, annual). 
o Short duration analysis (e.g., daily, hourly). 

 Task 5 – Urban Decision Support Tool Development: The Project Team developed an 
interactive map-based web application to analyze and visualize the risk on the urban roadway 
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network. The risk predicted using modeling for each segment of the roadway network was 
illustrated on interactive GIS maps. The decision support tool platform has three major 
components, a cloud-based data warehouse, a cloud-based computational platform, and a 
web server. The Project Team developed a dynamic version of the tool in which risk scores 
will be updated with the influx of new data.  

 Task 6 – Guideline and Workshop Presentation File Development: The Project Team 
developed a guidance document on the tool usage and developed workshop-ready 
presentation slides.  

1.3 REPORT ORGANIZATION 

The remaining chapters of this report include the following: 

 Chapter 2: Literature Review: This chapter provides an overview of the methods that can 
be used to perform highway safety evaluations. 

 Chapter 3: Data Preparation: This chapter provides a brief overview of the data and the 
data conflation framework  

 Chapter 4: Model Development: This chapter presents the development of annual and 
short-duration safety performance functions, including model specification, estimation 
results, and interpretation of key covariates across facility types. 

 Chapter 5: Decision Support Tool: This chapter presents the safety decision tool that the 
research group developed for this study. 

 Chapter 6: Conclusions and Recommendations: This chapter summarizes the most 
important research findings and provides a list of implementation recommendations 
stemming from the work performed and lessons learned throughout this project. 
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CHAPTER 2: 
LITERATURE REVIEW 

2.1 INTRODUCTION 

This chapter provides a synthesis of methods that will help readers gain a better understanding of 
key aspects related to urban safety. These aspects include predictive methods for urban facilities, 
the consideration of non-motorists in overall safety calculations, the relationship among 
operating speed, geometric variables, posted speed limits, and crash outcomes, as well as the 
impact of weather on urban safety. To develop this synthesis, the Project Team gathered and 
reviewed relevant documentation, such as journal articles, research reports, guidebooks, and 
handbooks. 

2.2 MODELING FRAMEWORKS  

2.2.1 HSM Predictive Methods for Urban Non-Freeway Segments  

The HSM AASHTO (2010), as described in Chapter 12, provides useful predictive methods for 
evaluating urban and suburban arterial systems. This document provides a well-organized 
technique for calculating the typical crash frequency, crash severity, and collision types 
anticipated in facilities with given characteristics. Except for collisions between bicycles and 
pedestrians, it covers all kinds of crashes involving automobiles, bicycles, and pedestrians. This 
predictive technique may be used for a variety of scenarios, such as current sites, design choices 
for existing sites, new sites, or alternate traffic volume forecasts. 

Definition of Facility Types 

The HSM provides precise definitions for facility types as well as prediction models for each 
facility type. The manual classifies facility types into two main categories: roadway segments 
and intersections. For this literature review, the Project Team solely focused on the facility types 
related to roadway segments. Below is a list of the specific site types related to roadway 
segments as presented in the HSM (AASHTO, 2010): 

 Two-lane undivided arterial (2U): This refers to a road with two lanes that share a 
continuous cross-section, allowing for travel in two directions without any physical 
separation or barriers between the lanes. 

 Three-lane arterials (3T): This depicts a road that has three lanes and a continuous cross-
section that allows for two-way traffic. In this arrangement, the middle lane functions as a 
two-way left-turn lane (TWLTL). 

 Four-lane undivided arterials (4U): This pertains to a road consisting of four lanes, without 
any physical separation or barriers between them, enabling travel in two directions on a 
continuous cross-section. 



5 

 Four-lane divided arterials (4D): This describes a continuous cross-sectional roadway with 
two lanes in each direction. Physical barriers, such as a raised or depressed median, are used 
to physically divide the lanes. 

 Five-lane arterials including a center TWLTL (5T): This designates a two-way highway 
with five lanes that share a continuous cross-section. In this arrangement, the middle lane 
functions as a TWLTL. 

Overview of the Predictive Method 

The HSM uses a technique to calculate the expected average crash frequency for a particular 
location, and these calculations may be used to get the frequency for an entire facility or 
network. This estimation is done for a predetermined amount of time (in years), during which the 
geometric layout and traffic-controlling characteristics remain the same and the traffic volumes 
are either known or anticipated. Predictive models are used to provide these estimations, and the 
Empirical Bayes (EB) Method is used to integrate the results of the models with the data from 
the observed crashes. HSM’s SPFs focus on two primary crash severity levels: crashes involving 
fatalities and injuries and crashes involving merely property damage. The term ‘fatal-and-injury 
crashes’ refers to collisions that result in injuries of any severity, including fatalities, 
incapacitating injuries, non-incapacitating injuries, and potential injuries. Equation (1) lists the 
prediction models used in the HSM for arterial facilities in urban and suburban areas to 
anticipate the average crash frequency (AASHTO, 2010). 

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  �𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥 × �𝐶𝐶𝐶𝐶𝐶𝐶1𝑥𝑥 × 𝐶𝐶𝐶𝐶𝐶𝐶2𝑥𝑥 × … × 𝐶𝐶𝐶𝐶𝐶𝐶𝑦𝑦𝑦𝑦� + 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏� × 𝐶𝐶𝑥𝑥 (1) 
Where, 
𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = projected annual average crash frequency for site type x; 
𝑁𝑁𝑠𝑠𝑝𝑝𝑠𝑠 𝑥𝑥 = projected average crash frequency as estimated by the SPF generated for site type 
x under base circumstances; 
𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥 = anticipated annual average number of crashes between a vehicle and a pedestrian 
for site type x; 
𝑁𝑁𝑏𝑏𝑝𝑝𝑏𝑏𝑝𝑝𝑥𝑥 = expected annual average number of vehicle-bicycle crashes for site type x; 
𝐶𝐶𝐶𝐶𝐶𝐶𝑦𝑦𝑥𝑥 = crash modification factor (CMF) unique to site type x; and 
𝐶𝐶𝑥𝑥 = the calibration factor to modify SPF for the site type x's local circumstances. 

Predictive Method Framework 

Predictive models can be used to anticipate the average frequency of certain crash severity 
categories or types, or to estimate the total average crashes across all severities and crash types. 
The predictive model includes the SPF, CMFs, and a calibration factor when applied to a specific 
highway segment or junction. The predictive models are created to assess the predicted average 
crash frequency for crashes unrelated to junctions in the setting of highway segments. This 
covers crashes that take place near a junction but are unrelated to the intersection itself. In other 
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words, estimates of crashes that would occur regardless of whether an intersection is present are 
given by the predictive models for roadway segments. Equations (2) and (3) outline the specific 
predictive models for roadway segments (AASHTO, 2010). 
𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟 =  𝐶𝐶𝑟𝑟 × �𝑁𝑁𝑏𝑏𝑏𝑏 + 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏� (2) 
𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟 × (𝐶𝐶𝐶𝐶𝐶𝐶1𝑟𝑟 × 𝐶𝐶𝐶𝐶𝐶𝐶2𝑟𝑟 × … × 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛) (3) 
Where, 
𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑠𝑠 = projected average crash frequency of a specific roadway segment for the chosen 
year; 
𝑁𝑁𝑏𝑏𝑝𝑝 = projected average crash frequency of a specific roadway segment; 
𝑁𝑁𝑠𝑠𝑝𝑝𝑠𝑠 𝑝𝑝𝑠𝑠 = projected total average crash frequency of a specific roadway segment for baseline 
conditions; 
𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = projected average crash frequency of vehicle-pedestrian collisions; 
𝑁𝑁𝑏𝑏𝑝𝑝𝑏𝑏𝑝𝑝𝑝𝑝 = projected average crash frequency of car-bicycle crashes; 
𝐶𝐶𝐶𝐶𝐶𝐶1𝑝𝑝 …𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑝𝑝=  CMFs for roadway segments; and 
𝐶𝐶𝑝𝑝 = calibration factor for a particular kind of road segment that was created for usage in a 
certain region. 
Equation (2) demonstrates that the estimation of crash frequency for roadway segments 
comprises three components: 𝑁𝑁𝑏𝑏𝑝𝑝, 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑁𝑁𝑏𝑏𝑝𝑝𝑏𝑏𝑝𝑝𝑝𝑝 . Moreover, the SPF portion of 𝑁𝑁𝑏𝑏𝑝𝑝, denoted as 
𝑁𝑁𝑠𝑠𝑝𝑝𝑠𝑠 𝑝𝑝𝑠𝑠, can be broken down into three components based on collision type, as depicted in 
Equation (4). 
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟 =  𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑦𝑦 (4) 
Where, 
𝑁𝑁𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏 = projected average crash frequency of multiple vehicle non-driveway collisions for base 
conditions; 
𝑁𝑁𝑏𝑏𝑝𝑝𝑠𝑠𝑏𝑏 = projected average crash frequency of single vehicle crashes for base conditions; and 
𝑁𝑁𝑏𝑏𝑝𝑝𝑝𝑝𝑏𝑏𝑦𝑦 = projected average multiple-vehicle driveway crash frequency. 

 Predictive Method Steps 

The prediction approach consists of eighteen phases as listed in the HSM. For an urban or 
suburban arterial facility, the predictive method's application results in an estimate of the 
predicted average crash frequency. Steps 9, 10, and 11 of the predictive technique involve 
determining and applying the elements of the HSM predictive models. In some circumstances, 
some actions won't even be necessary. For instance, a new facility won't have observed crash 
data, therefore the EB method procedures don't need to be taken. The prediction techniques' steps 
are mentioned below (AASHTO, 2010).  
 
 Step 1: Establish the borders of the different types of facilities and roads that make up the 

research network, site, or facility where we need to calculate the predicted average crash 
frequency, severity, and collision types. 
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 Step 2: Select the time frame. 
 Step 3: Evaluate the availability of yearly average daily traffic volumes, pedestrian crossing 

volumes, and, if appropriate, witnessed collision data for an existing highway network. 
 Step 4: List the geometric design aspects, traffic control features, and site characteristics for 

each site in the network of interest. 
 Step 5: Segment the roadway network or facility into distinct uniform roadway sections and 

intersections, known as sites. 
 Step 6: Allocate any observed collisions to the corresponding individual sites (if applicable). 
 Step 7: Initiate the process with the first or subsequent individual site in the study network. If 

no further sites require assessment, proceed to Step 15. 
 Step 8: Choose the first or subsequent year within the specified period of interest for the 

selected site. If there are no more years to evaluate that site, proceed to Step 14. 
 Step 9: Determine and implement the suitable SPF for the type of facility and traffic control 

characteristics at the selected site. 
 Step 10: Adjust the outcome from Step 9 by multiplying it with the relevant CMFs to account 

for specific geometric design and traffic control features of the site. 
 Step 11: Multiply the result from Step 10 by the appropriate calibration factor. 
 Step 12: If there are additional years to evaluate the chosen site within the study period, 

return to Step 8. Otherwise, proceed to Step 13. 
 Step 13: Employ the site-specific EB Method if applicable. 
 Step 14: If there are more sites to assess, return to Step 7. Otherwise, proceed to Step 15. 
 Step 15: Utilize the project-level EB Method if the site-specific EB Method is not applicable. 
 Step 16: Calculate the total collision frequency by aggregating all sites and years in the study. 
 Step 17: Determine if there are alternative designs, treatments, or projected annual average 

daily traffic (AADT) to assess. 
 Step 18: Evaluate and compare the results obtained. 

Definition of Roadway Segments 

The roadway is separated into discrete sites in step 5 of the predictive technique, comprising 
homogeneous roadway segments and junctions. The collection of these locations is referred to as 
a facility, and a highway network is made up of several facilities. A road segment begins at the 
center of an intersection and ends either at the center of the next junction or at the point where it 
changes to another homogeneous segment. The length of a highway segment that starts or ends at 
a junction is calculated from the intersection's center. 
 
The approach of segmenting involves dividing the roadway network or facility into distinct road 
sections and intersections that share common characteristics, such as traffic volumes, important 
aspects of highway design, and traffic control measures. It is important to note that between two 
intersections, there may be multiple road segments that exhibit uniformity. A new and separate 
segment is initiated at each intersection or whenever there is a change in factors such as the 
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AADT, number of through lanes, presence of medians, the existence of TWLTL, type of on-
street parking, density of roadside fixed objects, presence of lighting, speed category based on 
actual traffic speed or posted speed limit, and implementation of automated enforcement 
measures. Table 1 provides the recommended rounded widths for medians without barriers, 
which should be considered when determining ‘homogeneous’ segments (AASHTO, 2010). 

Table 1. Rounded Widths for Medians, Reproduced from the HSM (AASHTO, 2010). 
Measured Median Width Rounded Median Width 
1 ft to 14 ft 10 ft 
15 ft to 24 ft 20 ft 
25 ft to 34 ft 30 ft 
35 ft to 44 ft 40 ft 
45 ft to 54 ft 50 ft 
55 ft to 64 ft 60 ft 
65 ft to 74 ft 70 ft 
75 ft to 84 ft 80 ft 
85 ft to 94 ft 90 ft 
95 ft or more 100 ft 

SPFs for Urban Non-Freeway Segments 

During Step 9 of the predictive approach, SPFs are employed to anticipate the frequency of 
crashes under specific baseline conditions. SPFs are regression models designed to estimate the 
average predicted crash frequency for individual roadway segments. These SPFs are constructed 
using observed crash data collected from comparable sites. Similar to other regression models, 
SPFs estimate the value of a dependent variable based on a set of independent variables. In the 
SPFs developed for the HSM, the dependent variable estimated is the average predicted crash 
frequency for a roadway segment or intersection under baseline conditions, while the 
independent variables are the AADT values for the roadway segment or intersection legs. This 
literature review primarily focuses on the SPFs relevant to roadway segments. Additionally, each 
SPF is accompanied by an overdispersion parameter, denoted as 𝑘𝑘, which indicates the statistical 
reliability of the SPF. A lower value of the overdispersion parameter signifies a greater level of 
statistical reliability. The SPFs in HSM for roadway segments are summarized in Table 2. 

Table 2. SPFs for Urban and Suburban Arterials, Reproduced from the HSM (AASHTO, 
2010). 

SPFs for Urban and Suburban Arterials SPF Components by Collision Type 

Roadway segments (Non-Freeway) multiple-vehicle nondriveway collisions 
single-vehicle crashes 
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multiple-vehicle driveway-related collisions 
vehicle-pedestrian collisions 
vehicle-bicycle collisions 

According to the HSM, the method for calculating the average collision frequency for a certain 
urban or suburban arterial route section is described in Equation (2) of the predictive model. 
While the influence of geometric design and traffic control elements is taken into account using 
CMFs, the impact of AADT on crash frequency is taken into consideration by incorporating the 
SPF. On urban and suburban arterials, five different types of highway segments have SPFs and 
adjustment factors available (AASHTO, 2010): 

 Two-lane undivided arterials (referred to as 2U) 
 Three-lane arterials with a center TWLTL (referred to as 3T) 
 Four-lane undivided arterials (referred to as 4U) 
 Four-lane divided arterials, which have a raised or depressed median (referred to as 4D) 
 Five-lane arterials with a center TWLTL (referred to as 5T) 

In the third step of the prediction method, the calculation of traffic volumes for the road 
segments included in the SPFs is explained. These SPFs are specifically developed for individual 
road segments on urban and suburban arterials, and they are designed to be applicable within 
certain ranges of AADT. However, it is important to note that deviating significantly from these 
defined AADT ranges, as indicated in the HSM, may result in inaccurate. The AADT ranges for 
each arterial type are as follows (AASHTO, 2010): 

 2U have an AADT range of 0 to 32,600 vehicles per day. 
 3T can accommodate traffic volumes ranging from 0 to 32,900 vehicles per day. 
 4U have an AADT range of 0 to 40,100 vehicles per day. 
 4D, which include a raised or depressed median, can handle traffic volumes ranging from 0 

to 66,000 vehicles per day. 
 5Ts have an AADT range of 0 to 53,800 vehicles per day. 

Multiple-Vehicle Nondriveway Collisions 

The SPF for multiple-vehicle nondriveway collisions can be developed using Equation (5). 
𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎 + 𝑏𝑏 × ln(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) + ln 𝐿𝐿) (5) 
Where, 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = average annual daily traffic volume (vehicles/day) on roadway segment; 
𝐿𝐿 = length of roadway segment (mi); and 
𝑎𝑎, 𝑏𝑏 = regression coefficients. 
Table 3 displays the coefficients 𝑎𝑎 and 𝑏𝑏, as well as the overdispersion parameter 𝑘𝑘, used in the 
application of the Equation (5). 
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Table 3. SPF Coefficients for Multiple-Vehicle Nondriveway Collisions on Roadway 
Segments, Reproduced from the HSM (AASHTO, 2010). 

Road Type 
Coefficients Used in Equation (5) Overdispersion 

Parameter 
(k) 

Intercept 
(a) 

AADT 
(b) 

Total crashes 

2U 15.22 1.68 0.84 

3T 12.40 1.41 0.66 

4U 11.63 1.33 1.01 

4D 12.34 1.36 1.32 

Fatal-and-injury crashes 

2U 16.22 1.66 0.65 

3T 16.45 1.69 0.59 

4U 12.08 1.25 0.99 

4D 12.76 1.28 1.31 

5T 10.47 1.12 0.62 

Property-damage-only crashes 

2U 15.62 1.69 0.87 

3T 11.95 1.33 0.59 

4U 12.53 1.38 1.08 

4D 12.81 1.38 1.34 

5T 9.97 1.17 0.88 

First, Equation (5) is utilized to calculate 𝑁𝑁𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏 using the coefficients provided in Table 3 for 
total crashes. 𝑁𝑁𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏 is then dividied into two components based on severity, 𝑁𝑁𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏(𝐹𝐹𝐹𝐹) for fatal 
and injury (FI) crashes and 𝑁𝑁𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏(𝑃𝑃𝑃𝑃𝑃𝑃) for property damage only (PDO) crashes. These 
preliminary values of 𝑁𝑁𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏(𝐹𝐹𝐹𝐹) and 𝑁𝑁𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏(𝑃𝑃𝑃𝑃𝑃𝑃), desiganatec as 𝑁𝑁𝑏𝑏

′
𝑝𝑝𝑏𝑏𝑏𝑏(𝐹𝐹𝐹𝐹) and 𝑁𝑁𝑏𝑏

′
𝑝𝑝𝑏𝑏𝑏𝑏(𝑃𝑃𝑃𝑃𝑃𝑃) in 

Equation (6), are determined with Equation (5) using the coefficients for FI and PDO crashes, 
respectively, in Table 3. To ensure that 𝑁𝑁𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏(𝐹𝐹𝐹𝐹) and 𝑁𝑁𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏(𝑃𝑃𝑃𝑃𝑃𝑃) add up to 𝑁𝑁𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏, the following 
Equations (6) and (7) are used. The ratios provided in Table 4 are utilized to divide 𝑁𝑁𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏(𝐹𝐹𝐹𝐹) 
and 𝑁𝑁𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏(𝑃𝑃𝑃𝑃𝑃𝑃) into various collision categories (AASHTO, 2010) (see  Table 4.  

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐹𝐹𝐹𝐹) = 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) �
𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐹𝐹𝐹𝐹)
′

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐹𝐹𝐹𝐹)
′ + 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑃𝑃𝑃𝑃𝑃𝑃)

′ � 
(6) 

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑃𝑃𝑃𝑃𝑃𝑃) = 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) − 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐹𝐹𝐹𝐹) (7) 
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Table 4. Distribution of Multiple-Vehicle Nondriveway Collisions for Roadway Segments 
by Manner of Collision Type, Reproduced from the HSM (AASHTO, 2010). 

Collision Type 
Proportion of Crashes by Severity Level for Specific Road Types 

2U 3T 4U 4D 5T 
FI PDO FI PDO FI PDO FI PDO FI PDO 

Rear-end collision 0.730 0.778 0.845 0.842 0.511 0.506 0.832 0.662 0.846 0.651 
Head-on collision 0.068 0.004 0.034 0.020 0.077 0.004 0.020 0.007 0.021 0.004 
Angle collision 0.085 0.079 0.069 0.020 0.181 0.130 0.040 0.036 0.050 0.059 
Sideswipe, 
same direction 0.015 0.031 0.001 0.078 0.093 0.249 0.050 0.223 0.061 0.248 

Sideswipe, 
opposite direction 0.073 0.055 0.017 0.020 0.082 0.031 0.010 0.001 0.004 0.009 

Other multiple-
vehicle collisions 0.029 0.053 0.034 0.020 0.056 0.080 0.048 0.071 0.018 0.029 

Single-Vehicle Crashes 
According to the HSM, the SPF for multiple-vehicle non-driveway collisions can be developed 
using Equation (8) (AASHTO, 2010). 
𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎 + 𝑏𝑏 × ln(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) + ln(𝐿𝐿)) (8) 
The coefficients and factors used in the Equation (8) for each roadway type are presented in 
Table 5. Equation (8) is employed to calculate 𝑁𝑁𝑏𝑏𝑝𝑝𝑠𝑠𝑏𝑏. Subsequently, 𝑁𝑁𝑏𝑏𝑝𝑝𝑠𝑠𝑏𝑏 is divided into two 
components, namely 𝑁𝑁𝑏𝑏𝑝𝑝𝑠𝑠𝑏𝑏(𝐹𝐹𝐹𝐹) for FI crashes and 𝑁𝑁𝑏𝑏𝑝𝑝𝑠𝑠𝑏𝑏(𝑃𝑃𝑃𝑃𝑃𝑃) for PDO crashes. These initial 
values of 𝑁𝑁𝑏𝑏𝑝𝑝𝑠𝑠𝑏𝑏(𝐹𝐹𝐹𝐹) and 𝑁𝑁𝑏𝑏𝑝𝑝𝑠𝑠𝑏𝑏(𝑃𝑃𝑃𝑃𝑃𝑃), denoted as 𝑁𝑁𝑏𝑏

′
𝑝𝑝𝑠𝑠𝑏𝑏(𝐹𝐹𝐹𝐹) and 𝑁𝑁𝑏𝑏

′
𝑝𝑝𝑠𝑠𝑏𝑏(𝑃𝑃𝑃𝑃𝑃𝑃) in Equation (9), are 

determined using Equation (8) with the coefficients for FI and PDO crashes. To ensure that 
𝑁𝑁𝑏𝑏𝑝𝑝𝑠𝑠𝑏𝑏(𝐹𝐹𝐹𝐹) and 𝑁𝑁𝑏𝑏𝑝𝑝𝑠𝑠𝑏𝑏(𝑃𝑃𝑃𝑃𝑃𝑃) collectively add up to 𝑁𝑁𝑏𝑏𝑝𝑝𝑠𝑠𝑏𝑏, adjustments are made using the following 
equations. The ratios provided in Table 6 are utilized to divide 𝑁𝑁𝑏𝑏𝑝𝑝𝑠𝑠𝑏𝑏(𝐹𝐹𝐹𝐹) and 𝑁𝑁𝑏𝑏𝑝𝑝𝑠𝑠𝑏𝑏(𝑃𝑃𝑃𝑃𝑃𝑃) into 
different components based on the type of collision (AASHTO, 2010). 

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐹𝐹𝐹𝐹) = 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) �
𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐹𝐹𝐹𝐹)
′

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐹𝐹𝐹𝐹)
′ + 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑃𝑃𝑃𝑃𝑃𝑃)

′ � 
(9) 

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑃𝑃𝑃𝑃𝑃𝑃) = 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) − 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐹𝐹𝐹𝐹) (10) 
Table 5. SPF Coefficients for Single-Vehicle Crashes on Roadway Segments, Reproduced 

from the HSM (AASHTO, 2010). 

Road Type 
Coefficients Used in Equation 12-11 Overdispersion 

Parameter 
(k) 

Intercept 
(a) 

AADT 
(b) 

Total crashes 
2U -5.47 0.56 0.81 
3T -5.74 0.54 1.37 
4U -7.99 0.81 0.91 
4D -5.05 0.47 0.86 
5T -4.82 0.54 0.52 

Fatal-and-injury crashes 
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Road Type 
Coefficients Used in Equation 12-11 Overdispersion 

Parameter 
(k) 

Intercept 
(a) 

AADT 
(b) 

2U -3.96 0.23 0.50 
3T -6.37 0.47 1.06 
4U -7.37 0.61 0.54 
4D -8.71 0.66 0.28 
5T -4.43 0.35 0.36 

Property-damage-only crashes 
2U -6.51 0.64 0.87 
3T -6.29 0.56 1.93 
4U -8.50 0.84 0.97 
4D -5.04 0.45 1.06 
5T -5.83 0.61 0.55 

Table 6. Distribution of Single-Vehicle Crashes for Roadway Segments by Collision Type, 
Reproduced from the HSM (AASHTO, 2010). 

Collision Type 
Proportion of Crashes by Severity Level for Specific Road Types 
2U 3T 4U 4D 5T 

FI PDO FI PDO FI PDO FI PDO FI PDO 
Collision with animals 0.026 0.066 0.001 0.001 0.001 0.001 0.001 0.063 0.016 0.049 
Collision with fixed objects 0.723 0.759 0.688 0.963 0.612 0.809 0.500 0.813 0.398 0.768 
Collision with other objects 0.010 0.013 0.001 0.001 0.020 0.029 0.028 0.016 0.005 0.061 
Other single-vehicle 
collision 0.241 0.162 0.310 0.035 0.367 0.161 0.471 0.108 0.581 0.122 

Multiple-Vehicle Driveway-Related Collisions 
The prior model described collisions involving numerous vehicles but did not include those 
involving driveways. Due to the number and kind of driveways, crashes involving several cars 
that are caused by driveways are handled differently. Equation (11) may be used to calculate the 
total number of multiple-vehicle driveway-related crashes on a route stretch. 

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = � 𝑛𝑛𝑖𝑖 × 𝑁𝑁𝑗𝑗
𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

× �
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
15,000�

(𝑡𝑡)

 
(11) 

Where 𝑁𝑁 represents the annual number of collisions per driveway for a specific driveway type, 
denoted as 𝑗𝑗. 𝑛𝑛𝑝𝑝 corresponds to the count of driveways within the roadway segment of the same 
driveway type, encompassing both sides of the road. The coefficient 𝑡𝑡 is utilized for adjusting the 
impact of traffic volume. 
To compute the quantity 𝑛𝑛𝑝𝑝, which represents the number of driveways of a specific type, the 
count is obtained by summing the number of driveways of that type of present on both sides of 
the road. The calculation of driveway counts is performed independently for each side of the 
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road, and the results are combined. In the modeling process, the HSM considers seven different 
types of driveways, as outlined in Table 7 (AASHTO, 2010).  

Table 7. SPF Coefficients for Multiple-Vehicle Driveway Related Collisions, Reproduced 
from the HSM (AASHTO, 2010). 

Driveway Type (𝑗𝑗) 
Coefficients for Specific Roadway Types 

2U 3T 4U 4D 5T 
Number of Driveway-Related Collisions per Driveway per Year (𝑁𝑁𝑗𝑗) 

Major commercial 0.158 0.102 0.182 0.033 0.165 
Minor commercial 0.050 0.032 0.058 0.011 0.053 
Major industrial/institutional 0.172 0.110 0.198 0.036 0.181 
Minor industrial/institutional 0.023 0.015 0.026 0.005 0.024 
Major residential 0.083 0.053 0.096 0.018 0.087 
Minor residential 0.016 0.010 0.018 0.003 0.016 
Other 0.025 0.016 0.029 0.005 0.027 

Regression Coefficient for AADT (𝑡𝑡) 
All driveways 1.000 1.000 1.172 1.106 1.172 
Overdispersion Parameter (𝑘𝑘) 
All driveways 0.81 1.10 0.81 1.39 0.10 

Proportion of Fatal-and-Injury Crashes (𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙) 
All driveways 0.323 0.243 0.342 0.284 0.269 

Proportion of Property-Damage-Only Crashes 
All driveways 0.677 0.757 0.658 0.716 0.731 

Vehicle-Pedestrian Collisions 
According to the HSM, Equation 14 can be utilized to estimate the annual count of vehicle-
pedestrian collisions for a roadway segment (AASHTO, 2010).  
𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝑁𝑁𝑏𝑏𝑏𝑏 × 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (12) 
Where, 
𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = crash adjustment factor. 
Equation (3) is applied to compute the value of 𝑁𝑁𝑏𝑏𝑝𝑝, which is then used in the Equation (12). The 
coefficients for 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 utilized in Equation (12) are listed in Table 8. 

Table 8. Pedestrian Crash Adjustment Factor for Roadway Segments, Reproduced from 
the HSM (AASHTO, 2010). 

Road type Bicycle Crash Adjustment Factor (𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 
Posted Speed 30 mph or Lower Posted Speed Greater than 30 mph 

2U 0.036 0.005 
3T 0.041 0.013 
4U 0.022 0.009 
4D 0.067 0.019 
5T 0.030 0.023 
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Vehicle-Bicycle Collisions 
According to the HSM, Equation 14 can be utilized to estimate the annual count of vehicle-
bicycle collisions for a roadway segment (AASHTO, 2010). 
𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =  𝑁𝑁𝑏𝑏𝑏𝑏 × 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (13) 
Where, 
𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = crash adjustment factor. 
The value of 𝑁𝑁𝑏𝑏𝑝𝑝 utilized in Equation (13) is calculated with the Equation (3). The coefficients 
for 𝑓𝑓𝑏𝑏𝑝𝑝𝑏𝑏𝑝𝑝𝑝𝑝 utilized in Equation (13) are listed in Table 9. 

Table 9. Bicycle Crash Adjustment Factors for Roadway Segments, Reproduced from the 
HSM (AASHTO, 2010). 

Road type Bicycle Crash Adjustment Factor (𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 
Posted Speed 30 mph or Lower Posted Speed Greater than 30 mph 

2U 0.018 0.004 
3T 0.027 0.007 
4U 0.011 0.002 
4D 0.013 0.005 
5T 0.050 0.012 

CMFs for Roadway Segments 
According to the HSM, the selected SPF chosen in Step 9 is subjected to CMFs during Step 10 
of the prediction technique. CMFs are used to modify the projected average crash frequency 
based on certain geometric features and traffic control factors, as stated in the general predictive 
model. Each feature has a CMF of 1.00 for its base condition. The CMF of a feature exceeds 
1.00 if it is linked to a higher crash frequency than the baseline condition. A feature's CMF is 
smaller than 1.00 if, on the other hand, it is linked to a lower crash frequency (AASHTO, 2010) 
(see Table 10).  

Table 10. Summary of CMFs in HSM and the Corresponding SPFs for Roadway Segments, 
Reproduced from the HSM (AASHTO, 2010). 

Applicable SPF CMF CMF Description 

Roadway Segments 

𝐶𝐶𝐶𝐶𝐶𝐶1𝑟𝑟 On-Street Parking 
𝐶𝐶𝐶𝐶𝐶𝐶2𝑟𝑟 Roadside Fixed Objects 
𝐶𝐶𝐶𝐶𝐶𝐶3𝑟𝑟 Median Width 
𝐶𝐶𝐶𝐶𝐶𝐶4𝑟𝑟 Lighting 
𝐶𝐶𝐶𝐶𝐶𝐶5𝑟𝑟 Automated Speed Enforcement 

2.2.2 HSM Predictive Methods for Urban Freeway Segments 

The supplement to HSM, published in 2014, describes the predictive methods for freeways in 
Chapter 18. The following section offers a high-level overview of the freeway predictive 
methods, their associated SPFs, CMFs, and the steps involved in the predictive methods. 
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Overview of Predictive Methods 

The HSM outlines an 18-step procedure for estimating the anticipated crash frequency of two 
types of facilities: freeway segments and freeway speed change lanes. According to the HSM, a 
speed-change lane is defined as an uncontrolled transition area between a ramp and a freeway. 
The predictive models follow a general format described by Equation (14). It is important to note 
that these predictive equations can generate estimated crash frequencies for overall crashes, 
specific crash types, and different severity levels (AASHTO, 2014).  
𝑁𝑁𝑝𝑝,𝑤𝑤,𝑥𝑥,𝑦𝑦,𝑧𝑧 = 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠,w,𝑥𝑥,𝑦𝑦,𝑧𝑧 × �𝐶𝐶𝐶𝐶𝐶𝐶1,w,𝑥𝑥,𝑦𝑦,𝑧𝑧 × 𝐶𝐶𝐶𝐶𝐶𝐶2,w,𝑥𝑥,𝑦𝑦,𝑧𝑧 × … × 𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚,𝑤𝑤,𝑥𝑥,𝑦𝑦,𝑧𝑧� × 𝐶𝐶𝑤𝑤,𝑥𝑥,𝑦𝑦,𝑧𝑧 (14) 
Where, 𝑤𝑤, 𝑒𝑒, 𝑦𝑦, 𝑧𝑧, and 𝑚𝑚 represent the type of site, control type, crash, severity, and 
traffic control features, respectively; 𝑁𝑁𝑝𝑝,𝑏𝑏,𝑥𝑥,𝑦𝑦,𝑧𝑧 represents the projected annual average 
crash frequency; 𝑁𝑁𝑠𝑠𝑝𝑝𝑠𝑠,w,𝑥𝑥,𝑦𝑦,𝑧𝑧 represents projected average crash frequency as estimated by 
the SPF under base circumstances; 𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏,𝑏𝑏,𝑥𝑥,𝑦𝑦,𝑧𝑧 represents CMF for specific geometric 
design and traffic control features; and 𝐶𝐶𝑏𝑏,𝑥𝑥,𝑦𝑦,𝑧𝑧 represents the adjustment factors for local 
conditions. 

Definition of Freeway Facility and Site Types 

The HSM defines a freeway as a type of roadway that has complete access control and separation 
from intersecting roads. Access to freeways is limited to interchanges with grade separation. The 
classification of an area as urban, suburban, or rural takes into account various factors such as 
road characteristics, population density, and land use. Urban areas, according to Federal 
Highway Administration (FHWA) guidelines, are designated as locations within urban 
boundaries with a population exceeding 5,000. On the other hand, rural areas encompass regions 
outside urban centers where the population is below 5,000. The HSM also uses the term 
suburban to refer to areas on the outskirts of urban regions. Note that this literature review only 
discussed the freeway prediction models related to urban facilities. To predict crash frequencies, 
HSM employs specific methods developed for three types of facilities: rural freeway segments 
with four to eight lanes, urban freeway segments with four to ten lanes, and freeway speed-
change lanes associated with entrance and exit ramps. Additionally, the HSM further classifies 
freeway segments into four categories based on the number of lanes: four-lane, six-lane, eight-
lane, and ten-lane segments (AASHTO, 2014). 

SPFs for Urban Freeways 

The HSM includes a set of sixteen SPFs for urban freeway segments, corresponding to four 
specific facility types as mentioned in the previous section. These SPFs are listed in 
Table 11. Furthermore, the HSM provides an additional set of sixteen SPFs for speed-change 
lanes, corresponding to eight distinct facility types, as listed in Table 12 (AASHTO, 2014). 
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Table 11. SPFs for Urban Freeway Segments (𝒇𝒇𝒇𝒇), Reproduced from the HSM (AASHTO, 
2014). 

Cross Section (𝑒𝑒) Crash Type (𝑦𝑦) Crash Severity (𝑧𝑧) SPF 

Four-lane divided (4) 
Multiple vehicle (𝑚𝑚𝑚𝑚) 

Fatal and injury (𝑓𝑓𝑓𝑓)  𝑁𝑁𝑠𝑠𝑝𝑝𝑠𝑠,𝑠𝑠𝑠𝑠,4,𝑏𝑏𝑏𝑏,𝑠𝑠𝑝𝑝

Property damage only (𝑒𝑒𝑝𝑝𝑝𝑝)  𝑁𝑁𝑠𝑠𝑝𝑝𝑠𝑠,𝑠𝑠𝑠𝑠,4,𝑏𝑏𝑏𝑏,𝑝𝑝𝑝𝑝𝑡𝑡

Single vehicle (𝑚𝑚𝑚𝑚) 
Fatal and injury (𝑓𝑓𝑓𝑓)  𝑁𝑁𝑠𝑠𝑝𝑝𝑠𝑠,𝑠𝑠𝑠𝑠,4,𝑠𝑠𝑏𝑏,𝑠𝑠𝑝𝑝

Property damage only (𝑒𝑒𝑝𝑝𝑝𝑝)  𝑁𝑁𝑠𝑠𝑝𝑝𝑠𝑠,𝑠𝑠𝑠𝑠,4,𝑠𝑠𝑏𝑏,𝑝𝑝𝑝𝑝𝑡𝑡

Six-lane divided (6) 
Multiple vehicle (𝑚𝑚𝑚𝑚) 

Fatal and injury (𝑓𝑓𝑓𝑓)  𝑁𝑁𝑠𝑠𝑝𝑝𝑠𝑠,𝑠𝑠𝑠𝑠,6,𝑏𝑏𝑏𝑏,𝑠𝑠𝑝𝑝

Property damage only (𝑒𝑒𝑝𝑝𝑝𝑝)  𝑁𝑁𝑠𝑠𝑝𝑝𝑠𝑠,𝑠𝑠𝑠𝑠,6,𝑏𝑏𝑏𝑏,𝑝𝑝𝑝𝑝𝑡𝑡

Single vehicle (𝑚𝑚𝑚𝑚) 
Fatal and injury (𝑓𝑓𝑓𝑓)  𝑁𝑁𝑠𝑠𝑝𝑝𝑠𝑠,𝑠𝑠𝑠𝑠,6,𝑠𝑠𝑏𝑏,𝑠𝑠𝑝𝑝

Property damage only (𝑒𝑒𝑝𝑝𝑝𝑝)  𝑁𝑁𝑠𝑠𝑝𝑝𝑠𝑠,𝑠𝑠𝑠𝑠,6,𝑠𝑠𝑏𝑏,𝑝𝑝𝑝𝑝𝑡𝑡

Eight-lane divided (8) 
Multiple vehicle (𝑚𝑚𝑚𝑚) 

Fatal and injury (𝑓𝑓𝑓𝑓)  𝑁𝑁𝑠𝑠𝑝𝑝𝑠𝑠,𝑠𝑠𝑠𝑠,8,𝑏𝑏𝑏𝑏,𝑠𝑠𝑝𝑝

Property damage only (𝑒𝑒𝑝𝑝𝑝𝑝)  𝑁𝑁𝑠𝑠𝑝𝑝𝑠𝑠,𝑠𝑠𝑠𝑠,8,𝑏𝑏𝑏𝑏,𝑝𝑝𝑝𝑝𝑡𝑡

Single vehicle (𝑚𝑚𝑚𝑚) 
Fatal and injury (𝑓𝑓𝑓𝑓)  𝑁𝑁𝑠𝑠𝑝𝑝𝑠𝑠,𝑠𝑠𝑠𝑠,8,𝑠𝑠𝑏𝑏,𝑠𝑠𝑝𝑝

Property damage only (𝑒𝑒𝑝𝑝𝑝𝑝)  𝑁𝑁𝑠𝑠𝑝𝑝𝑠𝑠,𝑠𝑠𝑠𝑠,8,𝑠𝑠𝑏𝑏,𝑝𝑝𝑝𝑝𝑡𝑡

Ten-lane divided (10) 
Multiple vehicle (𝑚𝑚𝑚𝑚) 

Fatal and injury (𝑓𝑓𝑓𝑓)  𝑁𝑁𝑠𝑠𝑝𝑝𝑠𝑠,𝑠𝑠𝑠𝑠,10,𝑏𝑏𝑏𝑏,𝑠𝑠𝑝𝑝

Property damage only (𝑒𝑒𝑝𝑝𝑝𝑝)  𝑁𝑁𝑠𝑠𝑝𝑝𝑠𝑠,𝑠𝑠𝑠𝑠,10,𝑏𝑏𝑏𝑏,𝑝𝑝𝑝𝑝𝑡𝑡

Single vehicle (𝑚𝑚𝑚𝑚) 
Fatal and injury (𝑓𝑓𝑓𝑓)  𝑁𝑁𝑠𝑠𝑝𝑝𝑠𝑠,𝑠𝑠𝑠𝑠,10,𝑠𝑠𝑏𝑏,𝑠𝑠𝑝𝑝

Property damage only (𝑒𝑒𝑝𝑝𝑝𝑝)  𝑁𝑁𝑠𝑠𝑝𝑝𝑠𝑠,𝑠𝑠𝑠𝑠,10,𝑠𝑠𝑏𝑏,𝑝𝑝𝑝𝑝𝑡𝑡

Table 12. SPFs for Urban Freeway Speed-Change Lane (𝒔𝒔𝒔𝒔), Reproduced from the HSM 
(AASHTO, 2014). 

Cross Section (𝑥𝑥) Crash Type (𝑦𝑦) Crash Severity (𝑧𝑧) SPF 

Ramp entrance to four-
lane divided (4𝐸𝐸𝐸𝐸) All types (𝑎𝑎𝑎𝑎) 

Fatal and injury (𝐹𝐹𝐹𝐹) 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠,4𝐸𝐸𝐸𝐸,𝑎𝑎𝑎𝑎,𝑓𝑓𝑓𝑓 
Property damage only (𝑃𝑃𝑃𝑃𝑃𝑃) 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠,4𝐸𝐸𝐸𝐸,𝑎𝑎𝑎𝑎,𝑝𝑝𝑝𝑝𝑝𝑝 

Ramp entrance to six-lane 
divided (6𝐸𝐸𝐸𝐸) All types (𝑎𝑎𝑎𝑎) 

Fatal and injury (𝐹𝐹𝐹𝐹) 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠,6𝐸𝐸𝐸𝐸,𝑎𝑎𝑎𝑎,𝑓𝑓𝑓𝑓 
Property damage only (𝑃𝑃𝑃𝑃𝑃𝑃) 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠,6𝐸𝐸𝐸𝐸,𝑎𝑎𝑎𝑎,𝑝𝑝𝑝𝑝𝑝𝑝 

Ramp entrance to eight-
lane divided (8𝐸𝐸𝐸𝐸) All types (𝑎𝑎𝑎𝑎) 

Fatal and injury (𝐹𝐹𝐹𝐹) 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠,8𝐸𝐸𝐸𝐸,𝑎𝑎𝑎𝑎,𝑓𝑓𝑓𝑓 
Property damage only (𝑃𝑃𝑃𝑃𝑃𝑃) 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠,8𝐸𝐸𝐸𝐸,𝑎𝑎𝑎𝑎,𝑝𝑝𝑝𝑝𝑝𝑝 

Ramp entrance to ten-lane 
divided (10𝐸𝐸𝐸𝐸) All types (𝑎𝑎𝑎𝑎) 

Fatal and injury (𝐹𝐹𝐹𝐹) 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠,10𝐸𝐸𝐸𝐸,𝑎𝑎𝑎𝑎,𝑓𝑓𝑓𝑓 
Property damage only (𝑃𝑃𝑃𝑃𝑃𝑃) 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠,10𝐸𝐸𝐸𝐸,𝑎𝑎𝑎𝑎,𝑝𝑝𝑝𝑝𝑝𝑝 

Ramp exit from four-lane 
divided (4𝐸𝐸𝐸𝐸) All types (𝑎𝑎𝑎𝑎) 

Fatal and injury (𝐹𝐹𝐹𝐹) 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠,4𝐸𝐸𝐸𝐸,𝑎𝑎𝑎𝑎,𝑓𝑓𝑓𝑓 
Property damage only (𝑃𝑃𝑃𝑃𝑃𝑃) 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠,4𝐸𝐸𝐸𝐸,𝑎𝑎𝑎𝑎,𝑝𝑝𝑝𝑝𝑝𝑝 

Ramp exit from six-lane 
divided (6𝐸𝐸𝐸𝐸) All types (𝑎𝑎𝑎𝑎) 

Fatal and injury (𝐹𝐹𝐹𝐹) 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠,6𝐸𝐸𝐸𝐸,𝑎𝑎𝑎𝑎,𝑓𝑓𝑓𝑓 
Property damage only (𝑃𝑃𝑃𝑃𝑃𝑃) 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠,6𝐸𝐸𝐸𝐸,𝑎𝑎𝑎𝑎,𝑝𝑝𝑝𝑝𝑝𝑝 

Ramp exit from eight-lane 
divided (8𝐸𝐸𝐸𝐸) All types (𝑎𝑎𝑎𝑎) 

Fatal and injury (𝐹𝐹𝐹𝐹) 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠,8𝐸𝐸𝐸𝐸,𝑎𝑎𝑎𝑎,𝑓𝑓𝑓𝑓 
Property damage only (𝑃𝑃𝑃𝑃𝑃𝑃) 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠,8𝐸𝐸𝐸𝐸,𝑎𝑎𝑎𝑎,𝑝𝑝𝑝𝑝𝑝𝑝 

All types (𝑎𝑎𝑎𝑎) Fatal and injury (𝐹𝐹𝐹𝐹) 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠,10𝐸𝐸𝐸𝐸,𝑎𝑎𝑎𝑎,𝑓𝑓𝑓𝑓 
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Cross Section (𝑥𝑥) Crash Type (𝑦𝑦) Crash Severity (𝑧𝑧) SPF 
Ramp exit from ten-lane 
divided (10𝐸𝐸𝐸𝐸) Property damage only (𝑃𝑃𝑃𝑃𝑃𝑃) 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠,10𝐸𝐸𝐸𝐸,𝑎𝑎𝑎𝑎,𝑝𝑝𝑝𝑝𝑝𝑝 

Predictive Model for Freeway Segments 

The predictive model for freeway segments described in the HSM can be defined using 
Equations (15) to (19) (AASHTO, 2014). 
𝑁𝑁𝑝𝑝,𝑓𝑓𝑓𝑓,𝑛𝑛,𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎 = 𝑁𝑁𝑝𝑝,𝑓𝑓𝑓𝑓,𝑛𝑛,𝑚𝑚𝑚𝑚,𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑝𝑝,𝑓𝑓𝑓𝑓,𝑛𝑛,𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑝𝑝,𝑓𝑓𝑓𝑓,𝑛𝑛,𝑚𝑚𝑚𝑚,𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑁𝑁𝑝𝑝,𝑓𝑓𝑓𝑓,𝑛𝑛,𝑠𝑠𝑠𝑠,𝑝𝑝𝑝𝑝𝑝𝑝 (15) 
𝑁𝑁𝑝𝑝,𝑓𝑓𝑓𝑓,𝑛𝑛,𝑚𝑚𝑚𝑚,𝑓𝑓𝑓𝑓 = 𝐶𝐶𝑓𝑓𝑓𝑓,𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚,𝑓𝑓𝑓𝑓 × 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓,𝑛𝑛,𝑚𝑚𝑚𝑚,𝑓𝑓𝑓𝑓 × (𝐶𝐶𝐶𝐶𝐶𝐶1,𝑓𝑓𝑓𝑓,𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚,𝑓𝑓𝑓𝑓 ×. .× 𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚,𝑓𝑓𝑓𝑓,𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚,𝑓𝑓𝑓𝑓)

× (𝐶𝐶𝐶𝐶𝐶𝐶1,𝑓𝑓𝑓𝑓,𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎,𝑓𝑓𝑓𝑓 ×. .× 𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚,𝑓𝑓𝑓𝑓,𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎,𝑓𝑓𝑓𝑓) 
(16) 

𝑁𝑁𝑝𝑝,𝑓𝑓𝑓𝑓,𝑛𝑛,𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓 = 𝐶𝐶𝑓𝑓𝑓𝑓,𝑎𝑎𝑎𝑎,𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓 × 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓,𝑛𝑛,𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓 × (𝐶𝐶𝐶𝐶𝐶𝐶1,𝑓𝑓𝑓𝑓,𝑎𝑎𝑎𝑎,𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓 ×. .× 𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚,𝑓𝑓𝑓𝑓,𝑎𝑎𝑎𝑎,𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓)
× (𝐶𝐶𝐶𝐶𝐶𝐶1,𝑓𝑓𝑓𝑓,𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎,𝑓𝑓𝑓𝑓 ×. .× 𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚,𝑓𝑓𝑓𝑓,𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎,𝑓𝑓𝑓𝑓) 

(17) 

𝑁𝑁𝑝𝑝,𝑓𝑓𝑓𝑓,𝑛𝑛,𝑚𝑚𝑚𝑚,𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐶𝐶𝑓𝑓𝑓𝑓,𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚,𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓,𝑛𝑛,𝑚𝑚𝑚𝑚,𝑝𝑝𝑝𝑝𝑝𝑝 × (𝐶𝐶𝐶𝐶𝐶𝐶1,𝑓𝑓𝑓𝑓,𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚,𝑝𝑝𝑝𝑝𝑝𝑝 ×. .
× 𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚,𝑓𝑓𝑓𝑓,𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚,𝑝𝑝𝑝𝑝𝑝𝑝) × (𝐶𝐶𝐶𝐶𝐶𝐶1,𝑓𝑓𝑓𝑓,𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎,𝑝𝑝𝑝𝑝𝑝𝑝 ×. .× 𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚,𝑓𝑓𝑓𝑓,𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎,𝑝𝑝𝑝𝑝𝑝𝑝) 

(18) 

𝑁𝑁𝑝𝑝,𝑓𝑓𝑓𝑓,𝑛𝑛,𝑠𝑠𝑠𝑠,𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐶𝐶𝑓𝑓𝑓𝑓,𝑎𝑎𝑎𝑎,𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓 × 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓,𝑛𝑛,𝑠𝑠𝑠𝑠,𝑝𝑝𝑝𝑝𝑝𝑝 × (𝐶𝐶𝐶𝐶𝐶𝐶1,𝑓𝑓𝑓𝑓,𝑎𝑎𝑎𝑎,𝑠𝑠𝑠𝑠,𝑝𝑝𝑝𝑝𝑝𝑝 ×. .× 𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚,𝑓𝑓𝑓𝑓,𝑎𝑎𝑎𝑎,𝑠𝑠𝑠𝑠,𝑝𝑝𝑝𝑝𝑝𝑝)
× (𝐶𝐶𝐶𝐶𝐶𝐶1,𝑓𝑓𝑓𝑓,𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎,𝑝𝑝𝑝𝑝𝑝𝑝 ×. .× 𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚,𝑓𝑓𝑓𝑓,𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎,𝑝𝑝𝑝𝑝𝑝𝑝) 

(19) 

Where, 𝑁𝑁𝑝𝑝,𝑠𝑠𝑠𝑠,𝑛𝑛,𝑦𝑦,𝑧𝑧 represents the projected average crash frequency of a freeway segment 
with 𝑛𝑛 lanes, crash type 𝑦𝑦 (𝑦𝑦 =  𝑠𝑠𝑚𝑚: single vehicle, 𝑚𝑚𝑚𝑚: multiple vehicle, 𝑎𝑎𝑡𝑡: all types), 
and severity 𝑧𝑧; 𝑁𝑁𝑠𝑠𝑝𝑝𝑠𝑠,𝑠𝑠𝑠𝑠,𝑛𝑛,𝑦𝑦,𝑧𝑧 represents the projected average crash frequency of a freeway 
segment with base conditions; 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛,𝑠𝑠𝑠𝑠,𝑡𝑡𝑝𝑝,𝑦𝑦,𝑧𝑧 represents CMF for a freeway segment with 
any cross-section 𝑎𝑎𝑎𝑎, feature 𝑚𝑚, crash type  𝑦𝑦, and severity 𝑧𝑧; and 𝐶𝐶𝑠𝑠𝑠𝑠,𝑡𝑡𝑝𝑝,𝑦𝑦,𝑧𝑧 represents 
calibration factors for freeway segments.   

Predictive Model for Urban Freeway Speed-Change Lanes 

The predictive model for freeway speed-change lanes described in the HSM can be defined using 
Equations (20) to (22) (AASHTO, 2014). 
𝑁𝑁𝑝𝑝,𝑠𝑠𝑠𝑠,𝑛𝑛𝑛𝑛𝑛𝑛,𝑎𝑎𝑎𝑎,𝑎𝑎𝑠𝑠 = 𝑁𝑁𝑝𝑝,𝑠𝑠𝑠𝑠,𝑛𝑛𝑛𝑛𝑛𝑛,𝑎𝑎𝑎𝑎,𝑓𝑓𝑓𝑓 + 𝑁𝑁𝑝𝑝,𝑠𝑠𝑠𝑠,𝑛𝑛𝑛𝑛𝑛𝑛,𝑎𝑎𝑎𝑎,𝑝𝑝𝑝𝑝𝑝𝑝 (20) 
𝑁𝑁𝑝𝑝,𝑠𝑠𝑝𝑝,𝑛𝑛𝐸𝐸𝐸𝐸,𝑡𝑡𝑝𝑝,𝑠𝑠𝑝𝑝 = 𝐶𝐶𝑠𝑠𝑝𝑝,𝐸𝐸𝐸𝐸,𝑡𝑡𝑝𝑝,𝑠𝑠𝑝𝑝 × 𝑁𝑁𝑠𝑠𝑝𝑝𝑠𝑠,𝑠𝑠𝑝𝑝,𝑛𝑛𝐸𝐸𝐸𝐸,𝑡𝑡𝑝𝑝,𝑠𝑠𝑝𝑝 × (𝐶𝐶𝐶𝐶𝐶𝐶1,𝑠𝑠𝑝𝑝,𝑛𝑛𝐸𝐸𝐸𝐸,𝑡𝑡𝑝𝑝,𝑠𝑠𝑝𝑝 ×. .× 𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏,𝑠𝑠𝑝𝑝,𝑛𝑛𝐸𝐸𝐸𝐸,𝑡𝑡𝑝𝑝,𝑠𝑠𝑝𝑝)

× (𝐶𝐶𝐶𝐶𝐶𝐶1,𝑠𝑠𝑝𝑝,𝑡𝑡𝑝𝑝,𝑡𝑡𝑝𝑝,𝑠𝑠𝑝𝑝 ×. .× 𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏,𝑠𝑠𝑝𝑝,𝑡𝑡𝑝𝑝,𝑡𝑡𝑝𝑝,𝑠𝑠𝑝𝑝) 
(21) 

𝑁𝑁𝑝𝑝,𝑠𝑠𝑝𝑝,𝑛𝑛𝐸𝐸𝐸𝐸,𝑡𝑡𝑝𝑝,𝑝𝑝𝑝𝑝𝑡𝑡

= 𝐶𝐶𝑠𝑠𝑝𝑝,𝐸𝐸𝐸𝐸,𝑡𝑡𝑝𝑝,𝑝𝑝𝑝𝑝𝑡𝑡 × 𝑁𝑁𝑠𝑠𝑝𝑝𝑠𝑠,𝑠𝑠𝑝𝑝,𝑛𝑛𝐸𝐸𝐸𝐸,𝑡𝑡𝑝𝑝,𝑝𝑝𝑝𝑝𝑡𝑡 × (𝐶𝐶𝐶𝐶𝐶𝐶1,𝑠𝑠𝑝𝑝,𝑛𝑛𝐸𝐸𝐸𝐸,𝑡𝑡𝑝𝑝,𝑝𝑝𝑝𝑝𝑡𝑡 ×. .
× 𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏,𝑠𝑠𝑝𝑝,𝑛𝑛𝐸𝐸𝐸𝐸,𝑡𝑡𝑝𝑝,𝑝𝑝𝑝𝑝𝑡𝑡) × (𝐶𝐶𝐶𝐶𝐶𝐶1,𝑠𝑠𝑝𝑝,𝑡𝑡𝑝𝑝,𝑡𝑡𝑝𝑝,𝑝𝑝𝑝𝑝𝑡𝑡 ×. .× 𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏,𝑠𝑠𝑝𝑝,𝑡𝑡𝑝𝑝,𝑡𝑡𝑝𝑝,𝑝𝑝𝑝𝑝𝑡𝑡) 

(22) 

Where, 𝑁𝑁𝑝𝑝,𝑠𝑠𝑝𝑝,𝑛𝑛𝐸𝐸𝐸𝐸,𝑡𝑡𝑝𝑝,𝑡𝑡𝑠𝑠 represents the projected average annual crash frequency of ramp 
entrance speed-change lane on a freeway with 𝑛𝑛 lanes, all crash types 𝑎𝑎𝑡𝑡, and severity 𝑧𝑧 
(𝑧𝑧 =  𝑓𝑓𝑓𝑓: fatal and injury, 𝑒𝑒𝑝𝑝𝑝𝑝: property damage only, 𝑎𝑎𝑠𝑠: all severities); 𝑁𝑁𝑠𝑠𝑝𝑝𝑠𝑠,𝑠𝑠𝑝𝑝,𝑛𝑛𝐸𝐸𝐸𝐸,𝑡𝑡𝑝𝑝,𝑧𝑧 
represents the projected average annual crash frequency of ramp entrance speed-change lane 
on a freeway considering base condition; 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛,𝑠𝑠𝑝𝑝,𝑥𝑥,𝑡𝑡𝑝𝑝,𝑧𝑧 represents CMF for a speed-change 
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lane with feature 𝑚𝑚, cross-section 𝑒𝑒 (𝑒𝑒 =  𝑛𝑛𝐸𝐸𝑁𝑁: ramp entrance adjacent to a freeway with 𝑛𝑛 
lanes, 𝑛𝑛𝐸𝐸𝐸𝐸: ramp exit adjacent to a freeway with 𝑛𝑛 lanes, 𝑎𝑎𝑎𝑎: any cross-section), all crash 
types at, and severity 𝑧𝑧; and; and 𝐶𝐶𝑠𝑠𝑝𝑝,𝐸𝐸𝐸𝐸,𝑡𝑡𝑝𝑝,𝑧𝑧 represents the calibration factor for a ramp 
entrance speed-change lane with all crash types and severity.   

Predictive Method Steps for Urban Freeway Segments 

The HSM outlines a procedure consisting of eighteen steps for a predictive method on freeways. 
These steps are as follows (AASHTO, 2014).  

 Step 1: Establish the project boundaries. 
 Step 2: Determine the timeframe of interest. 
 Step 3: AADT volumes and observed crash data for the study period, particularly for existing 

projects, to determine if the EB Method is applicable. 
 Step 4: Identify the geometric design features, traffic control features, and site characteristics 

for all locations within the project boundaries. 
 Step 5: Divide the roadway into distinct sites. 
 Step 6: Assign recorded collisions to the individual sites (if relevant). 
 Step 7: Select the initial or subsequent specific site within the project boundaries. 
 Step 8: For the chosen site, designate the first or next year in the designated time frame. If 

there are no more years to evaluate that site, move to Step 13. 
 Step 9: Identify the geometric design features, traffic control features, and site characteristics 

for all locations within the project boundaries. 
 Step 10: Multiply the outcome from Step 9 by the appropriate CMFs. 

Step 11: Multiply the outcome from Step 10 by the suitable calibration factor. 
 Step 12: If there are additional years to assess within the evaluation period for the selected 

site, return to Step 8. Otherwise, proceed to Step 13. 
 Step 13: Apply the site-specific EB Method (if applicable) and incorporate SDFs. 
 Step 14: If there are additional sites to evaluate, return to Step 7; otherwise, proceed to Step 

15. 
 Step 15: Implement the project-wide EB Method (if relevant) and incorporate SDFs. 
 Step 16: Aggregate the data from all sites and years in the study to estimate the overall crash 

frequency. 
 Step 17: Assess whether there are any alternative designs, treatments, or projected AADT to 

be examined. 
 Step 18: Analyze and compare the outcomes. 

CMFs for Urban Freeway Segments 

The HSM has provided a comprehensive list of CMFs that are applicable to the SPFs discussed 
in the previous section. 
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Table 13 presents a detailed compilation of CMFs categorized by specific site types, cross 
sections, crash types, and crash severities (AASHTO, 2014).  

Table 13. Freeway CMFs and their Corresponding SPFs (AASHTO, 2014). 
Applicable SPF(s) CMF Variable (𝑧𝑧) SPF 

Freeway segments or speed-
change lanes 

𝐶𝐶𝐶𝐶𝐶𝐶1,𝑏𝑏,𝑥𝑥,𝑦𝑦,𝑧𝑧 Horizontal curve 
𝐶𝐶𝐶𝐶𝐶𝐶2,𝑏𝑏,𝑥𝑥,𝑦𝑦,𝑠𝑠𝑝𝑝 Lane width 
𝐶𝐶𝐶𝐶𝐶𝐶3,𝑏𝑏,𝑥𝑥,𝑦𝑦,𝑧𝑧 Inside shoulder width 
𝐶𝐶𝐶𝐶𝐶𝐶4,𝑏𝑏,𝑥𝑥,𝑦𝑦,𝑧𝑧 Median width 
𝐶𝐶𝐶𝐶𝐶𝐶5,𝑏𝑏,𝑥𝑥,𝑦𝑦,𝑧𝑧 Median barrier 
𝐶𝐶𝐶𝐶𝐶𝐶6,𝑏𝑏,𝑥𝑥,𝑦𝑦,𝑧𝑧 High volume 

Multiple-vehicle crashes on 
freeway segments 𝐶𝐶𝐶𝐶𝐶𝐶7,𝑠𝑠𝑠𝑠,𝑡𝑡𝑝𝑝,𝑏𝑏𝑏𝑏,𝑧𝑧 Lane change 

Single-vehicle crashes on 
freeway segments 

𝐶𝐶𝐶𝐶𝐶𝐶8,𝑠𝑠𝑠𝑠,𝑡𝑡𝑝𝑝,𝑠𝑠𝑏𝑏,𝑧𝑧 Outside shoulder width 
𝐶𝐶𝐶𝐶𝐶𝐶9,𝑠𝑠𝑠𝑠,𝑡𝑡𝑝𝑝,𝑠𝑠𝑏𝑏,𝑠𝑠𝑝𝑝 Shoulder rumble strip 
𝐶𝐶𝐶𝐶𝐶𝐶10,𝑠𝑠𝑠𝑠,𝑡𝑡𝑝𝑝,𝑠𝑠𝑏𝑏,𝑠𝑠𝑝𝑝 Outside clearance 
𝐶𝐶𝐶𝐶𝐶𝐶11,𝑠𝑠𝑠𝑠,𝑡𝑡𝑝𝑝,𝑠𝑠𝑏𝑏,𝑧𝑧 Outside barrier 

Ramp entrances 𝐶𝐶𝐶𝐶𝐶𝐶12,𝑠𝑠𝑝𝑝,𝑛𝑛𝐸𝐸𝐸𝐸,𝑡𝑡𝑝𝑝,𝑧𝑧 Ramp entrance 
Ramp exits 𝐶𝐶𝐶𝐶𝐶𝐶13,𝑠𝑠𝑝𝑝,𝑛𝑛𝐸𝐸𝐸𝐸,𝑡𝑡𝑝𝑝,𝑧𝑧 Ramp exit 

 2.2.3 Safety Prediction Models 

Researchers have utilized a wide variety of modeling techniques to explore the association 
between operating speed, posted speed, roadway geometry, traffic exposures, and safety. The 
primary modeling approaches used for safety prediction models up to this point may be generally 
divided into two categories: statistical approaches and machine learning/ data mining 
approaches. This section provides a brief overview of state-of-the-art modeling techniques.  

Statistical Approaches 

Poisson Regression 
The Poisson regression model has been proposed as a viable method to examine the connection 
between factors affecting risk and the modeling of traffic crashes. The utilization of Poisson 
regression has been extensive in analyzing data related to transportation counts, particularly 
when studying the frequency of crashes. Since crash-frequency data consists of non-negative 
whole numbers, traditional ordinary least-squares regression, which assumes a continuous 
dependent variable, is not suitable. As a result, researchers have recently embraced the Poisson 
regression model as a framework for modeling crash-frequency data, considering its 
appropriateness for analyzing non-negative integer dependent variables. Presented below is a 
mathematical representation of the Poisson regression model (Lord and Mannering, 2010).  
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𝑃𝑃(𝑦𝑦𝑖𝑖) =
𝐸𝐸𝐸𝐸𝐸𝐸(−𝜆𝜆𝑖𝑖)𝜆𝜆𝑖𝑖

𝑦𝑦𝑖𝑖

𝑦𝑦𝑖𝑖!
 (23) 

Where the probability of a roadway entity, denoted as 𝑓𝑓, experiencing a specific number of 
crashes per period, represented as 𝑦𝑦𝑝𝑝, is denoted by 𝑃𝑃(𝑦𝑦𝑝𝑝). The Poisson parameter, 𝜆𝜆𝑝𝑝, for 
roadway entity 𝑓𝑓 is equal to the expected number of crashes per year, 𝐸𝐸(𝑦𝑦𝑝𝑝). To estimate Poisson 
regression models, the Poisson parameter 𝜆𝜆 𝑝𝑝, which signifies the expected number of crashes per 
period, is determined as a function of explanatory variables. The most used functional form is 
𝜆𝜆𝑝𝑝 = 𝐸𝐸𝐸𝐸𝑃𝑃(𝛽𝛽𝐸𝐸𝑝𝑝), where 𝐸𝐸𝑝𝑝 represents a vector of explanatory variables and 𝛽𝛽 represents a vector 
of estimable parameters. 

Negative Binomial Regression 
To account for potential excessive scattering in the data, the negative binomial (NB) model has 
been developed as an expansion of the Poisson model. The Poisson-Gamma approach serves as 
an alternative term for this technique. Within the negative binomial model, the Poisson 
parameter relies on a gamma probability distribution, leading to a closed-form equation. 
Manipulating the relationship between the mean and variance structures is straightforward in this 
model. By incorporating over-dispersion into crash data counts, this method relaxes the 
requirement of equal mean and variance. The negative binomial model accommodates possible 
over-dispersion in crash data counts through the utilization of a Gamma probability distribution. 
By introducing an error term to the expected number of crashes in the Poisson regression, the 
modified equation yields the negative binomial model (Lord and Mannering, 2010). 
𝜆𝜆𝑖𝑖 = 𝐸𝐸𝐸𝐸𝐸𝐸(𝛽𝛽𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑖𝑖) (24) 

Where 𝐸𝐸𝐸𝐸𝑃𝑃(𝜀𝜀 )𝑝𝑝  is a gamma-distributed error term with mean 1 and variance 𝛼𝛼. Negative 
binomial models have garnered considerable attention in the realm of crash frequency analysis. 
Khattak et al. (2021) conducted a study utilizing a negative binomial regression model to 
establish SPFs for urban intersections. The findings suggested that employing negative binomial 
models has the potential to enhance the accuracy of estimating SPFs for urban intersections. 
Similarly, Rista et al. (2018) employed negative binomial models to assess the safety 
implications of narrow lane widths on urban and suburban arterials. Kim and Washington, 
(2006) utilized this modeling approach to develop crash models specifically for intersections 
with a focus on left-turn lanes. Additionally, Daniels et al. (2010) employed negative binomial 
models to investigate safety performance at roundabouts. 

Poisson-Lognormal Regression 
To address the limitations associated with NB models, researchers have developed the Poisson-
lognormal (PLN) model. In contrast to the NB model, the PLN model assumes a PLN error term 
instead of a gamma distribution, making it better suited for handling under-dispersed data counts. 
Although the PLN model shares similarities with the NB model, it introduces a lognormal-
distributed the 𝐸𝐸𝐸𝐸𝑃𝑃(𝜀𝜀𝑝𝑝) term in the model, resulting in increased flexibility. However, the PLN 
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model also presents certain drawbacks, such as the lack of a closed form for the PLN 
distribution, leading to more complex parameter estimation compared to the NB model 
(Abdulhafedh, 2017).  

Several scholars have employed Poisson modeling methods to examine the correlation between 
crashes and relevant risk factors, particularly in urban settings. A study conducted by Park and 
Lord (2007) introduced a new approach called the multivariate Poisson-lognormal model 
(MVPLN) to simultaneously analyze crash count data based on severity. Additionally, Zhao et 
al., (2018) utilized the MVPLN model to investigate crashes occurring at signalized intersections 
in urban areas. The results of their study demonstrated that the MVPLN model provides a better 
fit when compared to the traditional univariate Poisson model. 

Zero Inflated Poisson and Negative Binomial Regression 
Two commonly utilized methodologies for modeling crash frequencies are the zero-inflated 
Poisson and zero-inflated negative binomial models. These models were developed to tackle the 
problem of over-dispersion arising from an abundance of zero counts in traffic data, which 
occurs when no crashes are observed at specific locations. By employing a zero-altered process, 
these models enable the representation of crash frequencies in two distinct states: the state of 
zero crashes and the state of non-zero crashes. The likelihood of a section being in either state 
can be determined through the utilization of a binary logit or probit model. The presence of a 
significant number of zero observations in crash data is typically attributed to underreporting of 
minor crashes, the presence of nearby hazardous crash sites that render the observed sites 
relatively safe, and the absence of certain types of crashes at these specific locations. The 
objective of zero-inflated models is to accommodate these excess zeros by assuming a dual-state 
crash system in which one state represents the absence of crashes, indicating virtual safety during 
the observation period, while the other state represents the occurrence of non-zero crashes 
(Abdulhafedh, 2017).  

The zero-inflated model has gained considerable traction among transportation safety 
researchers, and its application has provided valuable insights into various aspects of road safety. 
For instance, in a comprehensive study conducted by Liu et al. (2018), the zero-inflated model 
was utilized to examine urban mid-block crashes, leading to improved predictions of crash 
frequency and severity compared to traditional models. Similarly, Raihan et al. (2019) employed 
the zero-inflated negative binomial model to develop CMFs for bicycle crashes in urban areas, 
identifying contributing factors and recommending safety countermeasures. Kumara and Chin 
(2003) also applied the zero-inflated negative binomial model to investigate crash occurrence at 
signalized tee intersections, successfully capturing the excess zeros and overdispersion 
commonly observed in crash data. Moreover, researchers such as Carson and Mannering (2001), 
Lee and Mannering (2002), Shankar et al., (2003) have utilized the zero-inflated model to 
analyze crash data and identify factors influencing crashes on different types of roadways. 
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Conway–Maxwell–Poisson 
The Conway-Maxwell-Poisson distribution is an advanced statistical distribution that can be 
applied to model queues and service rates. Unlike the traditional Poisson distribution, it can 
handle both under-dispersed and over-dispersed data, thus providing a more flexible approach 
for various types of crash-frequency data. The distribution also encompasses several other 
probability density functions, such as the geometric, Bernoulli, and Poisson distributions, which 
allows its utilization in a broader range of applications beyond crash-frequency modeling. By 
utilizing the Conway-Maxwell-Poisson distribution, researchers can expand their analytical 
capabilities when examining crash-frequency data. The versatility and flexibility of this 
distribution make it an invaluable tool for transportation safety analysts who aim to accurately 
model and predict crash occurrences. Many studies have implemented this modeling technique to 
analyze crash data and develop safety prediction models (Lord et al., 2008; Sellers and Shmueli, 
2010).  

Logit and Probit Models 
Logit and probit models are commonly employed to capture the severity of crash data, 
considering the multitude of factors associated with crash occurrences. Binary models, which 
accommodate two possible outcomes, are preferable when modeling crash severity since the 
dependent variable often comprises multiple outcome categories. While discriminant analysis is 
a viable alternative, logit and probit models are generally favored due to their flexibility and 
ability to handle non-linear relationships. The classification of traffic crash severity models can 
be categorized as either nominal or ordinal, with no consensus on the optimal approach as the 
choice of model relies heavily on the characteristics of the data. Some researchers favor nominal 
models due to the potential shared unobserved effects among adjacent injury categories, while 
others prefer ordinal models for their simplicity and overall performance. Additionally, 
multinomial models, accommodating three or more outcomes, can be employed to model crash 
severity (Abdulhafedh, 2017). Numerous studies have utilized these modeling techniques to 
investigate crash severity. For example, Chen and Fan (2019) conducted a study to identify 
significant contributing factors to pedestrian injury severity in pedestrian-vehicle crashes in both 
rural and urban areas of North Carolina, United States. Similarly, logit and probit models have 
been applied in freight crash analysis (Doustmohammadi, 2019) and the examination of 
intersection-related crashes (Tay, 2015). Other studies have utilized logit and/or probit models to 
analyze safety in urban networks (Asil and Bargegol, 2022; Haleem and Gan, 2013; Intini et al., 
2020). 

Random-Parameter Models 
Random-parameter models represent an extension of random-effects models, which allow 
estimated parameters to vary across each individual observation in the dataset, rather than just 
affecting the model intercept. This modeling approach aims to capture the unobserved 
heterogeneity among different roadway sites. The primary motivation for using random-
parameter models is to account for this heterogeneity that cannot be explained by observed 
variables alone. Such models assume that estimated parameters vary across observations 
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according to a particular distribution. Researchers have utilized this modeling technique to 
investigate various road safety issues, such as the influence of traffic, geometric, and context 
variables on urban crash types (Intini et al., 2020), assessing the impact of traffic signal 
performance on crash frequency for signalized intersections along urban (Kabir et al., 2021), 
examining the safety impacts of narrow lane widths on urban/suburban arterials (Rista et al., 
2018), and investigating motorcyclist injury severities (Se et al., 2021). 

Other Statistical Models  
In addition to the modeling techniques, there are several other statistical models that are 
commonly used to investigate traffic safety. These include the random-parameters model, 
gamma model, generalized estimating equation, generalized additive model, negative 
multinomial model, hierarchical/multilevel model, finite mixture/Markov switching model, and 
Bayesian approach. Each of these models has its strengths and weaknesses, and the choice of 
model depends on the research question and the characteristics of the data (Lord and Mannering, 
2010).  

Machine Learning/ Data Mining Approaches 

Classification and Regression Trees (CART)/ Decision Tree (DT) 
DT or CART are widely used machine learning methods that construct classification or 
regression models in the form of a tree, where each node represents a predictor variable, and 
each branch corresponds to a decision rule or criterion. At each step, the explanatory variable 
that achieves the “best” split is chosen to predict the value of the response variable. The 
simplicity and interpretability of DTs make them a popular choice for modeling problems in 
various domains, including traffic safety. However, overfitting is a common issue with DTs, 
which can lead to poor generalization performance. The application of DTs in crash severity 
modeling dates back to early machine learning research. For instance, (Kuhnert et al., 2000) 
compared the performance of logistic regression, CART, and multivariate adaptive regression 
splines for modeling motor vehicle crashes and found that CART was capable of selecting 
significant independent variables. Similarly, Chang and Chien (2013) developed a CART model 
to investigate the relationship between injury severity outcomes and various driver/vehicle, 
highway geometric, environmental, and crash-related factors. Recent studies have applied 
variations of the DT technique to explore the relationship between crash severity and other 
factors. For example, Prati et al. (2017) used a modified DT method to identify the most 
significant factors contributing to bicycle crashes, including crash characteristics, infrastructure 
characteristics, cyclists' demographics, and environmental factors. Additionally, Arefkhani et al. 
(2021) applied CART to identify the most significant factors contributing to drivers' injury 
status. 

K-Nearest-Neighbor (KNN) 
KNN is a non-parametric statistical technique applicable to classification and regression tasks. 
Its mechanism involves identifying k neighboring values close to the response variable, based on 



24 

the calculated distance between this variable and other known observations. Subsequently, the 
predicted value of the response variable is computed. One of the advantages of KNN is its lack 
of assumptions about the data's functional form, though it may be sensitive to the local data 
structure (Iranitalab and Khattak, 2017). The study conducted by Zhang et al. (2018) involved 
the development of multiple machine learning models, including KNN, for the prediction of 
crash injury severity. The results obtained from these models were compared with traditional 
statistical models, and it was reported that KNN outperformed the other models in terms of 
prediction accuracy. KNN has been applied in various transportation safety studies, such as 
investigating speed violations (Kuşkapan et al., 2021), calibrating SPFs (Farid et al., 2018), and 
assessing crash risk at diverging areas (Xing et al., 2020).    

Support Vector Machines (SVM) 
SVM is a discriminative classifier that operates by identifying an optimal hyperplane in a space 
with high dimensions or even infinite dimensions. This hyperplane serves as a decisive 
boundary, effectively separating the data into two distinct classes. The margin, which refers to 
the distance between the hyperplane and the closest data point on either side, plays a crucial role 
in determining the performance of SVM. The primary objective of an SVM classifier is to select 
a hyperplane with the widest margin between the two classes, thereby enhancing the accuracy of 
classifying new data instances (Bambrick, 2016; Hastie et al., 2001). Researchers have utilized 
SVM in various applications, such as real-time crash risk assessment and the analysis of crash 
severity on mountainous highways, incorporating real-time traffic and weather data. For 
instance, Yu and Abdel-Aty (2013) conducted a study comparing SVM models with different 
kernel functions against logistic regression models to evaluate real-time crash risk. The findings 
highlighted the superior performance of SVM compared to logistic regression. In a subsequent 
study, the same authors employed SVM to examine crash severity on mountainous highways, 
incorporating real-time traffic and weather data (Yu and Abdel-Aty, 2014a). Sun et al. (2014) 
also utilized SVM models to predict real-time crash risk on urban expressways. 

Random Forest  
Random Forest (RF) is a supervised classification algorithm in machine learning that constructs 
a collection of Decision Trees using a random subset of training data. The predictions of each 
tree are then combined through voting to make the final prediction. This approach is commonly 
employed to create a forest of multiple classification trees, resulting in more precise predictions. 
RF offers several advantages including the ability to handle missing values, avoid overfitting by 
using random subsets of data, and provide information about the importance of different features 
in the dataset. This feature importance can aid in identifying significant contributing factors 
during model training. RF has been widely applied in various road safety domains to predict 
different outcomes. For example, Wang and Kim (2019) utilized RF to identify factors and 
predict crash severity, comparing its performance to multinomial logit (MNL). Their findings 
indicated that RF outperformed MNL in terms of prediction accuracy, as measured by precision, 
recall, and F1 score. Although the differences were not statistically significant, sensitivity 
analysis revealed that RF was less sensitive than MNL. Moreover, RF has the capability to 
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capture nonlinear effects of continuous variables and mitigate the impact of collinearity among 
explanatory variables. In another study, Wahab and Jiang (2019) developed three machine 
learning models, including Decision Trees, RF, and Instance-Based learning with parameter k 
(IBk), to model injury severity in motorcycle crashes. They observed that RF-based algorithms 
exhibited better agreement with experimental data compared to the other two algorithms, 
attributed to RF's global optimization and extrapolation capabilities. Dash et al. (2022) applied 
RF to investigate factors influencing bike crash severity in urban areas and found that RF 
demonstrated potential for greater explanatory accuracy. This finding was particularly 
noteworthy given the limited use of RF in bike safety studies. Similarly, R. Yu et al. (2019) 
employed RF to rank the most critical factors associated with crash risk on the expressway 
system. 

eXtreme Gradient Boosting (XGBoost) 
XGBoost is a popular and efficient implementation of Gradient Boosting, an ensemble learning 
method that utilizes a series of weak learners to build a predictive model. In contrast to other 
ensemble methods, Gradient Boosting constructs individual models in a sequential manner and 
adjusts their weights based on information from previous models. XGBoost improves upon 
Gradient Boosting by incorporating a more precise estimation method that includes information 
on the gradient direction and minimum loss function. It also uses regularized boosting to 
minimize overfitting and enhance performance. XGBoost is governed by several parameters, 
including shrinkage, boosting iterations, minimum loss reduction, and decision tree-related 
parameters (A. Das et al., 2022). Recent studies have demonstrated the versatility of XGBoost in 
the safety analysis. For example, Goswamy et al. (2023) utilized XGBoost to identify the factors 
that influence the severity of injuries at pedestrian crossing locations with flashing beacons. 
Similarly, Jiang and Ma (2021) employed XGBoost to investigate macro factors associated with 
traffic fatality rules. XGBoost has also been used in conjunction with SHapley Additive 
exPlanations, an explainable AI-based model, to examine various aspects of safety analysis. For 
example, Chang et al. (2022) investigated fatal pedestrian crashes, Parsa et al. (2020) conducted 
real-time crash detection and feature analysis, and Yang et al. (2021) examined factors in freight 
truck-related crashes. 

Artificial Neural Network (ANN)  
The Artificial Neural Network (ANN) is a computational system inspired by the structure of the 
human brain that comprises numerous interconnected neurons arranged in layers, including 
input, hidden, and output layers. The system operates in a coordinated manner to solve problems 
and learns from information provided by comparing its classification with known information 
classifications. A significant advantage of the ANN is that it does not require any assumptions or 
prior knowledge for problem-solving (Zheng et al., 2014). Recently, ANNs have gained 
popularity in the field of crash severity data analysis. This type of analysis involves treating 
crash severity modeling as a pattern recognition task, in which the ANN classifier assigns each 
input to a severity category. In previous studies, fully connected feed-forward neural networks 
were employed to predict the severity of vehicle crashes (Abdelwahab and Abdel-Aty, 2001; 
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Sohn and Shin, 2001). Subsequently, ANNs were used to assess the effects of electronic toll 
collection (ETC) systems at toll plazas on highway safety (Abdelwahab and Abdel-Aty, 2002). 
To improve the accuracy of individual ANN classifiers, a data fusion method was introduced to 
combine data from various sources (Sohn and Lee, 2003). More recently, researchers divided 
crash severity datasets into subsets using k-means clustering and applied ANNs to model them 
separately, leading to significant improvements in prediction performance when compared with 
ANNs trained on the entire dataset (Alkheder et al., 2017).  

Data Mining 
Data mining, which is a process of extracting knowledge from large datasets, has emerged as a 
powerful tool for analyzing and understanding complex road safety datasets. There are several 
advantages of data mining techniques in traffic safety analysis. Firstly, data mining can identify 
patterns and relationships between variables that are not easily detected using traditional 
statistical methods. In addition, data mining can handle large and complex datasets with a high 
level of accuracy and efficiency. This is particularly useful in traffic safety analysis, where 
datasets can contain hundreds of variables and thousands of records. Unlike most traditional 
statistical models, data mining usually does not have any predefined assumptions.  

Data mining techniques, such as association rule mining, can identify contributing factors behind 
safety-critical events, including crashes, by investigating unclear and complex relationships 
among variables in big data. This may not be possible using traditional safety analysis methods 
that rely on traditional modeling. Association rule mining is a rules-based data mining method 
for investigating interesting associations of variables in large databases. The study conducted by 
Khan et al. provides an in-depth analysis of driver speed selection behavior in adverse weather 
utilizing telematics data coupled with association mining, with the aim of developing a human-
in-the-loop variable speed limit (VSL) algorithm (Khan et al., 2020). Another study utilized this 
robust technique to discover vehicle-pedestrian crash patterns to help safety professionals 
understand significant patterns and relevant countermeasures to raise awareness and improve the 
potential reduction of pedestrian crashes (Das et al., 2019). In recent years, many researchers 
have been using clustering-based data mining methods including k-means clustering, k-medoids 
clustering, hierarchical clustering, density-based clustering, fuzzy clustering, and spectral 
clustering. One recent study applied several clustering methods to categorize drivers into 
aggressive, normal, and calm clusters, and subsequently proposed a driving score to assess 
driving performance (Mohammadnazar et al., 2021).  

The use of text mining has also been leveraged in many recent traffic safety-related studies to get 
a deep understanding of the contributing factors leading to crashes and associated driver 
behaviors. With the rise of the internet and digital technology, publication media has become a 
valuable source of information that can be used to enhance collective knowledge. Das et al. 
conducted a study that demonstrated the potential of text mining in gathering information related 
to traffic safety. They utilized the knowledge discovery in text (KDT) approach to analyze over 
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15,000 research papers, revealing research trends and histories of development (Das et al., 2016). 
In another study, the same researchers utilized latent Dirichlet allocation (LDA) in conjunction 
with structural topic modeling (STM) to understand topical trends in the complex and evolving 
field of transportation engineering research, particularly within traffic safety (S. Das et al., 2017). 
A. Rakotonirainy et al. (2015) conducted a study that employed text mining to identify various 
factors that contribute to crashes, such as the use of phones and oversteering, particularly on 
curved sections.  

Deep Learning 
In recent times, the utilization of deep learning models has witnessed a growing trend in traffic 
safety analysis. Among these models, Convolutional Neural Network (CNN) has emerged as a 
popular option for developing prediction models due to its exceptional performance compared to 
alternative methods. In a recent investigation carried out by Zheng et al. (2019), they introduced 
a new model called Traffic Accident's Severity Prediction-Convolutional Neural Network 
(TASP-CNN) for predicting crash severity. The study compared the performance of TASP-CNN 
against various statistical and machine learning models, ultimately demonstrating the superiority 
of the TASP-CNN model. Similarly, another study proposed a deep learning framework known 
as ‘DeepScooter’ to predict the severity of motorcycle-involved crashes, achieving an impressive 
accuracy of 100% and 94% for the training and testing datasets, respectively (Das et al., 2018). 
A. Furthermore, Rahim and Hassan (2021) utilized four years of crash data from Louisiana and 
employed DeepInsight in conjunction with a pre-trained CNN called EfficientNet to establish a 
crash severity prediction framework. The study highlighted that the proposed framework 
exhibited significantly better performance compared to traditional machine learning models. 

Other Machine Learning Models 
Other machine learning and data mining-based models that have been used to conduct safety 
analysis include Naive Bayes, gradient boosting, Light GBM, recurrent neural network, 
AdaBoost, genetic algorithm, fuzzy adaptive neural network, conditional inference forest, pre-
trained CNNs, and TabNet. 

2.3 LAND AREA CONTEXT 

2.3.1 Expanded Functional Categorization System  

To evaluate the impact of land use on traffic safety, it's crucial to consider the latest land use 
categories presented in the NCHRP Report 855 (Stamatiadis et al., 2018). The report introduced 
an Expanded Functional Categorization System (FCS) comprising five distinct context 
categories, each requiring different geometric design practices in terms of operating speeds, 
accessibility, and user groups: Rural, Rural Town, Suburban, Urban, and Urban Core.  
 Rural: Regions characterized by minimal population concentration, limited buildings or 

constructions (scattered or absence of residential, commercial, and industrial establishments), 
and typically significant distances between structures. 
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 Rural Town: Regions with low population density yet diverse land utilization, featuring a 
commercial main street ambiance, potential availability of on-street parking and sidewalks, 
and relatively small distances between structures.  

 Suburban: Areas displaying moderate population density, a blend of land uses within and 
between buildings (including mixed-use town centers, commercial strips, and residential 
zones), and varying distances between structures. 

 Urban: Localities marked by high population density, a mix of land uses and prominent 
destinations, potential provision for on-street parking and sidewalks, and a combination of 
different distances between structures.  

 Urban Core: Districts showcasing the highest population density, diverse land uses within 
and among predominantly tall structures, and relatively minimal distances between 
structures. 

The Expanded FCS's main goal is to give designers better information so that they can make 
better design decisions by considering the mobility and safety of all roadway users. Figure 1 
shows the typical user priorities in the expanded FCS (freeways are not shown). 

Figure 1. Typical User Priorities in the Expanded FCS (Stamatiadis et al., 2018). 
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2.3.2 Studies on Land Use and Traffic Safety 

Xie et al. (2019) presented an innovative approach to evaluate the impact of land use conversions 
on traffic safety outcomes. The study specifically focused on examining the association between 
land use conversions and changes in severe crash occurrences. The results demonstrated that 
urban areas characterized by residential, commercial, and mixed residential-commercial land 
uses exhibited the highest levels of exposure to severe crash risk. In a similar vein, Mathew et al. 
(2022) conducted a study that explored the influence of road network characteristics, 
demographic variables, and land use characteristics on the occurrence of collisions involving 
minors. Through their research, they identified several significant explanatory factors that 
contribute to the incidence of teen crashes. These factors include AADT, the presence of light 
commercial land use, the number of occupied housing units in proximity, and the number of 
students enrolled in public or private high schools. 

The association between several built environment elements on and around the university 
campus and pedestrian crashes was investigated by Dai et al. (2010). The study used network-
based geospatial methods to pinpoint the locations of crash clusters in the study region. Data on 
pedestrian crashes from 2003 to 2007 were gathered from the Georgia Department of 
Transportation, and each road segment and intersection's environmental aspects of the 
streetscape, infrastructure, and pedestrians were assessed. According to the study, there were 
pedestrian crashes on more than 50% of roadways that were wider (more than 29 feet), two-way, 
and in good shape. Crashes involving pedestrians happened more frequently on road segments 
with mixed land uses and substantial street compactness, and they were notably concentrated in 
high-density areas. Mukoko and Pulugurtha (2020) investigate the impact of network, land use, 
and demographic factors on the estimation of bicycle-vehicle crashes on urban roads. The 
research findings indicate that network characteristics exhibit comparable or superior predictive 
capabilities compared to land use and demographic factors. Specifically, the study reveals that 
bicyclists have a higher probability of being involved in crashes on road segments lacking 
dedicated bicycle lanes, those with traffic lights, and where the speed limit is set at 45 mph. 
Furthermore, increased crash likelihood is observed on road segments situated in close proximity 
to commercial, research, institutional, multi-family residential, and heavy industrial areas. 
Conversely, the presence of single-family residential areas appears to have a relatively lower 
impact on the occurrence of bicycle-vehicle crashes.  

In another study, Ding et al. (2020) examined the influence of infrastructure and land use on 
bicycle crash exposure and frequency using bike-sharing data. They identified factors such as 
higher road density, business areas, a larger percentage of older individuals, male and white 
populations, and higher median family income as positively associated with bicycle crash 
incidence. Pulugurtha et al. (2013) developed crash estimation models at the traffic analysis zone 
(TAZ) level, indicating the significance of land use factors such as mixed-use development, 
urban residential, single-family residential, multi-family residential, business, and office districts 
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in predicting crashes. The models also revealed a negative coefficient for single-family 
residential areas, suggesting a decrease in crash frequency with an increase in the extent of such 
development. Koloushani et al. (2022) conducted a study focusing on the spatial correlations 
between land use and pedestrian injury severity in non-intersection crashes in Northwest Florida. 
The findings of this research indicate that certain types of land use play a significant role in 
predicting the severity of pedestrian-involved crashes. Specifically, the likelihood of a severe 
pedestrian-involved crash increases in areas with commercial land use, such as retail stores or 
nightclubs, while it decreases near university campuses. Furthermore, regardless of the 
surrounding land use type, daylight conditions contribute to the severity of pedestrian-involved 
crashes, while average traffic volume is a statistically significant factor for crashes occurring in 
proximity to parking lots and office buildings. Pedestrian-involved crashes predominantly occur 
during daylight hours near office buildings, and pedestrians in these areas are less likely to 
sustain severe injuries. 

2.4 PEDESTRIAN AND BIKE SAFETY 

Each year, pedestrian and cyclist fatalities account for approximately 19% of all traffic-related 
deaths, resulting in approximately 6,000 pedestrian deaths and 850 cyclist deaths, along with 
numerous injuries (FHWA, 2022). While the overall number of traffic fatalities has decreased, 
the proportion of pedestrian and cyclist fatalities within the total has been increasing. However, 
the actual magnitude of the safety issue is likely greater than what is reflected in published 
statistics due to limited data on changes in pedestrian and cyclist travel patterns and exposure 
compared to other modes of transportation. 

To tackle these safety concerns, jurisdictions are adopting more advanced approaches to assess 
the safety performance of transportation infrastructure. This often involves monitoring shifts in 
pedestrian and cyclist crash frequencies and exposure. Such monitoring helps identify potential 
risks and the most effective strategies for creating safer environments for walking and biking. 
For instance, if both crash occurrences and exposure decrease, it may indicate that people are 
avoiding walking or biking due to safety apprehensions. Conversely, if exposure increases while 
crashes decrease, it suggests that initiatives like Toward Zero Deaths or Vision Zero have been 
successful. Encouraging active modes of transportation while simultaneously reducing crash 
incidents necessitates collaborative efforts by state and local agencies. However, the limited 
availability of data restricts our understanding of the severity of pedestrian and cyclist crash risks 
and the locations where issues are prevalent. For instance, two intersections may report the same 
number of pedestrian crashes in a given year, but one intersection might have significantly 
higher pedestrian volumes, making it comparatively safer (Kristen Brookshire et al., 2016). 

2.4.1 Common Factors Contributing to Pedestrian and Bicycle-Related Crashes 

Although crash frequencies and rates can provide information on the severity and changes over 
time, they do not reveal the root causes of crashes or how to address them. To effectively combat 
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pedestrian and bicyclist crashes and injuries, it is crucial to fully comprehend the factors that 
contribute to these crashes. This will enable the development and application of the most cost-
efficient and appropriate combination of countermeasures. Common issues that increase the risk 
of collisions and severe injury include (Kristen Brookshire et al., 2016): 

 Speeding: Bicyclists and pedestrians are more likely to be struck by vehicles that go beyond 
the posted speed limit or drive too quickly for the conditions of the road. According to 
studies, the chance of a pedestrian dying increases as the impact speed of the motor vehicle 
rises. According to one study, the likelihood of a pedestrian dying in a collision with a 
moving car increases from 8% at 50 km/h (about 31 mph) to 50% at 75 km/h (about 47 mph) 
(Rosén and Sander, 2009). 

 Conflicts at crossing locations: The danger of a collision may increase when the layout of 
an intersection or other crossing place causes conflicts between various road users. Drivers 
are less likely to expect pedestrians and bicycles to cross at places that are not intended for 
crossing, which increases the likelihood of crashes. 

 Inadequate conspicuity: Drivers may not detect pedestrians and bicyclists if they are 
difficult to spot, especially in low-light situations, which increases the likelihood of a 
collision. Additionally, a lot of bikers are either unaware of or disobey the rules requiring 
them to wear reflectors and/or lights when riding at night. 

 Poor compliance with traffic laws and proper use of facilities: The safety of all road users 
is impacted by motorists, pedestrians, and bicyclists who break the law. For instance, 
pedestrians and bicyclists who use the incorrect side of the road or disregard traffic signs and 
signals, as well as automobiles that refuse to yield to pedestrians at crosswalks. Sometimes, 
poor compliance can be attributed to missing or inadequately constructed facilities and 
crossings, as well as to a lack of awareness of the intended use of certain designs or traffic 
control systems. 

 Inadequate separation: Bicyclists and pedestrians who are not segregated from fast-
moving, heavy traffic are at risk. Drivers could not see pedestrians in time to prevent a 
collision if they were forced to cross the road while walking. Dense traffic, heavy vehicle 
traffic, darkness, and a small field of vision may also have an impact on bicyclists who share 
motor vehicle lanes in similar circumstances. The danger of collisions at junctions and 
driveways, as well as possible confrontations with pedestrians, might rise if riders choose to 
ride on sidewalks in an effort to feel safer. 

A recent study has identified several risk factors associated with pedestrian crashes at both 
intersections and roadway segments. These factors include traffic volume, functional classes, 
pedestrian volume, presence of signals, and vehicle speed. The report discusses the potential 
roadway risk factors and their relationship to pedestrian crashes. The study found that most of 
the factors have a generally positive but not linear relationship to pedestrian crashes, except for 
high-turning volumes and the proportion of local streets at an intersection, which are still 
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unknown (see Table 14). The presence of a two-way left-turn lane was found to be positively 
related to pedestrian crashes on roadway segments, while vehicle speed and speed limits were 
found to be positively related to crash severity (Thomas et al., 2018). 

Table 14. Potential Roadway Risk Factors and Relationship to Pedestrian Crashes 
Reproduced from Thomas et al. (2018). 

Variable/Risk Factors Intersections Segments 

Traffic volume  
Positive (generally 
positive but not 
linear)   

Positive (generally positive but 
not linear)  

High-turning volumes  Unknown threshold  Unknown at present  
Functional classes—arterials and collectors 
compared with local streets  Positive  Positive   

Proportion of truck/bus traffic in traffic 
stream  

Positive  (crash 
severity)  Positive  (crash severity)  

Proportion of local streets at intersection   Negative  Unknown at present   

Pedestrian volume   Positive (but not 
linear)  Positive (but not linear)  

Number of legs > 3   Positive  Unknown at present   
Total lanes on largest leg (5+)  Positive  Unknown at present   

No median/median island Positive  
(less certain than for 
segments) 

Positive  

Presence/number of transit stops  Positive  Positive  
Presence of on-street parking  Positive  Positive  
Presence/number of driveways  Positive  Unknown (theoretically yes)  

Presence of signal  
Positive with crash 
frequencies Negative 
with crash severity 

Unknown at present 

Lack of separate turning movements from 
walk phase (all red walk phase, or walk and 
restricted turn phase)  

Positive  Unknown at present   

Lack of leading pedestrian interval Positive  Negative  
Presence of four or more through lanes  
Higher numbers of total lanes   Theoretically yes Positive   

Presence of TWLTL  Unknown at present  Positive  

Speed limit > 25 mph Unknown at present Positive with crash severity; 
positive with frequency in a few  
studies  

Vehicle speed  Positive with severity Positive with severity  
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2.4.2 Addressing Pedestrian and Bicycle Safety Concerns 

The ‘3E’ approach is frequently used by transportation professionals to increase the safety of 
cyclists and pedestrians. The three main ‘Es’ in this concept are engineering, education, and 
enforcement. Engineering describes the addition of sidewalks, bike lanes, or traffic lights, among 
other modifications to the environment or operations of the highway that impact how people on 
foot, on bicycles, and in other vehicle types navigate it. In order to encourage positive changes in 
attitudes or actions among drivers, pedestrians, cyclists, and other groups, education entails 
raising knowledge of certain safety regulations, concerns, or practices. Compliance with safety-
related rules and regulations, such as speed limits or the use of crosswalks, is the main goal of 
enforcement activities. 

There are more crucial aspects to consider in addition to these three mains ‘Es.’ These could 
include Emergency Response, Emerging Technologies (such applications that warn of vehicle-
pedestrian collisions), and Encouragement/Engagement initiatives that encourage people to walk 
and bike and include them in safety-related discussions. Some professionals look at the ‘Es’ from 
the perspectives of evaluation and equity. While equity aims to equally distribute spending in 
safety measures across a community, evaluation focuses on assessing the impact of safety 
treatments or programs. According to research, combining the ‘Es’ (such as adopting engineering 
modifications with education and enforcement initiatives) is typically more effective than 
depending on a single strategy. The National Highway Traffic Safety Administration (NHTSA) 
recently conducted a comprehensive review of existing treatments and programs related to key 
pedestrian and bicycle safety concerns, as well as the related treatments and programs. 
Table 15 summarizes the key pedestrian and bicycle safety concerns and the treatments and 
programs associated with them (Kristen Brookshire et al., 2016).  

Table 15. Summary of Key Pedestrian and Bicycle Safety Concerns and Related 
Treatments and Programs. 

Treatment or Program Primary Mode 
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Engineering Treatments 
1. Access management All • • maybe   

2. Advance yield/stop lines Pedestrians/Drivers  • • •  

3. Bicycle detection at signals Bicyclists  •  •  

4. Bike lanes Bicyclists    • • 
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Treatment or Program Primary Mode 
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Relation to Safety Concerns 
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5. Bicycle pavement marking 
improvements Bicyclists  • • • • 

6. Bicycle-tolerable rumble strips Bicyclists/Drivers     • 
7. Crossing islands and raised 

medians Pedestrians/Drivers • • •  • 

8. Interchange design Pedestrians/ 
Bicyclists • •    

9. Intersection geometric design Pedestrians/Drivers • • •   

10. Lighting and illumination All  • •   

11. Marked crosswalks Pedestrians  • • •  

12. Pedestrian and bicycle 
overpasses/underpasses 

Pedestrians/ 
Bicyclists 

 •   • 

13. PHBs Pedestrians/ 
Bicyclists) 

 •  •  

14. Pedestrian signals and push 
buttons Pedestrians  •  •  

15. Rectangular rapid flashing 
beacons Pedestrians  • • •  

16. Road diets All • • •  • 
17. Roundabouts All • •  •  

18. Separated bike lanes Bicyclists •   • • 
19. Sidewalk buffers and 
landscaping Pedestrians • maybe • maybe • 

20. Sidewalks and curb ramps Pedestrians    • • 
21. Traffic signal phasing All  • • • • 
22. Traffic calming and management All •     

Education and Awareness Programs 

23. Child training and skills practice Pedestrians/ 
Bicyclists 

 • • •  

24. General pedestrian/bicycle 
safety communication and 
outreach 

All maybe maybe • •  

25. Safe routes to school Pedestrians/ 
Bicyclists 

 maybe maybe •  

Enforcement Programs 
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Treatment or Program Primary Mode 
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26. Adult school crossing guards Pedestrians/ 
Bicyclists • • • •  

27. Automated enforcement All • maybe  •  

28. Speed display devices All •   •  

29. Targeted law enforcement All • • • •  

2.4.3 Pedestrian and Bicyclist Safety Variables 

Analyzing crash data is a common method to evaluate the safety of pedestrians and bicyclists. 
These crashes typically involve motor vehicles, but it's important to acknowledge that not all 
crashes are reported, and some do not involve motor vehicles at all. Undocumented crashes can 
provide valuable insights into areas requiring safety enhancements. One strategy for identifying 
such areas is to pinpoint ‘hot spots’ where pedestrian or bicycle crashes are concentrated. These 
hot spots might encompass intersections or specific road segments that necessitate design 
improvements. Moreover, it's crucial to consider that crash likelihood is higher in locations with 
greater pedestrian and bicycle activity. To accurately assess the risk of pedestrian or bicycle 
crashes, exposure measures must be incorporated. For instance, the crash rate can be determined 
by dividing the total number of crashes during a specific period by a corresponding measure of 
exposure. Exposure measures encompass various factors such as pedestrian crossing volume, 
motor vehicle volume at crosswalks, total bicycle volume at intersections, or population density 
in census tracts. Additionally, variables categorized under ‘Demand’ can serve as proxies for 
pedestrian or bicycle exposure. Even in cases where specific data on pedestrian and bicycle 
volumes may not be available, exposure measures can still be estimated based on the time spent 
in areas where pedestrians and bicyclists are likely to encounter motor vehicles. A recent 
NCHRP Report outlines several variables related to pedestrian and bicycle safety, as presented in 
Table 16 (Lagerwey et al., 2015).  

Table 16. Safety Variables, Reproduced from Lagerwey et al., (2015). 

Example Variables 
Relevance Potential 

Location Ped Bike 
Total number of pedestrian/bicycle crashes ● ● S, Cr, Co, A 
Fatal and severe injury pedestrian/bicycle crashes ● ● S, Cr, Co, A 
Pedestrian/bicycle crash rate ● ● S, Cr, Co, A 
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Example Variables 
Relevance Potential 

Location Ped Bike 
Proportion of pedestrians walking in the roadway ◐ ◯ S 
Proportion of pedestrians complying with “Don’t 
Walk” signals 

◐ ◯ Cr 

Proportion of bicyclists complying with red lights ◯ ◐ Cr 
Proportion of motorists complying with right turn on 
red restrictions 

◐ ◐ Cr 

Proportion of motorists yielding to pedestrians in 
crosswalks 

◐ ◯ Cr 

Number of “near misses” involving 
pedestrians/bicyclists 

◐ ◐ S, Cr, Co, A 

Notes: ● = Very relevant, ◐ = Less relevant, ◯ = Not likely relevant, S = Segment, Cr = Crossing, Co = Corridor, 
A = Area 

These variables, which are listed in Table 17, include traffic volume, pedestrian volume, transit 
presence, total through lanes, median type, crosswalks, on-street parking, and various types of 
markings and signs. Additionally, the table provides measurements for each variable, such as 
AADT for traffic volume and the presence or count of certain facilities like pedestrian hybrid 
beacon or rectangular rapid flashing beacon along a segment (Thomas et al., 2018). 

Table 17. Potential Pedestrian Crash Risk Variables for Segment Analysis, Reproduced 
from Thomas et al., (2018). 

Segment-Related Roadway Variables Measurements 

Traffic volume  

Typically, ADT or AADT are available for state road networks. 
Subtypes may include.  
• Major and minor road volumes (for intersections)  
• Volume assignment by functional class (surrogate measure)  
• Heavy vehicle percentages  

Pedestrian volume 

It is challenging to account for pedestrian volumes crossing a length or 
segment of roadway. Ideally, the number of pedestrians walking along 
the roadway and of pedestrians crossing anywhere along a segment could 
be included. It may be feasible to collect counts of pedestrians crossing 
at non-intersection-marked crosswalk locations.  

Transit 
• Presence of stops within X distance of segment midpoint or 
• endpoints 
• Number of stops along segment 

Total through lanes Number of through lanes (average, either end of segment; 
midpoint
number of through lanes; or number proportionally weighted) 

Total through lanes  Number of through lanes (average, either end of segment; midpoint 
number of through lanes; or number proportionally weighted)  

Median with/without crossing facilities  Presence of a continuous raised (not painted or TWLTL) median  
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Segment-Related Roadway Variables Measurements 

Median islands with pedestrian 
crossing  

Count of raised median islands with pedestrian pass-through refuge 
along segments. Could consider median island presence at the 
intersection.  

Two-way left-turn lane  Presence of TWLTL  

Midblock crosswalks  Presence or count of marked crosswalks with unsignalized approaches 
along a segment  

On-street parking  Presence (any, one, or both sides) or proportion of segment covered by 
striped parking  

Pedestrian hybrid beacon or PHB  Presence or count of the facility type along a segment  
Rectangular rapid flashing beacon  Presence or count of the facility type along a segment  
High visibility crosswalk markings  Presence or count of the facility type along a segment  
Advance stop/yield markings and signs   Presence or count of the facility type along a segment  
Speed limit  Posted speed limit or weighted average speed limit along segment  
Segment length  Length of segment; may be estimated from spatial data 

Sidewalk coverage   Presence of sidewalks along zero, one, or both sides, or proportional 
coverage from front frontage data  

Distance to nearest signalized crossing 
or activated beacon along same road  As described  

Right- or left-turn lanes at adjacent 
intersections  Presence or counts of different lane types at adjacent intersection  

2.4.4 Selection of Safety Countermeasures 

As part of the Every Day Counts (EDC-5) program focused on pedestrian safety, the FHWA has 
recently revised its guide for improving safety at uncontrolled crossing locations (FHWA, 2021). 
The guide presents various measures to address pedestrian safety concerns, taking into account 
the characteristics of the roadway. Aligned with the objectives of the EDC-5 program, several 
recommended measures include Road Diets, Pedestrian hybrid beacons (PHBs), Pedestrian 
refuge islands, raised crosswalks, Crosswalk visibility enhancements, Rectangular Rapid 
Flashing Beacons (RRFBs), and Leading Pedestrian Intervals. A comprehensive matrix and list 
of these countermeasures, categorized according to roadway and traffic features, can be found in 
Figure 2 (Blackburn et al., 2018). The assignment of specific countermeasures to matrix cells is 
based on safety research, best practices, and established national guidelines. When implementing 
pedestrian crossings, FHWA advises agencies to carefully assess the available countermeasure 
options and select the most suitable combination of treatments, taking into consideration factors 
such as pedestrian volume, operational speeds, land use context, and site-specific features. 
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Figure 2. Pedestrian Crash Countermeasures by Roadway Feature (Blackburn et al., 2018). 

2.4.5 Development of SPFs and CMFs for Pedestrians and Bicyclists  

The NCHRP Project 17-56 undertook the task of creating several SPFs and CMFs specifically 
for various pedestrian treatments at unsignalized pedestrian crossings (Zegeer et al., 2017). After 
careful consideration of multiple options concerning the design of road features and traffic 
control devices, this particular study chose to assess the effectiveness of four distinct treatment 
types. These encompassed RRFBs, PHBs, pedestrian refuge islands, and advanced markings and 
signs indicating YIELD or STOP. The analysis of data involved the formulation of cross-
sectional models and the utilization of EB analysis techniques, both before and after the 
implementation of treatments, to ascertain the impact on crashes, represented by CMFs. In the 
case of refuge islands, specific equations were fine-tuned to provide projections of the 
anticipated number of crashes. The parameter estimates for all models pertaining to refuge 
islands can be found in Table 18. 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎+𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶+𝑏𝑏∗𝑅𝑅𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑐𝑐∗𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓 (25) 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎+𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶+𝑏𝑏∗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑑𝑑∗𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑖𝑖𝑖𝑖𝑖𝑖)𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓 (26) 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎+𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶+𝑏𝑏∗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑑𝑑∗𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑖𝑖𝑖𝑖𝑖𝑖)𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓 (27) 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎+𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶+𝑏𝑏∗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑑𝑑∗𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑖𝑖𝑖𝑖𝑖𝑖)𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓 (28) 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎+𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶+𝑏𝑏∗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑑𝑑∗𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑖𝑖𝑖𝑖𝑖𝑖)𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓 (29) 
Where,  
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = total AADT on the roadway being crossed 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒 = 1 if Suburban, 0 if Urban 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = an intercept term specific for each city 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝐼𝐼𝐼𝐼𝐼𝐼 = 1 if intersection, 0 if midblock 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = total pedestrian AADT for midblock or intersection 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 1 if present, 0 if not present 

Table 18. Parameter Estimates for Refuge Island Regression Models, Reproduced from 
Zegeer et al. (2017). 

Parameter 
Parameter Estimate (Standard Error) 

Pedestrian Total Injury RE+SS Injury RE+SS 

a -10.4246 
(-1.6409) 

-5.5953 
(-0.7761) 

-6.4572 
(-0.8886) 

-8.3157 
(-0.9754) 

9.713 
(-1.2009) 

b -0.3578 
(-0.2153) 

-0.2981 
(-0.0956) 

-0.3369 
(-0.1148) 

-0.2999 
(-0.1258) 

-0.3254 
(-0.146) 

c -0.5715 
(-0.3127) n/a n/a n/a n/a 

d n/a 0.473 
(-0.1083) 

0.4312 
(-0.1183) 

0.414 
(-0.1224) 

0.3728 
(-0.1395) 

e 0.6977 
(-0.1694) 

0.5192 
(-0.0756) 

0.5375 
(-0.0846) 

0.7235 
(-0.0947) 

0.778 
(-0.1157) 

f 0.3295 
(-0.0486) 

0.1224 
(-0.0247) 

0.1141 
(-0.026) 

0.1041 
(-0.0237) 

0.0986 
(-0.0263) 

overdispersion n/a 0.7608 
(-0.0305) 

0.7075 
(-0.0482) 

0.9149 
(-0.0521) 

0.9837 
(-0.1075) 

Likewise, advanced YIELD or STOP markings and signs the following equations were generated 
to predict the expected number of crashes per year. The parameter estimates for all models 
related to advanced YIELD or STOP markings and signs are shown in Table 19. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎+𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶+𝑏𝑏∗𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑐𝑐∗𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓 (30) 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
= 𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎+𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶+𝑏𝑏∗𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑐𝑐∗𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴+𝑑𝑑∗𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑖𝑖𝑖𝑖𝑖𝑖)𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓 

(31) 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎+𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶+𝑏𝑏∗𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑑𝑑∗𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑖𝑖𝑖𝑖𝑖𝑖)𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓 (32) 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
= 𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎+𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶+𝑏𝑏∗𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑑𝑑∗𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑖𝑖𝑖𝑖𝑖𝑖)𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝑇𝑇𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓 

(33) 
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𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
= 𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎+𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶+𝑏𝑏∗𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑑𝑑∗𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑖𝑖𝑖𝑖𝑖𝑖)𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓 
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Where,  
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = total AADT on the roadway being crossed 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 1 if Suburban, 0 if Urban 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = an intercept term specific for each city 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝐼𝐼𝐼𝐼𝐼𝐼 = 1 if intersection, 0 if midblock 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = total pedestrian AADT for midblock or intersection 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 1 if present, 0 if not present 

Table 19. Parameter Estimates for Advanced YIELD or STOP Markings and Signs 
Models, Reproduced from Zegeer et al. (2017). 

Parameter Parameter Estimate (standard error) 
Pedestrian Total Injury RE+SS Injury RE+SS 

a -6.5485 
(1.6715) 

-5.1484 
(0.6466) 

-5.5571 
(0.7427) 

-7.8277 
(0.7854) 

-8.7847 
(1.0780) 

b -0.1470 
(0.3295) 

-0.0195 
(0.2240) 

-0.1367 
(0.2714) 

0.3520  
(0.3284) 

0.2801  
(0.4228) 

c -0.9656 
(0.4798) 

-0.2668 
(0.1462) 

n/a n/a n/a 

d n/a 0.6124  
(0.1172) 

0.6039  
(0.1265) 

0.5200  
(0.1283) 

0.4786  
(0.1550) 

e 0.2501  
(0.2041) 

0.5021  
(0.0634) 

0.4384  
(0.0705) 

0.6752  
(0.0767) 

0.6761  
(0.1044) 

f 0.4003 
(0.1011) 

0.0949  
(0.0257) 

0.1006  
(0.0270) 

0.0880 
(0.0248) 

0.1026  
(0.0287) 

overdispersion n/a 0.7151  
(0.0307) 

0.6908  
(0.0488) 

0.9038  
(0.0530) 

1.1215  
(0.1149) 

The study also generated SPFs for the remaining two categories of treatments. Upon analyzing 
the data in relation to untreated sites, it was observed that all four treatment options were 
associated with a reduced likelihood of pedestrian crashes. The CMFs for pedestrian collisions 
were as follows: PHBs (CMF of 0.453), PHBs with advanced YIELD or STOP signs and 
markings (CMF of 0.432), pedestrian refuge islands (CMF of 0.685), and advanced YIELD or 
STOP signs and markings (CMF of 0.75). These treatments exhibited the most significant impact 
in mitigating the risk of pedestrian collisions. Notably, the CMFs for PHBs and PHBs with 
advanced YIELD or STOP markings and signs differed significantly from 1.0. Furthermore, 
CMFs for some of the four pedestrian treatments were identified for various other types of 
collisions, including rear-end, sideswipe, and complete crashes. A comprehensive compilation of 
the recommended CMFs generated for this study can be found in Table 20. 

Table 20. Potential Pedestrian Crash Risk Variables for Segment Analysis, Reproduced 
from Zegeer et al. (2017). 
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Treatment Crash Type 
Recommended CMF 

Study Basis 

Estimate Standard 
Error 

Refuge Island 

Pedestrian 0.685 0.183 Median from two studies 
Total 0.742 0.071 Cross-section 
All Injury 0.714 0.082 Cross-section 
Rear-End/Sideswipe Total 0.741 0.093 Cross-section 
Rear-End/Sideswipe Injury 0.722 0.106 Cross-section 

Advanced YIELD or 
STOP Markings and 
Signs 

Pedestrian 0.750 0.230 Median from two studies 
Total 0.886 0.065 Before-after 
Rear-End/Sideswipe Total 0.800 0.076 Before-after 

PHB Pedestrian 0.453 0.167 Median from two studies 
PHB + 
Advanced YIELD or 
STOP Markings and 
Signs 

Pedestrian 0.432 0.134 Median from two studies 
Total 0.820 0.078 Before-after 

Rear-End/Sideswipe Total 0.876 0.111 Before-after 

RRFB Pedestrian 0.526 0.377 Cross-section 

2.4.6 Studies on Pedestrian and Bicyclist Safety 

The safety and behavior of cyclists and pedestrians crossing at greenway-road crossings on an 
urban greenway in New Orleans were studied by Anderson et al. (2019). The researchers gathered 
information on crossing practices, safety, and driving practices via direct observation and 
intercept questionnaires. They analyzed the link between motor vehicle behavior and the 
activation of crossing signals (rectangular fast flash beacons) for walkers and bicycles using 
logistic and negative binomial regression. According to the study, turning on the crossing signals 
made it less likely for walkers and bicycles to cross the street dangerously, but there was no 
connection between pedestrian use of the lights and motorists’ stopping habits. However, cyclists 
had considerably increased probabilities of seeing moving cars fail to stop when the signal was 
triggered.  

In order to assess pedestrian facilities and pinpoint necessary upgrades along roadways, Asadi-
Shekari et al. (2015) created the pedestrian safety index (PSI). By comparing the current 
circumstances to a standard, a point system technique was put out to estimate this PSI. The 
technique was used to pinpoint issues already present and provide solutions. Additionally, the 
improvements to pedestrian safety outlined using this technique enhance the security of elderly 
and disabled pedestrians, who are most adversely affected by a lack of amenities. Dumbaugh and 
Li (2011) aimed to ascertain whether the occurrence of urban crashes is attributable to random 
error or features of the constructed environment. They utilized vehicle miles of travel as an 
approximation for random error and discovered a slight positive correlation with crashes 
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involving both motorists and pedestrians. Conversely, they identified stronger connections 
between crashes and characteristics of the built environment. Major risk factors for crashes were 
identified as arterial roadway miles, four-leg intersections, strip commercial uses, and big box 
stores. In contrast, pedestrian-friendly retail uses were associated with a lower frequency of crash 
incidents. The findings indicate that enhancing urban traffic safety necessitates a balance 
between mitigating safety risks and addressing conflicts in traffic, rather than relying exclusively 
on forgiving roadway design. 

Using supervised association mining, Das et al. (2019) found trends in a database of vehicle-
pedestrian crashes. The study used crash data from Louisiana from 2004 to 2011 for eight years 
in order to look for these tendencies. The use of association rules mining was made to achieve 
this. The findings suggested that nighttime road lighting might lessen the severity of pedestrian 
collisions. The study also identified a number of groups of interest, including male pedestrians 
who are more vulnerable to serious and fatal crashes, younger female drivers who are more 
likely to be in collisions, impaired pedestrians who are still at risk even when there is nighttime 
lighting on the road, middle-aged male pedestrians who are more vulnerable to collisions, and 
single vehicle crashes as the most frequent. 

The study conducted by Ferenchak and Marshall (2017) aimed to identify areas in urban regions 
that have a high concentration of child pedestrian fatalities. The researchers employed spatial and 
statistical analysis to compare fatal collision rates in areas surrounding schools and other places 
that children frequent, such as parks, trails, and recreation spaces. The authors utilized 30 years 
of crash data for six American cities and concentrated on collisions that occurred in Denver, 
Colorado, in the first phase of their study. Their research indicated that areas around parks and 
schools have higher child pedestrian fatality rates than areas without a school or park, and 
fatality rates around parks are higher than those around schools. The authors concluded that 
actions aimed at ensuring child pedestrian safety should concentrate on parks as well as schools. 
A separate study also explored the incidence of child pedestrian injuries in urban crashes and the 
characteristics that influenced injury severity (Koopmans et al., 2015). The study discovered that 
children had a higher overall incidence of injuries compared to adult pedestrians, but the case 
fatality rate was lower. It was also found that most crashes for both children and adults occurred 
during favorable driving conditions. Younger age groups experienced injuries more frequently 
during warmer months than older groups. Midblock crashes increased as age decreased. The 
majority of crashes took place at locations with inadequate traffic controls but varied by age. For 
younger age groups, crashes were more likely to happen during daylight, on dry roads, and under 
clear weather conditions than for older groups.  

A recent investigation conducted by Goswamy et al. (2023) explored the effectiveness of the 
RRFB in mitigating the severity of crashes occurring at pedestrian crossings. The study 
encompassed a dataset of 312 locations where pedestrians crossed, out of which 154 locations 
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were equipped with the RRFB, while the remaining 158 control locations lacked any 
countermeasures specifically designed for pedestrian crossings. The control locations exhibited 
similar characteristics in terms of traffic, roadway, and land use compared to the treatment 
locations. The objective of the study was to assess the impact of the RRFB and other variables on 
the severity of various types of crashes, including those involving pedestrians, nighttime 
incidents, total crashes, and rear-end collisions. The findings indicated that the RRFB had a 
positive influence on reducing nighttime crashes, particularly those classified as K and A 
crashes. However, the study did not observe a significant improvement in reducing rear-end 
collisions and overall crashes within the study area. 

Another research study conducted by Guo et al. (2016) examined the effects of parallelogram-
shaped pavement markings on vehicle speed and pedestrian safety at urban crosswalks. The 
study employed observational cross-sectional methods to evaluate the impact of these markings 
on vehicle speed and the occurrence of crashes near pedestrian crosswalks. The results 
demonstrated that the utilization of parallelogram-shaped pavement markings resulted in a 
notable decrease in vehicle speeds and violations of speed limits in the vicinity of pedestrian 
crosswalks. Furthermore, the implementation of these markings also led to a reduction in both 
the frequency and severity of crashes at pedestrian crosswalks. Kraidi and Evdorides (2020) 
conducted a study that aimed to create models for evaluating pedestrian safety, considering the 
impact of pedestrian and roadside activities. The researchers discovered that various factors 
significantly contributed to pedestrian crash risk, including the frequency of bus stops, parking, 
pedestrian crossings, traffic speed fluctuations, the number of intersecting side roads, and 
through and intersecting traffic volume. Additionally, the volume of violations committed by 
pedestrians and drivers was also a significant risk factor. 

For different kinds of urban highway segments and junction facilities, a study was done to 
estimate the bicycle CMFs (Raihan et al., 2019). According to the research, bicycle collisions are 
decreased by lane width, speed limits, and grass in the median. However, the incidence of 
bicycle collisions rose when there were sidewalks and sidewalk barriers present. The study also 
discovered that an increase in bicycle activity increased the likelihood of collisions at junctions 
but decreased the likelihood of collisions on segments of roadways. Bus stops were found to 
increase the possibility of cycling crashes at junctions, but protected signal control improved 
bicycle security. The study by Davidse et al. (2019) looked at possible outcomes of collisions 
involving light mopeds in urban bike lanes. The research made many recommendations for 
improving the safety of both bikers and light-moped riders based on the data. These included 
clearing obstructions like poles from the bike path, adhering to recommendations for the 
minimum width of bike lanes given traffic volumes, enhancing visibility at intersections, putting 
traffic light control in place without interfering with traffic flows, and enacting a helmet law for 
riders of light mopeds and their passengers. 
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2.5 RELATIONSHIP BETWEEN SPEED AND SAFETY 

2.5.1 Speed Measures in the HSM 

The SPFs for the first edition of the HSM (AASHTO, 2010) and the future second edition of the 
HSM does not explicitly contain speed metrics despite the fact that they must be included when 
evaluating highway safety. The first version of HSM’s Appendix 3E, titled ‘Speed and Safety,’ 
offers some background about speed restrictions and how they affect overall safety. The HSM 
also includes CMFs for the average operating speed change (before and after the crash 
occurrence), although these measurements need to be reexamined in light of the availability of 
more recent data sources like the NPMRDS. 

2.5.2 Speed Limit 

Corridor-level strategies for implementing measures to ensure compliance with speed restrictions 
rely on the establishment of speed limits. To safeguard the well-being of all individuals utilizing 
the roadway, including motor vehicles, bicycles, and pedestrians; it is important to impose a 
reasonable speed restriction that promotes a secure, consistent, and practical flow of traffic. 
Speed control measures, such as speed limits, play a vital role as they provide drivers with 
explicit instructions to guide their selection of suitable speeds while driving. This is particularly 
significant because drivers may not always possess the ability to independently determine 
appropriate speeds (Elvik, 2010). Figure 3 presents a visual representation of various types of 
speed limits. 

Figure 3. Types of Speed Limits (FHWA, 2016). 

Statutory Speed Limit 

State legislatures set statutory speed limits for each type of highway infrastructure, which might 
differ from state to state. A statutory speed restriction is legally binding and valid even if it is not 
posted, according to FHWA Speed restriction Basics. Examples include 55 mph on rural 
roadways, 70 mph on rural freeways, and 25 mph in residential or school areas (FHWA, 2016). 
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Posted Speed Limit 

Posted speed limits, also known as regulatory speed limits, are those that are posted along the 
road and are made enforceable by law, according to FHWA Speed Limit Basics. A posted speed 
limit might be adjusted from the statutory speed limit by a municipal, county, or state 
transportation agency, or it could be the same as the legal speed determined by the State 
legislature (FHWA, 2016). 

Advisory Speed Limit 

Advisory speeds are intended to increase safety at road alignments like the sites of horizontal and 
vertical curves. These speed restrictions are typically established using an engineering speed 
study and in compliance with recommendations in the MUTCD (FHWA, 2016). The posted 
advisory speed is meant to notify motorists of any road conditions that call for a decrease in 
speed (Grabowski and Morrisey, 2007). According to Bonneson et al. (2007), the advised speed 
restriction needs to be established using the mean operating speed of truck drivers. 

Variable Speed Limits 

An essential component of an intelligent transportation system (ITS) is the VSL concept. This 
speed management system can modify the speed limit on various road segments based on the 
current flow of traffic or a predetermined speed control algorithm. Several American states, 
including Arizona, New Mexico, Oregon, and Washington, have already enacted VSL. 
According to studies, VSL practices have been found to lower average speeds (Garber and 
Srinivasan, 1998; Ullman and Rose, 2005). VSLs are seen to be an efficient countermeasure for 
avoiding speed-related collisions as well as aiding in the regulation of congestion, especially in 
work zones (Levin et al., 2019; Ullman and Rose, 2005). According to data from Pauw et al. 
(2018), the introduction of VSL resulted in a sharp decline in injury collisions (18% of overall 
crashes were reduced, and 6% of fatal and serious crashes). On rural, mountainous motorway 
routes for VSL, Saha et al. (2015) investigated how the road, weather, and collisions interacted. 
The research results indicated that the combination of meteorological conditions along with 
horizontal and vertical curves had a notable influence on the frequency of crashes. 

Studies on Speed Limit and Safety 

The role of reducing speed limits is crucial for ensuring road safety, as demonstrated by 
Kloeden's research conducted in Australia. In South Australia, the implementation of the Default 
Urban Speed Limit (DUSL) lowered the speed limit from 37 mph to 31 mph on all urban roads, 
unless specified otherwise, starting from March 1st, 2003. Kloeden et al. (2004) examined the 
effectiveness of this reduction by analyzing speed surveys and crash data. The results showed an 
average decrease of 1.4 mph in mean speeds on streets with reduced speed limits and 0.4 mph on 
arterial roads with 37 mph signs. Additionally, there was a significant reduction of 19.8% in 
casualty crashes on 37 mph roads and 4.6% on 37 mph arterial roads. In a subsequent evaluation 
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three years later, Kloeden et al. (2007) observed average speed reductions of 2.4 mph on 
reduced-speed streets and 1.3 mph on arterial roads. Moreover, casualty crashes decreased 
significantly by 23% on 31 mph roads and 16% on 37 mph arterial roads. Comparing data from 
2016, Kloeden et al. (2017) noted that speeds on South Australian 31 mph roads remained 
mostly unchanged, although there was a potential increase in the number of vehicles exceeding 
40 mph on local roads in Adelaide. On the other hand, Adelaide's 37 mph roads experienced a 
historical decline in vehicle speeds, while speeds on rural hill roads stabilized in 2016 after three 
years of decrease. Rural roads with speed limits of 62 mph and 68 mph remained stable since 
2015, with fewer occurrences of high-speed instances observed over time. 

Numerous studies have investigated the impact of speed limits on pedestrian safety. The 
introduction of metrication in 1974 resulted in an increase in the urban speed limit from 35 mph 
to 37 mph throughout Australia. Mclean and Anderson (2008) conducted a study to assess the 
effects of metrication and the subsequent reduction of the urban speed limit from 37 mph to 31 
mph on pedestrian fatalities. They estimated the potential consequences of choosing a 37 mph 
speed limit instead of 31 mph since 1974. Heydari et al. (2014) proposed a methodology to 
analyze the influence of speed limit reduction on speeding behaviors, identifying various factors 
that either heightened or diminished speeding. While speed limit reductions proved effective for 
limits of 25 mph and 31 mph, they did not significantly reduce instances of excessive speeding, 
thereby posing risks to pedestrians and cyclists. Isaksson-Hellman and Töreki (2019) discovered 
that reducing the speed limit from 31-37 mph to 19-25 mph significantly decreased the 
likelihood of moderate-to-fatal injuries for cyclists involved in car collisions. Mitra et al. (2021) 
reported that lower speed limits in Korea reduced the likelihood of pedestrian fatalities, although 
they did not observe reductions in the overall number of pedestrian crashes and injuries.  

Islam and El-Basyouny (2015) conducted a comprehensive assessment using Bayesian analysis 
to evaluate the safety impacts of reducing the posted speed limit in urban residential areas. They 
found that reducing the speed limit had a positive effect in reducing crashes of all severities. In 
Spain, a new law implemented in 2020 lowered the standard speed limit on two-lane roads from 
31 mph to 19 mph to decrease crashes. Gonzalo-Orden et al. (2021) gathered evidence from 
other countries showing the positive effects of reducing vehicle speeds in urban areas. Son et al. 
(2022) conducted a study and found that lowering the speed limit effectively reduced the number 
of crashes, including serious injuries and fatalities. These findings suggest that lowering the 
speed limit reduces both the overall number and severity of crashes. 

In their study, Kwayu et al. (2018) employed regression analysis to examine the consequences of 
increasing the speed limit on urban freeways in Michigan. They observed a rise in fatal, 
incapacitating, and total crashes, as well as incidents of vehicles veering off the road, following 
the speed limit increase. This impact was particularly notable on curved sections of the freeways. 
Cloutier and Lachapelle (2021) conducted an assessment of the effects of reducing speed limits 
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on collisions involving fatalities or severe injuries in Quebec, Canada. They identified a 
decreasing trend in incidents across various road segments, with a more substantial decline in 
segments characterized by higher initial speeds and larger speed reductions. It is crucial to 
thoroughly evaluate geometric characteristics when considering modifications to speed limits. 
Siddiqui et al. (2017) examined the impacts on the safety of a VSL system that provided 
advisory guidelines on the OR-217 freeway in Portland. Due to a lack of comprehensive crash 
data, they relied on surrogate safety measures to assess the system's effectiveness. The results 
indicated a decrease in the overall number of crashes, particularly rear-end collisions. The 
implementation of the VSL system led to reductions in both the average speed and the variability 
of speeds within and between lanes at specific locations. Additionally, it contributed to 
minimizing speed fluctuations along the corridor, resulting in smoother transitions in speed. 
However, the study emphasized that the recurrent activation of the advisory VSL system for 
short durations could potentially have adverse effects on speed consistency. 

A study conducted by Tarko et al. (2019) examined various speed limit scenarios on interstate 
freeways in Indiana and determined that speed limits had a greater impact on mobility and safety 
when traffic conditions were uncongested, with limited effects during intermediate traffic 
conditions. They recommended a uniform speed limit of 70 mph on rural roads to enhance safety 
and mobility. However, they cautioned against raising speed limits on urban interstates due to 
safety considerations. In a separate investigation by Hu and Cicchino (2020), the effects of 
reducing the speed limit from 30 mph to 25 mph in Boston were analyzed, revealing a significant 
decrease in average speeds and a reduced likelihood of drivers exceeding the speed limit. These 
findings indicate that the reduction in speed contributed to improved safety by reducing instances 
of speeding. Silvano and Bang (2016) examined the consequences of changes in PSL on urban 
roads and identified a modest but statistically significant decrease in average free-flow speeds 
and speed variability with lower PSL. This decrease in speed and speed variance potentially 
contributed to a reduction in severe injury crashes. Conversely, raising the PSL led to higher 
average free-flow speeds without impacting speed variability. Social media data was utilized by 
Salazar-Miranda et al. (2022) to assess how Paris' slow zones affected the city's street life. 
According to the study, slow zones, which were put in place to make streets more pedestrian-
friendly, increased human activity by 44% when compared to nearby regions without them, as 
shown by data from Twitter. More users and more tweets per user were responsible for this rise, 
proving that slow zones attracted more users and promoted higher social media involvement 
there. Another study by Alhomaidat et al. (2020) examined the consequences of increasing speed 
limits on freeways on the neighboring urban arterial roads. The results revealed a significant 
13.9% rise in the frequency of crashes on adjacent arterials, even with a slight increase in 
freeway speed limits. This phenomenon, known as speed spillover, indicates that drivers are less 
likely to adhere to speed limits on arterial roads when the speed limits on freeways are raised. 
The impact of freeway speed on driver speeding behavior diminishes as the distance from the 
freeway increases. In a subsequent study, Alhomaidat et al. (2021) compared the speeds of 
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vehicles exiting the freeway with those already on the adjoining arterial road. They observed 
differences in average speeds between the two groups, with higher speeds observed on arterials 
adjacent to freeways with higher speed limits. For instance, on arterials near a 70 mph freeway, 
passenger cars exhibited higher mean speeds and 85th percentile speeds compared to arterials 
near a 55 mph freeway. 

2.5.3 Design Speed 

The concept of design speed pertains to the maximum safe speed at which vehicles can travel on 
a highway under favorable conditions, low traffic density, and in accordance with the highway's 
design characteristics (Berry and Belmont, 1951). The definition of design speed has undergone 
changes over time. Previous definitions focused on the speed adopted by the fastest group of 
drivers, whereas later definitions emphasized the safe speed that takes into account the highway's 
design features (AASHTO, 2004). Design speed serves as a basis for determining various 
geometric design elements of the roadway, including horizontal and vertical curvature, sight 
lines, super elevation, stopping sight distance, lane widths, and shoulder widths. However, 
relying solely on design speed does not guarantee alignment with posted speed limits and actual 
operating speeds, as designers often incorporate conservative design controls that surpass the 
minimum values specified in design guidelines. Different highway agencies may adopt different 
approaches for incorporating design speed into their design criteria, with some using it as the 
sole factor while others consider multiple geometric factors. 

2.5.4 Operating Speed 

Operating Speed Measures 

Data regarding vehicle speeds and travel times are crucial for traffic engineers involved in street 
and highway design and operation. Operating speed refers to the speed chosen by drivers under 
prevailing conditions and is typically distributed normally. This parameter can be characterized 
by the mean speed and standard deviation (Donnell et al., 2018, 2009). Various measures of 
operating speed are significant in this context: 

 Spot speed: This refers to the instantaneous speed of a vehicle passing at a specific location. 
 Time-mean speed: Also known as mean speed or average speed, it represents the arithmetic 

average of all vehicle speeds over a specified period. It is associated with a specific point in 
time. 

 Space mean speed: This is the average speed of all vehicles measured at a particular instant 
while traveling a given length of the roadway. It is a harmonic mean and accounts for spatial 
measures rather than temporal measures. 

 Standard deviation: This statistical measure determines the dispersion of the data. The 
standard deviation of speed measures is the square root of the variance, which is the average 
of the squared differences from the mean speed. 
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 Percentile speeds: These are speeds at or equal to which a certain percentage of vehicle 
groups are traveling, such as the 15th percentile (representing slow-speed group), 50th 
percentile (mid-range speed group), and 85th percentile (high-speed group). The 85th 
percentile speed has been historically linked to speed limit setting, assuming that most 
drivers choose a rational speed to minimize risk. 

 Free-flow speed: This refers to the speed when there are no constraints on the driver due to 
other vehicles or geometric and traffic control devices on the road, such as curves or traffic 
signals. 

 Ten-mph pace speed: This speed range encompasses the largest percentage of vehicles in a 
distribution of spot speeds at a specific location. 

 Speed dispersion: Research on speed dispersion characteristics is limited compared to the 
well-established measures of operating speed, such as percentile speed and space mean 
speed. Vehicle speed dispersion has been a significant focus in speed research, with the 
concept initially introduced by Solomon (1964). Solomon's research revealed a U-shaped 
curve, indicating that crash rates increased as speeds deviated from the average speed. 
Notably, the slope of the curve was steeper for slower speeds (see Figure 4). Vehicle speed 
dispersion is typically defined as the variation in vehicle speeds. Different researchers have 
employed various indicators to quantify speed dispersion, considering the specific objectives, 
methodologies, and data limitations of their studies. For instance, Wang et al. (2018) 
proposed two measures: the standard deviation of individual speeds and the average speed 
difference between neighboring vehicles. 

Figure 4. Solomon’s Curve  (Solomon, 1964). 

Additionally, it is essential to 
evaluate the degree to which 
motor vehicles surpass the speed 
limits that are posted or 
specified by law. Traditional 
crash databases commonly use 
phrases such as ‘speeding’ or 
‘exceeding the designated speed 
limit’ to categorize these 
incidents. However, it is 
important to offer additional 
clarification regarding these 
terms. The interpretation of 
speeding violations should 
consider the context, as the 
behavior of a motorcycle 
speeding in a residential 
neighborhood varies 
significantly from that of a large 
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truck speeding on a freeway. It is important to recognize that each state has a fundamental speed 
law in place, which requires drivers to operate their vehicles safely by adhering to appropriate 
speed thresholds. 

Studies on Operating Speed and Safety 

The crash-speed relationship has been extensively studied, revealing varying viewpoints among 
researchers. Hauer (2009) conceptualized this relationship as a ‘causal two-link chain’ 
comprising human actions, speed evolution, and safety outcomes. Human activities, including 
the establishment and enforcement of speed limits, play a crucial role in shaping the evolution of 
vehicle speeds and drivers' speed choices. These factors, in turn, have a direct impact on roadway 
safety. The safety implications resulting from the speed evolution are subsequently considered in 
future decision-making processes related to human activities. The probability of crashes 
occurring is influenced by “pre-event” probabilities, which determine the number and frequency 
of crashes, while ‘at the time of event’ probabilities determine the severity of crashes (Haddon 
Jr, 1972). Hence, a driver's speed choice not only influences the potential severity of a crash 
based on the selected operating speed but also affects the likelihood of a crash occurring in the 
first place. 

To gain a deeper understanding of the connection between speed preference and its impact on 
safety, researchers have utilized various measurements of operational speed. These 
measurements encompass individual velocities, average speeds along road segments, and 
variations in speed (Aarts and Schagen, 2006). Prior investigations (Fildes et al., 1991; Haglund 
and Åberg, 2000; Maycock et al., 1998) have employed data on vehicle speeds and conducted 
surveys or questionnaires with drivers to establish a clear relationship between higher individual 
driving speeds and an increased probability of collisions. Earlier studies have revealed a notable 
correlation between average operational speed and collision rates, particularly with regard to the 
severity of the crashes (Elvik et al., 2004, 2004; Hauer, 1971). Abdel-Aty and Radwan (2000) 
examined the extent of speeding in relation to the posted speed limits and found that male and 
young drivers exhibited a higher tendency to exceed the speed limits. In a study conducted in the 
United Kingdom, Taylor et al. (2000) uncovered a negative association between the average 
speed metric and the frequency of collisions overall. Furthermore, when analyzing different 
homogeneous groups based on road and traffic conditions, the results consistently demonstrated 
an increase in collision frequency with higher traffic speeds. 

A study conducted by Pei et al. (2012) aimed to explore the correlation between speed and the 
likelihood of crashes. The researchers identified various factors that contribute to this 
connection, such as the design of the road, prevailing weather conditions, and the distribution of 
time. The findings of the study revealed a negative relationship between speed and crash risk, 
indicating that as speed increases, the probability of crashes decreases. Similarly, R. Yu et al., 
(2013) carried out a study focusing on crash data obtained from I-70 in Colorado over a one-year 
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duration. They utilized a Bayesian inference model that incorporated real-time variables like 
weather conditions, traffic, and road geometry. The results of the study demonstrated a 
significant association between weather conditions and the occurrence of crashes. Consistent 
with prior research, this study also found that crash segments with lower speeds and higher 
occupancy in the upstream segment 5-10 minutes before the crash exhibited an elevated risk of 
crash occurrence. It is important to note that the relationship between speed and crash risk may 
be influenced by factors such as traffic congestion, as well as other variables that can confound 
the analysis, such as severe weather conditions. Gargoum and El-Basyouny (2016) uncovered an 
inverse relationship between variations in speed and the frequency of crashes, indicating that 
lower speeds were associated with higher crash rates. Similarly, Imprialou et al. (2016) observed 
a negative correlation between the speed at which vehicles were operated and the frequency of 
crashes, regardless of their severity. Yu et al. (2018) scrutinized data from urban expressways 
and discovered that higher operating speeds during congested traffic conditions were linked to a 
decreased likelihood of crashes. Wang et al. (2018) examined segments of urban arterial roads 
and ascertained that a 1% rise in the average speed corresponded to a 0.70% increase in the total 
number of crashes. On rural roads, Dutta and Fontaine (2019) determined that lower average 
speeds were associated with higher crash frequencies, while an increase in the variability of 
speeds led to a higher occurrence of crashes. These investigations underscore the significance of 
managing speed to mitigate the risks of crashes on roads in both urban and rural settings. 

In a study conducted by Xu et al. (2019), a semi-automatic filtering technique was utilized to 
differentiate GPS data points collected on elevated expressways from those obtained on surface 
roadways. The examination of speed variations involved the implementation of the cross-section 
speed standard deviation (MCSSD) and the standard deviation of the cross-sectional speed mean 
(SDCSM). Both hierarchical and non-hierarchical Poisson-gamma models indicated a positive 
correlation between SDCSM, MCSSD, and the occurrence of crashes. Hutton et al. (2020) 
utilized data from the Strategic Highway Research Program 2 (SHRP 2) Naturalistic Driving 
Study to investigate individual driving speeds and their connection to crash likelihood, 
considering various roadway parameters. Higher speed variations between trips were associated 
with an increased incidence of collisions. However, few other speed metrics demonstrated a 
significant relationship with collision frequency. In a path analysis conducted by Park et al. 
(2021) on city roadways, it was discovered that certain factors such as signalized junctions, 
traffic volume, and segment length had a favorable impact on collision rates. Conversely, 
specific roadway features like medians and curbs exhibited direct detrimental effects. The study 
also provided evidence supporting a causal relationship between crash frequency and speed 
variability. 

In another study by Das et al. (2022) on roads in Dallas during the COVID-19 pandemic, several 
changes were observed. These included a decrease in traffic volume, an increase in average 
operating speed, an uptick in the frequency of fatal and serious collisions per mile traveled, and 
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an overall reduction in traffic volume. The study found that higher operating speeds in 2020 were 
associated with an increase in collisions, particularly on roads with speed limits set at 60, 65, and 
70 mph, as depicted in Figure 5. However, when considering all speed limits and a three-year 
period, the relationship between average operating speed and crash frequency was found to be 
minor and negative. This suggests that driving at higher speeds on well-designed highways may 
not necessarily lead to more crashes. In a subsequent study by Das et al. (2023), a short-duration 
crash modeling technique was employed to examine the impact of operating speed on highway 
collisions during the COVID-19 period. The findings revealed variations in the effects of speed 
regulations on crash rates across different years and levels of collision severity. The influence of 
speed measurements was more pronounced in the 2020 models, indicating that the impact of 
speed measures depends on the severity of the crashes being studied. Additionally, the 
magnitude of the speed effects varied for different levels of collision severity. 

Figure 5. Cumulative Speed Plots by Posted Speed Limit (S. Das et al., 2022). 

2.5.5 Speeding 

Various terms have been used by researchers to describe speeding incidents. One such term is 
‘Free-Flow Episode,’ which describes a scenario where a driver travels at or above a speed 
threshold set at 5 mph below the posted speed limit. For this to be included, the speed must be 
maintained for a minimum of 30 seconds. Another term is ‘Speeding Episode,’ which involves 
continuous driving at or above a speed threshold set at 10 mph over the posted speed limit, as 
shown in Figure 6. To qualify as an episode, this speed threshold must be sustained for at least 6 
seconds (Richard et al., 2013b, 2016). According to another study by the same researcher, the 
definition of speeding varies depending on several factors, such as ad hoc or analytical criteria, 
risk and kinematics, psychological and subjective speeds, and behavior-based approaches 
(Richard et al., 2013a). Another study defines speeding as exceeding the posted speed limits or 
driving at speeds considered too high for the road or weather conditions at a specific location or 
time (Gargoum and El-Basyouny, 2016).  
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Figure 6. Definition of Speeding 
(Richard et al., 2016). 

The detrimental impact of speeding on road safety should not be underestimated, given its 
profound influence on both the probability and consequences of vehicular collisions. Recent data 
released by the NHTSA in 2020 indicates that speeding was 
responsible for a distressing loss of 11,258 lives (NHTSA, 
2020). NHTSA employs a comprehensive definition of a 
speeding-related crash, incorporating situations where any 
involved driver faces charges related to speeding or where 
law enforcement officials ascertain that factors such as 
racing, driving at excessive speeds given prevailing 
conditions, or surpassing the posted speed limit contributed 
to the incident. While there has been a modest decline in 
speeding-related crashes in recent years, it remains a 
predominant concern in the realm of traffic safety, as 
illustrated in Figure 7. Additionally, within the domain of 
urban and suburban arterials, where a significant number of 
pedestrian and bicycle fatalities occur, speeding has 
emerged as a pivotal causal factor in such regrettable events 
(Cai et al., 2021; Goel, 2021). 

Figure 7. Speeding Related Fatalities (NHTSA, 2020). 

Studies on Speeding and Safety 

A recent publication by the FHWA emphasized the significance of advancing speed management 
as a means to decrease injuries and fatalities associated with speeding on the nation's roadways 
(Xu et al., 2022). The COVID-19 pandemic showed an increase in excessive speeding 
nationwide, 
particularly on urban 
interstates, with 
drivers exceeding 
100 mph. Despite a 
13.2% reduction in 
VMT in 2020, the 
fatality rate rose to 
1.37 fatalities per 
100 million VMT, 
projecting a 7.2% 
rise in total fatalities 
and an 11% rise in 
speeding-related 
fatalities. Factors 
such as less congestion and high-risk drivers contributed to this trend. Beliefs, attitudes, and 
societal acceptance of speeding significantly influence drivers' behavior. This study underscores 
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the importance of speed management in addressing safety concerns related to speeding. Speed 
management involves establishing appropriate speed limits, reducing speeding, and mitigating 
speeding-related crashes. The USDOT Intermodal Speed Management Team, comprising the 
NHTSA, FHWA, and the Federal Motor Carrier Safety Administration (FMCSA), identified the 
following key approaches for implementing the USDOT speed management program (Xu et al., 
2022).  

 Establishing and executing comprehensive speed management programs and strategies at the 
jurisdictional level. 

 Developing strategies for setting speed limits that prioritize the safety and needs of all road 
users, taking into account contextual factors and not solely relying on drivers' observed 
speeds. 

 Implementing evidence-based safety measures to promote safe speeds and protect the well-
being of all individuals using the road network. 

 Enhancing the reporting of crash data by incorporating specific information on speeding-
related incidents, ensuring consistency and enabling the identification of contributing factors. 

 Implementing visible and transparent enforcement measures, alongside educational 
initiatives and awareness campaigns, rather than solely focusing on enforcement actions. 

 Incorporating considerations of equity into the decision-making process for speed 
management. 

In a study conducted by Wang and Cicchino (2023) on excessive speed during the COVID-19 
pandemic, it was observed that a significant proportion of vehicles were traveling at speeds 5 to 
10 mph above the posted limit. The research focused on urban expressways and major roads, 
with the highest occurrences of speeding observed during weekday rush hours and weekend 
afternoons. After accounting for factors such as road type, time of day, day of the week, and 
traffic volume, the analysis revealed a 22% increase in the likelihood of exceeding the speed 
limit by 5 mph in 2020 compared to 2019, along with a 51% increase in the risk of surpassing the 
speed limit by 10 mph. These findings indicate a concerning surge in speeding incidents during 
the COVID-19 pandemic. Stiles et al. (2023) conducted a study to examine the influence of 
COVID-19 stay-at-home measures on alterations in collision characteristics, timing, and severity 
on urban streets, considering the impact of reduced traffic volumes and increased velocities. The 
results revealed a robust correlation between diminished traffic levels and heightened crash 
severity. The findings indicated that higher speeds were associated with more severe collisions, 
and there was a reduction in crash occurrences during the morning peak hours. Furthermore, 
there was a significant decrease in the frequency of collisions, which are typically more 
prevalent in congested areas. Additionally, the data demonstrated an increase in the proportion of 
collisions attributed to drunk driving and speeding, underscoring the significance of these factors 
in comprehending the shifts in crash patterns throughout the course of the pandemic. 
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In the research conducted by Yadav and Velaga (2020), the focus was placed on investigating the 
influence of alcohol consumption on speeding behavior, while also analyzing the probabilities of 
crashes occurring. The study employed driving simulator experiments, wherein participants were 
subjected to various Blood Alcohol Concentration (BAC) levels, namely 0%, 0.03%, 0.05%, and 
0.08%. The findings of the study indicated a noteworthy escalation in driving speed as the BAC 
levels increased. Moreover, the investigation revealed that crash probabilities were significantly 
greater in urban settings compared to rural environments across all BAC levels. 

Using survey data collected between the years 2000 and 2018, the study by Sultana (2018) 
examined the trend in driver speed behavior on Perth's metropolitan road network in Australia. 
The results showed that, in 2000, 53% of cars in the metropolitan network adhered to or went 
below the prescribed speed limits. The compliance rate significantly increased on average 
between 2003 and 2015, reaching 64.1% in 2015 compared to the compliance rate seen in 2000. 
Additionally, the survey that was done in 2018 showed a notable jump in compliance rates, with 
a climb of 5.3% to a record high of 69.5%, as depicted in Figure 8. The findings indicate the 
need for speed enforcement strategies to account for variations in driver speed behaviors related 
to factors such as road type, speed limit, and temporal variables including the day of the week 
and time of day. 

Figure 8. Speeding Trend in Perth's Metropolitan Road Network in Australia  (Sultana, 
2018). 
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Richard et al. (2013b) conducted a study on the speeding behavior of drivers in urban and rural 
settings over a three to four-week period of naturalistic driving. The research aimed to analyze 
speeding causes, factors, 
prediction, classification, and 
proposed interventions for 
reducing speeding incidents. 
The study identified four 
distinct categories of 
speeding behaviors exhibited 
by individual drivers, as 
illustrated in Figure 9.

Figure 9. Types of Speeding (Richard et al., 2013b). 

 These 
included infrequent or 
unintentional instances of 
exceeding speed limits, trip-
specific situational speeding, 
casual speeding characterized 
by frequent but minor speed 
violations per trip, and habitual or chronic speeding. Regression models, employing both logistic 
regressions to predict the likelihood of speeding and linear regressions to determine the extent of 
speeding, were developed. The examination identified noteworthy indicators of excessive speed, 
encompassing factors 
associated with the driver, such 
as sex and age, contextual 
factors like the hour of the day 
and day of the week, and 
behavioral factors such as 
attitudes towards irresponsible 
driving. Furthermore, an 
extension of the research 
conducted in this study 
identified various types of 
speeding behaviors and driver 
categories, as illustrated in 
Figure 10. Figure 10. Average frequency of different types of Speeding 

Episodes by Driver Types sites (Richard et al., 2016). 
 The research 

produced several significant 
discoveries. Firstly, the 
presence of more hazardous elements in instances of speeding confirmed the widely held belief 
that different forms of speeding are linked to varying levels of risk. Secondly, observations from 
personal accounts indicated that location-specific factors played a role in the occurrence or 
absence of speeding events. Thirdly, indirect measures suggested that certain aspects of the 
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driving environment had an impact on speeding behavior. Lastly, similarities in types of 
speeding were observed in both rural and urban areas where data was collected (Richard et al., 
2016). 

A report issued by the World 
Health Organization (WHO) 
highlighted several key factors 
that contribute to drivers' 
speeding behavior and 
emphasized the importance of 
speed management in 
enhancing roadway safety 
(WHO, 2017). Apart from the 
designated speed limits, drivers' 
speeds are influenced by 
various factors, including the 
driver's age and gender. Male 
drivers and young drivers tend 
to exhibit a higher likelihood of 
speeding, which consequently leads to an overrepresentation of these groups in speed-related 
crashes. Additionally, the driver's blood alcohol concentration, as well as road layout, surface 
quality, and the vehicle's power and maximum speed, can also impact speed-related behaviors 
(see Figure 11). 

Figure 11. Factors Affecting Speed Choice (WHO, 2017). 

In a study conducted by Cai et al. (2021), the effects of speed management strategies on the 
proportions of speeding incidents were examined in urban and suburban arterials. Probe speed 
data was utilized to calculate speeding proportions using a Beta regression model and grouped 
random parameter modeling. The results demonstrated that the grouped random parameter model 
outperformed alternative approaches, allowing for a better understanding of the diverse effects of 
road features and other contributing factors on speeding across different road types. Findings 
indicated that road segments with more intersections tended to exhibit lower speeds, resulting in 
adjusted proportions of different speed ranges. Moreover, the presence of asphalt pavement was 
associated with increased speeding proportions across all arterial types, while strategies such as 
lane narrowing and short blocks showed potential for decreasing the proportion of speeding 
incidents on suburban commercial roads. 

A study conducted by Tankasem et al. (2022) investigated the impact of automatic speed control 
(ASC) on speeding behavior and intentions on urban arterial highways with mixed traffic. The 
research findings revealed cognitive shifts resulting from ASC in relation to speeding behavior. 
Specifically, the perception of speeding decreased, with reduced acceptance and increased 
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resistance to regulation. Drivers reported a decrease in both actual speeding behavior and the 
inclination to speed. Furthermore, ASC altered the relative significance of various factors, 
amplifying the influence of close friends and family members on drivers' propensity to speed, 
while emphasizing the role of intention and perceived control in shaping speeding behavior. 

2.5.6 Safe Speeds 

The Safe System Approach (SSA) has been widely adopted by the U.S. Department of 
Transportation (USDOT) as the primary framework for addressing road safety concerns. This 
comprehensive strategy is highly 
regarded within the transportation 
community as an effective approach to 
mitigate risks in our complex and 
extensive transportation network. The 
SSA aims to prevent crashes and 
minimize the harm caused when crashes 
do occur. It takes a holistic view, 
recognizing both human errors and 
vulnerabilities and incorporates 
multiple measures to protect all 
individuals. In line with the SSA, the 
DOT's National Roadway Safety 
Strategy and ongoing safety initiatives 
are committed to achieving a future 
where there are no fatalities or severe 
injuries on the roads. In accordance 
with the core principles of the SSA, the 
FHWA has identified five pillars: safe 
road users, safe vehicles, safe speeds, safe roads, and post-crash care (see Figure 12).

Figure 12. Principles and Pillars of SSA. 

 Within the 
SSA, safe speeds play a critical role in reducing the risk of crashes and the severity of injuries. 
Recognizing the importance of implementing safe speeds across the entire road network, the 
SSA emphasizes a combination of measures. These include setting appropriate speed limits, 
designing roads that encourage safe speeds, and utilizing technologies like speed cameras to 
regulate vehicle velocities. Establishing suitable speed limits is a vital aspect of speed 
management and should take into account factors such as road design, traffic volume, and the 
presence of pedestrians and cyclists in the road environment. By incorporating these measures, 
the SSA aims to enhance roadway safety and create environments that prioritize the well-being 
of all road users (Finkel et al., 2020; USDOT, 2022a).  
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Energy Transfer 

Traveling at high speeds increases the likelihood of crashes and exacerbates the resulting 
injuries. This is primarily due to the limited time available for drivers to respond to unexpected 
events and the greater kinetic energy generated by faster-moving vehicles, which intensifies the 
impact of collisions. Kinetic energy refers to the energy that is related to the motion of an object 
and is dependent on both its mass and velocity, as demonstrated by Equation (35). The 
mathematical relationship between kinetic energy and velocity is quadratic, meaning that any 
increase in velocity results in a disproportionately greater increase in kinetic energy. For 
example, doubling the velocity of an object will result in a four-fold increase in its kinetic 
energy, while tripling the velocity will lead to a nine-fold increase in kinetic energy. As such, 
even minor changes in velocity can have a significant impact on the energy generated during a 
collision. 

𝐸𝐸𝑘𝑘 =
1
2
𝑚𝑚𝑣𝑣2 (35) 

Where, 
𝐸𝐸𝑘𝑘 = Kinetic energy (Joules) 
𝑚𝑚 = Mass (kg) 
𝑣𝑣 = Velocity (m/s) 

Effect of Speed on Crash and Injury Severity 

Numerous studies have confirmed the significant role of speed in crash likelihood. Elvik (2013) 
conducted research that revealed a decrease in the likelihood of casualty crashes when mean 
traffic speeds were reduced in response to speed limit reductions. Similarly, Kloeden et al. 
(2002) established a relationship between driver speed exceeding the speed limit and an 
increased likelihood of involvement in a casualty crash. These findings underscore the fact that 
even minor reductions in speed can yield substantial decreases in road crashes. Furthermore, 
extensive research has explored the relationship between speed and crash severity. Elvik (2013) 
demonstrated that fatal crashes exhibited a more substantial decline compared to all injury 
crashes when mean speed was reduced. In other words, a reduction in mean speed corresponded 
to a decrease in crash severity. A model presented by Wramborg (2005) provides insights into 
how speed influences the severity of specific types of crashes. This study introduced three 
relationships between impact speed and the likelihood of fatalities, as illustrated in Figure 13. 
These relationships assume that the involved vehicles have equal mass and velocity. According 
to these probability curves, pedestrian/cyclist incidents at speeds of 19 mph, side impact 
collisions at speeds of 31 mph, and head-on collisions at speeds of 44 mph have a 10% 
probability of resulting in a fatality (Hall et al., 2021; Jurewicz et al., 2015) (see Figure 13). 
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Figure 13. Relationships Between a Motorised Vehicle 
Collision Speed and Probability of a Fatality (Jurewicz et 

al., 2015; Wramborg, 2005). 

Tingvall and Haworth, (1999) examined the speed thresholds in relation to the type of 
infrastructure and traffic. Their findings suggest that if a pedestrian is struck by a well-designed 
car traveling at speeds exceeding approximately 30 km/h (18 mph), the human tolerance 
threshold is likely to be surpassed. In urban areas where there is a desire for higher speeds, one 
effective approach is to 
separate pedestrian crossings 
from the flow of traffic. 
Alternatively, pedestrian 
crossings, zones, or vehicles 
must be carefully designed to 
ensure that speeds are limited 
to a maximum of 30 km/h (18 
mph). This principle can also 
be extended to infrastructures 
where only car-to-car 
collisions are possible. While 
it is generally expected that 
well-designed cars will 
possess a maximum safety 
threshold of 70 km/h (43 
mph) for frontal impacts and 
50 km/h (31 mph) for side impacts, it is possible to tolerate higher speeds if the interface 
between the vehicle and the infrastructure is thoughtfully engineered. In fact, speeds exceeding 
100 km/h (62 mph) may be considered permissible under certain circumstances. 
Table 21 outlines the potential long-term maximum travel speeds that can be associated with 
infrastructure, assuming the adoption of best practices in vehicle design and the utilization of 
100% restraint systems. 

Table 21. Possible Long-Term Maximum Travel Speeds (Tingvall and Haworth, 1999). 
Type of infrastructure and traffic Possible travel speed 

kmh mph 
Areas where pedestrians and vehicles may come into 
conflict 30 18 

Intersections with potential side impacts between 
vehicles 50 31 

Roads where vehicles may collide head-on 70 43 
Roadways where there is no chance of a side or frontal 
collision, only collision with the infrastructure 100+ 62+ 

Power models illustrating the connections between average speed and the occurrence of injury or 
fatal crashes, as well as the number of injuries or fatalities, were presented by Nilsson (2004). 
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Figure 14 visually represents these relationships, clearly showing that as speed increases, there is 
a corresponding rise in the percentage change in casualties. Furthermore, Elvik et al. (2004) 
conducted an extensive meta-analysis of studies examining the correlation between travel speeds 
and casualty rates. This analysis encompassed 98 distinct studies, which collectively offered 460 
estimates regarding the association between changes in mean traffic speed on a road and changes 
in the fatality rate. The included studies were conducted between 1966 and 2004, with around 
half of the estimates derived from studies conducted after 1990. Both rural and urban roads were 
considered, covering a speed range of approximately 25 km/h (15 mph) to 120 km/h (75 mph).  
Nilsson (2004) presented power models that illustrate the relationships between average speed 
and the incidence of injury or fatal crashes, as well as the number of injuries or fatalities. These 
relationships are visually represented in Figure 14, where it is evident that as speed increases, 
there is a corresponding increase in the percentage change in casualties.

Figure 14. Relationship Speed Changes and Changes in 
Casualty Rates (Elvik et al., 2004; Nilsson, 2004). 

 In addition to Nilsson's 
models, Elvik et al. (2004) 
conducted a comprehensive 
meta-analysis of research 
investigating the association 
between travel speeds and 
casualty rates. This analysis 
encompassed 98 distinct 
studies, which collectively 
provided 460 estimates 
regarding the relationship 
between changes in mean 
traffic speed on a road and 
changes in the casualty rate. 
The data included studies 
conducted between 1966 and 
2004, with approximately half 
of the estimates derived from studies conducted after 1990. The study encompassed both rural 
and urban roads and considered a speed range spanning from approximately 25 km/h (15 mph) to 
about 120 km/h (75 mph). Data from 20 countries were included in the analysis. The findings of 
this meta-analysis are summarized in Table 22, providing a comprehensive overview of the 
results. 

Table 22. Relationship Speed Changes and Changes in Casualty Rates (Elvik et al., 2004; 
Hall et al., 2021). 

Change in: 
Change in Mean Speed 

Speed reduction Speed increase 
-10% -5% -1% +1% +5% +10% 

Deaths -38% -21% -4% +5% +25% +54% 
Serious Injuries -27% -14% -3% +3% +16% +33% 
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Other Injuries -15% -7% -1% +2% +8% +15% 
Property Damage Crashes -10% -5% -1% +1% +5% +10% 

In a study conducted by Tefft (2013), the risk of severe injury or fatality for pedestrians involved 
in collisions with forward-moving vehicles was estimated. The analysis utilized crash data from 
the US and focused on pedestrian impacts by cars, light trucks, vans, and sport utility vehicles. 
The findings revealed that the average risk of a pedestrian sustaining an injury classified as 
Abbreviated Injury Scale 4 or greater severity increased with impact speed. At an impact speed 
of 17.1 mph, the average risk reached 10%. This risk escalated to 25% at 24.9 mph, 50% at 33.0 
mph, 75% at 40.8 mph, and 90% at 48.1 mph, as demonstrated in Figure 15 and Figure 16. 
Similarly, the average risk of death showed a similar trend. At an impact speed of 24.1 mph, the 
risk of death reached 10%, followed by 25% at 32.5 mph, 50% at 40.6 mph, 75% at 48.0 mph, 
and 90% at 54.6 mph. 

Figure 15. Risk of Severe Injury (Left) and Death (Right) of Pedestrians in Relation to 
Impact Speed (Tefft, 2013). 

Figure 16. Impact Speed and a Pedestrian’s Risk of Death (USDOT, 2022b). 
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Studies on Safe Speed 

In the US, cities and states have been increasingly adopting the SSA to tackle transportation 
inequalities, safeguard vulnerable road users, and establish safer speed limits. In a recent study, 
Ngo et al. (2022) presented examples of how two states, Washington and California, and two 
cities, Philadelphia and Portland, Oregon, have implemented this approach to achieve the 
ambitious target of zero fatalities. The study revealed that these states and cities have taken 
substantial steps to institutionalize the SSA and have utilized it as a cornerstone for their policies 
that shape their operations at both program and project levels. By adopting this approach, they 
aim to transform the transportation system into a more equitable, efficient, and safer one. The 
study highlights the significance of implementing the SSA to achieve road safety goals and the 
importance of institutionalizing it into policies for effective and long-lasting results. 

Steinmetz et al. (2018) conducted a study to assess the effectiveness of the SSA in enhancing 
road safety in Mildura, Australia. The study included two speed management scenarios, 
Treatment scenario 1 and Treatment scenario 2, both of which included two broad speed limit 
regions. Additional changes were made to certain roads in Treatment scenario 2 to further 
supplement the speed management plan. Australian Road Assessment Program (AusRAP) star 
rating assessments and Australian National Risk Assessment Model (ANRAM) fatal and serious 
injury crash estimates were conducted to compare the treatment scenarios with the baseline 
scenario. The study found that Treatment scenario 1 reduced the proportion of the network with 
1 or 2-star ratings and increased the proportion with 3+ stars by 32%. It also reduced Fatal and 
Serious Injury crashes by 45%. Treatment scenario 2 had a similar impact with the added road 
modifications. These findings highlight the effectiveness of the SSA and demonstrate the 
significance of implementing speed management plans to enhance road safety. 

In response to the persistent occurrence of serious injuries resulting from crashes at intersections, 
Candappa et al. (2013) conducted an in-depth investigation of these crashes in Victoria. The 
study identified a key principle that emphasized the need to limit side impact crash speeds to 
under 31 mph, as exceeding this speed threshold exceeds the biomechanical tolerance of the 
human body. Additionally, minimizing angles and conflict points was recognized as an essential 
principle for improving intersection safety. The investigation produced several existing and new 
designs that incorporate these principles, which have the potential to enhance intersection safety. 
Another study by the same authors implemented an innovative trial at a signalized intersection in 
Victoria, Australia with the aim of aligning approach speeds to SS speeds. The trial included a 
combination of signals, reduced speed limits, and a Safety Platform. Speeds were measured 
using pneumatic tubes, and video footage was taken over a two-week period. The study found 
that the reduced speeds resulted in crash kinetic energy (KE) levels that were more aligned with 
SS principles, with KE levels estimated to be just above the recommended level of 96.5 kJ, 
compared to Control 1 and 2 where KE levels were closer to double the tolerable levels at 189 
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kJ. The trial suggests that aligning approach speeds with SS principles can lead to safer outcomes 
for road users (Candappa et al., 2016).  

The implementation of the Safe System (SS) policy requires that speed limits for the road and 
traffic system be designed based on human biomechanical and competency parameters, taking 
crash injury severity factors into consideration. While most Australian States have yet to fully 
apply SSA principles to speed zoning, the NSW Speed Zoning Guidelines aim to guide the 
setting of speed limits that balance mobility, road safety, and community concerns. However, 
vocal opposition to lowering speed limits often hinders governments from implementing safer 
limits. In this context, Mooren et al. (2014) analyzed the NSW practices and identifies specific 
departures from the SSA in setting speed limits, as well as ways to shift community attitudes 
towards safer speeds. The study suggests that setting speed limits based on the 85th percentile of 
free travel speeds is irresponsible and dangerous. 

Jurewicz and Turner (2011) conducted a study with the aim of exploring the emerging idea of 
setting speed limits based on severe crash risks, which result in fatal and serious injury 
outcomes. The research was based on Austroads studies and proposed several alternative 
approaches to determine speed limits. These approaches included evaluating crash history, 
assessing inherent crash risk due to the road environment, or a combination of both. 
Additionally, the intended road function was considered an indicator of the mobility level 
expected by the public. To apply a risk-based approach to speed limits, the study explored the 
use of established network-level risk assessment tools, such as AusRAP. The authors stressed the 
significance of considering not only the road environment but also the mobility needs of the 
public in setting speed limits. The study provided valuable insights into alternative approaches to 
speed limit setting, which could potentially reduce the risk of severe crashes on roads. 

To achieve a SS, it is crucial to align the speed limit with the infrastructure, or vice versa. The 
idea of reducing speed limits in areas where the road environment changes is not novel. For 
several decades, Victoria has been lowering speed limits in areas with rough surfaces, road 
events, or roadwork to mitigate safety risks. The study by Beer (2011) discussed the challenges 
associated with implementing a speed limit policy that would genuinely achieve a SS. The study 
made several key findings, including the roads farthest from the SS being 62 mph and 68 mph 
roads with possible collisions with fixed poles or trees. The study also suggested that investing in 
wire-rope safety barriers to prevent run-off-road crashes could improve the road environment 
towards a SS without changing the speed limit. From a SS perspective, these areas should have 
speed limits below 25 mph. If infrastructure is not readily available to mitigate the risk to 
vulnerable road users, the study suggests lowering speed limits in these areas to 25 mph, 
assuming a reasonable level of exposure. 
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Harm minimization is a promising strategy for setting speed limits and achieving safer 
transportation systems. Recognizing this potential, Austroads commissioned a study with the aim 
of striking a balance between harm minimization and mobility when establishing speed limits. In 
pursuit of this objective, Fildes et al. (2006) reported on developments to date as well as future 
initiatives in the field. Building on these efforts, Jurewicz and Hall (2009) presented an approach 
for setting speed limits based on harm minimization. The approach was developed with the aid of 
a recent Austroads project conducted by the Australian Road Research Board (ARRB). The 
project aimed to review the principles for setting speed limits in the context of the SS, which 
extended beyond the current guidelines. The project extensively reviewed literature and analyzed 
data to explore the relationship between road infrastructure, driver speeds, speed limits, and 
crash outcomes. A panel of speed management policy stakeholders from Austroads assessed the 
role of road infrastructure features in speed limit setting, resulting in recommendations for 
appropriate speed limit setting policy and principles that align with the SS framework. The study 
also identified possible intermediate speed management policy options to assist the transition 
toward the SS. Jurewicz (2010) introduced a new set of principles for setting speed limits based 
on harm minimization, which is a fundamental aspect of the SSA. The SS aims to eliminate 
serious injuries and fatalities in the road transportation system by focusing on safer roads and 
reduced speeds. The ARRB and road jurisdiction stakeholders have developed revised speed 
limit-setting guidelines for Austroads. These guidelines provide a framework for assessing the 
readiness of a route to align with the SS principles and determining appropriate speed limits and 
necessary road improvements to ensure passenger safety. It is acknowledged that implementing 
all SS road characteristics may not be economically feasible in the short and medium term, and 
not all speed limit changes may be instantly welcomed by the public. Therefore, the study 
proposes various harm-reduction strategies as an initial step towards implementing the SS. 

Road safety remains a significant issue worldwide, and effective speed management plays a 
crucial role in achieving safer roads. The importance of implementing the SSA to enhance road 
safety by aligning speeds with human biomechanical and competency parameters. This approach 
serves as a foundation for establishing consistent and safe speed limits. The findings suggest that 
the implementation of speed management plans can lead to a significant reduction in low-rated 
roads and fatal and severe injury crashes. However, opposition from communities may pose 
challenges to implementing safer speed limits. Therefore, educating the public and involving 
them in the decision-making process is crucial to achieving long-lasting results. Table 23 
provides a comprehensive summary of the studies reviewed concerning safe speeds in the 
context of the SSA.  
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Table 23. Summary of Studies on Safe Speeds. 
Study Aim/Objective Key Findings/ Summary 

Ngo et al. 
(2022) 

Present examples of states 
and cities implementing 
the SSA to achieve zero 
fatalities 

 Washington, California, Philadelphia, and Portland 
have institutionalized the SSA to shape their safety 
policies. 

 The SSA can transform the transportation system 
into a safer, more equitable, and more efficient one. 

Steinmetz et 
al. (2018) 

Assess the effectiveness of 
SSA in enhancing road 
safety in Mildura, 
Australia 

 The study included two speed management scenarios 
with different speed limits. 

 Treatment scenario 1 reduced FSI crashes by 45%. 
 Treatment scenario 2, with additional road 

modifications, had a similar impact, demonstrating 
the effectiveness of the SSA. 

Candappa et 
al. (2013) 

Investigate crashes at 
intersections and identify 
key principles for 
improving intersection 
safety 

 Limiting side impact crash speeds to under 31 mph is 
crucial for intersection safety. 

 Minimizing angles and conflict points are essential 
principles for improving intersection safety. 

 Existing and new intersection designs can be 
modified to incorporate these principles to enhance 
safety. 

Candappa et 
al. (2016) 

Implement an innovative 
trial to align approach 
speeds to SS speeds 

 An innovative trial implemented at a signalized 
intersection in Victoria, Australia, aimed at aligning 
approach speeds to SS speeds. 

 Reduced speeds resulted in crash kinetic energy 
(KE) levels more aligned with SS principles. 

 Aligning approach speeds with SS principles can 
lead to safer outcomes for road users. 

Mooren et al. 
(2014) 

Analyze NSW practices 
and identify specific 
departures from the SSA in 
setting speed limits 

 Opposition to lower speed limits can hinder 
governments from implementing safer limits. 

 Setting speed limits based on the 85th percentile of 
free travel speeds is irresponsible and dangerous, and 
there are ways to shift community attitudes toward 
safer speeds. 

Jurewicz and 
Turner  
(2011) 

Explore the emerging idea 
of setting speed limits 
based on severe crash risks 

 Emphasized the significance of considering the 
intended road function and mobility needs of the 
public in setting speed limits. 

 Explored the use of network-level risk assessment 
tools. 

Beer (2011) 

Discuss challenges 
associated with 
implementing a speed limit 
policy that achieves a SS 

 62 mph and 68 mph roads have the highest risk of 
collisions with fixed poles or trees, making them 
farthest from the SS. 

 Speed limits around schools and areas with 
vulnerable road users have the highest community 
outrage and should be lowered to 25 mph from a SS 
perspective. 
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Study Aim/Objective Key Findings/ Summary 

Fildes et al. 
(2006) 

Evaluate the potential of 
harm minimization in 
speed limits 

 Australian speed limits are higher than those 
internationally, prompting the need for a SSA. 

 The SSA aims to balance harm minimization and 
mobility when setting speed limits. 

Jurewicz and 
Hall (2009) 

Develop an approach to 
setting speed limits based 
on harm minimization 

 Harm minimization approach can guide speed limit 
setting consistent with SS principles. 

 Road infrastructure features should be considered in 
speed limit setting. 

 Intermediate speed management policy options can 
guide the transition toward SS 

Jurewicz  
(2010) 

Introduce a new set of 
principles for setting speed 
limits based on harm 
minimization 

 The newly introduced speed limit setting principles 
provide a framework for assessing a road's SS 
readiness. 

 SS road features may be economically viable in the 
short and medium term and not all speed limits 
would be immediately acceptable to the public. 

2.6 IMPACT OF WEATHER ON SAFETY 

Crashes that take place in unfavorable weather conditions such as rain, sleet, snow, fog, icy or 
wet pavement, and other weather-related factors are known as adverse or inclement weather-
related crashes. Weather conditions encompass various factors such as reduced visibility, 
precipitation, strong winds, and extreme temperatures, all of which can impact the friction of the 
road surface, driver performance, and vehicle condition. These factors have the potential to 
elevate the likelihood and seriousness of crashes. Numerous research studies have examined 
driver behavior and the frequency of crashes during adverse weather conditions. A concise 
overview of these pertinent studies is provided below. 

2.6.1 Pedestrian and E-scooter Safety 

Asli (2022) examined pedestrian incidents in urban circular junctions and identified lighting, 
road surface characteristics, and atmospheric conditions as significant factors. Qiu and Fan 
(2022) determined that urban environments and wet road surfaces reduce the probability of fatal 
pedestrian injuries at intersections. Ferreira et al. (2022) identified factors that adversely affect 
the safety perception of pedestrians and cyclists, including pollution, lack of vegetation, 
inclement weather, inclines, and long commuting distances. Pobudzei et al. (2023) investigated 
the severity of injuries in pedestrian-vehicle crashes and revealed that e-scooter incidents 
increase during favorable weather conditions. Cerný et al. (2023) explored the limitations of 
automatic emergency braking (AEB) systems in detecting pedestrians and found that the 
efficiency of AEB is influenced by vehicle speed and weather conditions. In sunny weather, 
vehicles are 20% more inclined to come to a halt in front of pedestrians compared to light rain. 
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2.6.2 Connected and Automated Vehicle Safety 

Environmental factors can have an impact on the effectiveness of advanced driver assistance 
systems (ADAS). Research has indicated that the overall risk of crashes during snowfall remains 
consistent over time (Andrey, 2010). ADAS has shown effectiveness in reducing crashes, 
especially in urban areas with clear daylight conditions and rural areas with clear daylight 
conditions Masello et al. (2022). The ability of (AEB) systems to detect pedestrians is influenced 
by vehicle speed and environmental conditions, resulting in a higher probability of stopping in 
sunny weather compared to light rain (Cerný et al., 2023). Autonomous vehicles and connected 
autonomous vehicles have the potential to contribute to the reduction of pedestrian crashes, with 
weather conditions, lighting, and road classifications playing significant roles (Susilawati et al., 
2023). Risk factors associated with crashes involving electric vehicles (EVs) include 
intersections, daytime, dry road conditions, clear weather, urban roads, traffic signals, and 
angular collisions (Weibull et al., 2023). Considering and understanding environmental 
conditions is crucial for optimizing the performance and safety benefits of ADAS, AEB, and 
autonomous vehicles. 

2.6.3 Traffic Safety in General 

Weather Conditions as a Contributing Factor to Traffic Crashes 

The research conducted by Xu et al. (2018) revealed that unfavorable weather conditions 
contribute to increased crash risks on freeways in California, particularly when there are 
interactions between upstream occupancy and light rain. Several studies also examined the 
utilization of weather and significant variables for real-time crash prediction (Rongjie Yu et al., 
2013; Yu et al., 2015; Yu and Abdel-Aty, 2014b; W. Yu et al., 2019). Wen et al., (2019) 
developed a Bayesian spatiotemporal model that identified associations between crash frequency 
and risk factors such as curves, slopes, traffic composition, and weather conditions. Strong et al. 
(2010) discussed the existing gaps in weather and transportation research and emphasized the 
importance of proactive safety management with up-to-date traffic data. By analyzing 
Pennsylvania crash data, Kelarestaghi et al. (2017) found that adverse weather conditions and 
young drivers contribute to a reduction in crash severity, while factors such as unbelted 
passengers, motorcycles, heavy trucks, and pedestrians increase crash severity. Theofilatos 
(2019) conducted a study in Athens, Greece, utilizing real-time traffic and weather data and 
discovered that the intensity of rainfall strongly influences the occurrence of crashes. 
Buddhavarapu et al. (2013) investigated crash severities in Texas, focusing on pavement surface 
conditions and horizontal curves, and established a significant impact of the Distress Index and 
International Roughness Index (IRI) on crash injury severity. 

The study conducted by A. Das et al., (2017) aimed to gain insights into the impact of visibility 
on safety from a visibility perspective. The research findings identified several factors that were 
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significantly associated with safety, including curved roads, drivers of different age groups, 
roads with higher speed limits, traffic signalization, roads with low friction, undivided roads, and 
the absence of nighttime lighting. Weather conditions such as heavy precipitation, wet pavement, 
strong winds, frozen precipitation, reduced visibility, flooding, extreme temperatures, and other 
related factors affect the operations of commercial motor vehicles (CMV) and driver safety. This 
important subject, which had received limited attention, was explored by Rossetti and Johnsen, 
(2011). 

When examining crashes involving multiple vehicles on high-speed roadways during rainfall, 
Jung et al. (2012) discovered noteworthy factors such as inadequate car following, wind speed, 
and actions of the driver at fault. Olowosegun et al. (2022) emphasized the impact of attributes 
related to the road, weather, and time on the severity of crashes, particularly on slippery road 
surfaces. Sun et al. (2022) identified elements that influence the severity of bicycle-motor 
vehicle crashes in urban and suburban areas of Beijing, including the type of vehicle, signal 
control, and lighting conditions. These investigations highlight the importance of diverse factors, 
such as driver conduct, road conditions, and environmental elements, in comprehending and 
addressing the seriousness of crashes during adverse weather conditions. 

Cafiso et al. (2021) established indicators to assess the quality of pavement surfaces and 
geometric design using SPFs. By applying SPFs to analyze the impact of specific factors on the 
occurrence of crashes, they derived CMFs using the coefficients obtained from the models. The 
study focused on developing CMFs for various criteria, including Grip Number, International 
Roughness Index, curvature change ratio, curvature coefficient of variation, maximum 
superelevation deficit, and minimum lane width. Generalized linear modeling techniques were 
employed, assuming a negative binomial distribution error structure, to fit the models. Equation 
(36) in the study provides detailed information on the selected model formulation. 

𝐸𝐸�(𝑌𝑌) = 𝐿𝐿 × 𝑒𝑒𝑎𝑎0+𝑎𝑎1 ln(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) × 𝑒𝑒∑ 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1  (36) 

Where: 𝐸𝐸�(𝑌𝑌) is the projected annual crash frequency, 𝐿𝐿 is the length of the segment (m), 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
is the segment average annual daily traffic (veh/day), 𝑎𝑎0, 𝑎𝑎1 and 𝛽𝛽𝑖𝑖 are the model parameters, and 
𝑥𝑥𝑖𝑖 are the explanatory variables. The distribution of the crash frequency around 𝐸𝐸�(𝑌𝑌) = 𝑢𝑢 is a 
negative binomial with variance described using Equation (37).  

𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) = 𝑢𝑢 + 𝑘𝑘 × 𝑢𝑢2 (37) 
Where 𝑘𝑘 is the dispersion parameter of the negative binomial distribution. 
The model can be rewritten similarly to the HSM form: 

𝐸𝐸�(𝑌𝑌) = 𝑒𝑒𝑎𝑎0(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) × 𝐿𝐿 × 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎1 × (𝐶𝐶𝐶𝐶𝐶𝐶1 × … × 𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘) (38) 
Where 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 are the CMFs for the base conditions, derived from the SPF coefficients: 
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𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 = 𝑒𝑒𝛽𝛽𝑖𝑖�𝑥𝑥𝑖𝑖−𝑥𝑥𝑖𝑖(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)� (39) 
And 𝑎𝑎0(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) is the constant coefficient of estimated SPF, adjusted for the base conditions: 

𝑎𝑎0(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) = 𝑒𝑒𝑎𝑎0+∑𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) (40) 

The baseline conditions were established using reference values for the covariates. The model 
parameters, as well as the dispersion parameter for the negative binomial distributions, were 
estimated using the maximum likelihood technique. 
Table 24 displays the CMFs for the indicators of pavement condition. 

Table 24. CMFs for Pavement Condition Indicators (Cafiso et al., 2021). 

Crash type B 𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 CMF 
𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 

CMF 
𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 

Grip Number – GN 
Total crashes -2.148 (-2.840, -1.456) O.45 0.25 0.65 1.54 0.65 
Run-off-the road -3.054 (-4.534, -1.574) O.45 0.25 0.65 1.84 0.54 
Other -1.971 (-2.680, -1.263) O.45 0.25 0.65 1.48 0.67 
Dry -2.048 (-2.780, -1.315) O.45 0.25 0.65 1.51 0.66 
Wet -3.508 (-5.035, -1.981) O.45 0.25 0.65 2.02 0.50 
Daytime -2.025 (-2.780, -1.270) O.45 0.25 0.65 1.50 0.67 
Nighttime -2.628 (3.796, -1.460) O.45 0.25 0.65 1.69 0.59 

International Roughness Index – IRI 
Total crashes 0.073 (0.021, 0.124) 4.00 2.52 7.96 0.90 1.33 
Run-off-the road 0.109 (0.013, 0.205) 4.00 2.52 7.96 0.85 1.54 
Other 0.059 (0.008, 0.111) 4.00 2.52 7.96 0.92 1.26 
Dry 0.088 (0.035, 0.140) 4.00 2.52 7.96 0.88 1.41 
Daytime 0.058 (0.002, 0.115) 4.00 2.52 7.96 0.92 1.26 
Nighttime 0.085 (0.011, 0.159) 4.00 2.52 7.96 0.88 1.40 

Weather Conditions as the Sole Study Factor to Traffic Crashes 

Norrman et al. (2000) explored the relationships between road slipperiness, crash probability, 
and winter road maintenance frequency. The study's results indicated that the risk of a traffic 
collision varied depending on the type of road slipperiness. The most common cause of crashes 
was slippery conditions caused by rain or sleet on a frozen road surface. Najafi et al. (2015) 
developed regression models using data on collisions and pavement conditions in New Jersey to 
examine how friction impacts the frequency of vehicle crashes under wet and dry conditions in 
different urban settings. The findings revealed that friction affects the frequency of vehicle 
collisions in both dry and wet conditions. Abohassan et al. (2022) investigated the impact of 
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altering pavement friction levels on traffic safety during snowstorms in urban areas, focusing on 
Edmonton, the capital of Alberta. The results showed a highly significant association between 
pavement friction and traffic safety. When the pavement friction exceeded 0.6, a significant 
reduction in collisions was expected, while pavement friction below 0.35 was predicted to result 
in a significant increase in collisions. Additionally, the study found that arterial roads had a 
substantially higher crash rate compared to collector roads. 

El-Basyouny et al. (2014a) established 12 weather conditions based on temperature, snow, rain, 
and wind speed and developed multivariate safety models using 11 years of daily weather and 
crash data from Edmonton, Alberta, Canada. The results revealed that severe collisions (resulting 
in injury or death) had a greater impact on PDO crashes compared to adverse weather conditions, 
resulting in a 4.5% to 45% increase in PDO crashes. All types of crashes showed statistical 
significance and a strong correlation with sudden weather changes that led to heavy rain or snow. 
El-Basyouny et al., (2014b) investigated the influence of meteorological conditions, particularly 
abrupt and intense snowfall or rainfall, on the type of crashes. The findings demonstrated that 
snowfall and temperature had statistically significant associations with all collision categories, 
indicating that as snowfall intensity increased, crashes increased, and as temperature increased, 
crashes decreased. Rainfall, on the other hand, had minimal impact. Gim (2022) analyzed 
demographic data from nationwide road traffic crashes that occurred between 2011 and 2015 to 
examine the severity of injuries in collisions involving senior drivers (aged 65 or older). The 
findings showed that the peak picnic season in October had the greatest impact on an increase in 
severity, but this magnitude was observed primarily in minor or less serious collisions. 
Additionally, in January, when road conditions were poor, minor or less serious collisions 
escalated into serious ones. Notably, between April and September, when the weather was 
favorable, the severity of fatal injuries decreased. 

Examining the correlation between weather conditions and crash risk, Bergel-Hayat et al. (2013) 
observed significant associations on a monthly basis, varying depending on the type of road. 
Poor road weather conditions, such as icy rain and slippery roads, were identified as contributing 
to higher crash risks, with motorways exhibiting a particularly elevated risk in adverse weather 
and road conditions (Malin et al., 2019). Qin et al. (2006) conducted a study on the impact of 
snowstorms on road safety, revealing that both the severity of crashes and winter maintenance 
efforts played a role in crash rates and casualties. Implementing proactive winter maintenance 
measures was found to have a significant positive effect on traffic safety. These studies 
underscore the importance of considering weather conditions and implementing effective 
maintenance strategies to mitigate crash risks across different types of roads. 

In analyzing weather-related crashes, Khan et al. (2008) identified spatial patterns and significant 
clusters based on different weather conditions. Jackson and Sharif (2016) studied rain-related 
fatal crashes in Texas, highlighting counties with potential contributing factors. Brijs et al. 
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(2008) used an autoregressive model to examine the impact of weather conditions on crash 
counts in the Netherlands. Assumptions related to weather effects were found to be significant. 
Lee et al. (2018) utilized Structural Equation Modeling (SEM) to analyze the relationship 
between water depth, rainfall, and traffic crashes in Seoul, Korea. These studies employed 
statistical techniques to understand the influence of weather on crash patterns and provided 
insights into specific regions and factors to focus on for further analysis and research. 

Jin et al. (2014) proposed a method for spatial optimization aimed at identifying optimal 
locations for weather station deployment within an extensive regional transportation network. By 
utilizing crash data associated with weather conditions, a safety concern index was developed. 
This information was then used to analyze routes that offer comprehensive spatial coverage of 
the area, enabling the identification of the most suitable locations for weather station placement 
through a maximizing technique. In another approach, Lee et al. (2022) explored the use of 
Global Navigation Satellite Systems signals to assess the safety of urban roadways for navigation 
purposes. The aim was to enable automated vehicles to plan their trajectory while avoiding 
hazardous road segments affected by adverse weather conditions, thereby ensuring safe 
operations. This decision-making process relied on the analysis of physical route characteristics, 
vehicle capabilities, and weather conditions. 

Table 25. Studies on Weather and Safety. 
Study Modeling Approach Impact of Weather on Safety 

Qin et al. (2006) Macroscopic analysis 
 The severity of snowstorms, considering factors 

such as duration, intensity, and wind speed, leads to 
an increase in traffic crashes and casualties. 

Brijs et al. (2008) Integer autoregressive 
model 

 Results suggest that serial temporal correlation can 
account bias reduction 

Khan et al. (2008) Spatial analysis 
 Applied spatial statistical techniques  
 Identified notable patterns of weather-related 

crashes 
Bijleveld et al. 
(2009) 

Aggregate level 
analysis 

 Performed an analysis of the aggregate effect of 
weather conditions on crashes in the Netherlands 

Andrey (2010) Matched-pair 
framework 

 Over time, there is no significant alteration in the 
relative risk of casualties during snowfall. 

Strong et al. (2010) Severity index  Synthesized the findings from some of the major 
efforts in weather-crash association 

Rossetti and Johnsen 
(2011) 

Exploratory data 
analysis 

 Examined the safety impact of weather on 
commercial motor vehicles (CMVs) on our 
Nation’s highways  
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Study Modeling Approach Impact of Weather on Safety 

Jung et al.  (2012) Sequential logistic 
regression 

 Examined effect of contributing factors on the 
severities of multivehicle-involved crashes (during 
inclement weather) on high-speed roadways of 
Wisconsin  

 Used a sequential logistic regression approach to 
perform analysis 

Khan et al. (2012) Spatial analysis  Conducted spatial statistical techniques to identify 
substantial patterns of weather-related crashes. 

Buddhavarapu et al. 
(2013) 

Ordered probit (OP) 
response model 

 On two-lane horizontal bends, skid number was not 
significantly connected with collision injury 
severity.  

 IRI and the Distress Index were shown to have a 
statistically significant impact on injury severity.  

Bergel-Hayat et al. 
(2013) Time series model 

 Examined the link between weather conditions and 
crash risk at an aggregate level (on a temporal 
basis) 

El-Basyouny et al. 
(2014a) 

Full Bayesian (FB) 
context via a Markov 
chain Monte Carlo 
simulation 

 Examined the aggregated impact of adverse 
weather on crash. 

El-Basyouny et al. 
(2014b) 

Multivariate Poisson 
lognormal 

 Examined the impact of weather elements and 
sudden extreme snow or rain weather changes on 
crash type 

Jin et al. (2014) Spatial optimization 
method 

 Examined the right deployment of roadway weather 
information systems (RWIS)  

Theofilatos and 
Yannis (2014) Linear regression 

 Provided a review of the effect of traffic and 
weather characteristics on road safety 

 Identified the gaps and discuss the need for further 
research 

Najafi et al. (2015) Regression analysis  Friction affects not only the frequency of vehicle 
crashes in wet conditions but also in dry conditions. 

Das et al. (2017) Parametric model,  
MCA, topic model  

 Examined the implications of inclement weather on 
safety from the perspective of visibility and other 
key issues.  

Kelarestaghi et al. 
(2017) 

Spearman correlation 
test 

 adverse weather conditions and the presence of 
young drivers tend to reduce the severity of crashes.  

Lee et al. (2018) SEM 
 Conducted a systematic approach to analyze 

weather crash relations using data from Seoul, 
Korea. 

Xu et al. (2018) Logistic regression 
models 

 Environmental information improved the crash risk 
prediction model's fit and prediction performance. 

Malin et al. (2019) Concept of random 
point process 

 Investigated the relative crash risk of different road 
weather conditions and combinations of conditions. 
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Study Modeling Approach Impact of Weather on Safety 

Theofilatos et al. 
(2019) 

Cusp catastrophe theory 
and NB model 

 Results show that rainfall is linearly associated with 
crashes  

 Average flow shows a non-linear relationship with 
crashes 

Wen et al. (2019) Bayesian 
spatiotemporal model 

 Measured the association between crash and factors 
such as curve and slope, traffic composition, 
weather conditions, and their interactions 

Yu et al. (2013); Yu 
and Abdel-Aty 
(2014); Yu et al. 
(2014); Yu et al. 
(2015); Yu et al. 
(2018); 

Different modeling 
techniques 

 Examined the effect of real-time traffic and weather 
on crashes.  

Gim (2022) Conventional ordered 
logit model 

 Poor road conditions in January increase the 
severity of minor crashes. In contrast, favorable 
weather conditions from April to September reduce 
the severity of fatal injuries. 

Abohassan et al. 
(2022) 

Negative binominal 
techniques 

 Collisions decrease with pavement friction above 
0.6, but increase with pavement friction below 0.35. 

Asli (2022) Friedman test  Weather conditions were found to be the first factor 
in pedestrian crashes in urban roundabouts. 

Ferreira et al. (2022) Literature Review  Bad weather conditions negatively affected the 
users' safety perception. 

Masello et al. (2022) Experiments  The efficiency of ADAS is significantly dropped 
during bad weather conditions 

Norrman et al. 
(2022) Data statistics  The greatest risk of crashes occurred when the road 

surface was slippery due to rain or sleet freezing. 
Olowosegun et al. 
(2022) Ordered probit models  Weather was found to affect the severity of crash 

injuries. 

Qiu and Fan (2022) Logistic regression  Severe weather only has impacts at non-
intersections. 

Sun et al. (2022) 

A two-stage approach 
integrating random 
parameters logit model 
and two-step clustering 
algorithm 

 Weather had statistically significant random effects 
on the injury severity in urban areas 

Susilawati et al. 
(2022) 

A two-level Bayesian 
Poisson lognormal 
model 

 Weather had significant effects on vehicle–
pedestrian crashes in all road classifications. 

Weibull et al. (2023) Literature review  Weather is one of the most frequently reported risk 
factors 

Cerný et al. (2023) Experiments  The efficiency of AEB was significantly influenced 
by both vehicle speed and weather conditions. 
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2.7 SUMMARY 

This chapter summarizes the findings of Task 2: 

 Examined the SPFs in the HSM and other innovative statistical and machine learning models. 
 Addressed the existing limitation in traditional safety calculations by incorporating the safety 

of non-motorists, such as pedestrians and cyclists, into the overall safety calculations. By 
considering the specific vulnerabilities and risks faced by non-motorists, the findings ensure 
a more comprehensive and inclusive approach to safety planning and decision-making 
processes. This inclusion facilitates the identification of areas of concern and enable the 
implementation of targeted measures to enhance the safety of all road users.  

 Provided a comprehensive understanding of safe speed within the context of the SSA. It 
combines theoretical foundations with empirical evidence, identifying key factors and 
strategies that contribute to maintaining appropriate speeds and reducing crash risks. 

 Investigated the complex relationship between various factors, including operating speed, 
geometric variables, rainfall, posted speed limits, and crash outcomes. By conducting a 
thorough analysis, the memorandum provides valuable insights into the interplay between 
these variables and their impact on urban roadway crash risk.  

Through the synthesis of gathered information, knowledge, and practices, this chapter provides 
valuable insights. The findings contribute to the development of improved SPFs, the inclusion of 
non-motorist safety considerations, and a better understanding of the relationship between key 
factors and crash outcomes on urban roadways. 
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CHAPTER 3: 
DATA PREPARATION 

3.1 INTRODUCTION 

This chapter provides a brief overview of the data sets and the data conflation framework.  

3.2 DATA SOURCES 

The Project Team identified four major data sources to perform the analysis. These data sources 
are: 

 Short duration (10-minute interval) operating speed data from National Performance 
Management Research Data Set (NPMRDS) and INRIX XD. 

 Traffic crash data from CRIS. 
 Roadway inventory data from the Road-Highway Inventory Network Offload (RHiNO). 
 Weather data from Copernicus, the European Union’s Earth Observation Program. 

3.2.1 Speed Data: NPMRDS and INRIX XD 

Three readily accessible options exist for capturing speed information on Texas roadways: 
NPMRDS, the recently released Performance Network from the FHWA, and the INRIX XD 
network (Federal Highway Administration, 2019). The Project Team currently has a contract 
with INRIX to obtain travel time data on its XD network, which is conflated onto the RHiNO 
network. NPMRDS, procured by the FHWA, is free to state departments of transportation and 
metropolitan planning organizations for research. 

3.2.2 Crash Data: CRIS (2018-2022) 

The Project Team collected 5 years (2018-2022) of crash data from TxDOT’s CRIS. CRIS data 
elements are divided into three major groups: (a) crash event characteristics, (b) primary person 
characteristics, and (c) vehicle (unit) characteristics.   

3.2.3 Roadway Inventory Data: RHiNO 

The Project Team acquired roadway inventory data from two different sources: (a) 2021 RHiNO, 
and (b) 2021 TxDOT Roadway Inventory (Texas Department of Transportation, 2024, 2025a). 
An examination of these data sets showed that they are the same. RHiNO provides a detailed 
data dictionary and additional supporting GIS files, the Project Team used the 2021 RHiNO as 
the main layer on which the other data layers were conflated. 

3.2.4 Weather Data: Copernicus 

Copernicus, the Earth Observation Program of the European Union, serves the collective 
interests of citizens by observing and analyzing the Earth's environment. Its primary goal is to 
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offer unrestricted access to satellite Earth observations, in situ data, and modeling information. 
Coordinated by the European Commission, Copernicus operates through agreements with 
international organizations. The European Centre for Medium Range Weather Forecasts 
(ECMWF) oversees the implementation of Copernicus Climate Change Service (C3S) and 
Copernicus Atmospheric Monitoring Service (CAMS) on behalf of the European Union. The 
data collection was conducted for 4 years (2019-2022).  

3.3 DATA PREPARATION FRAMEWORK 

The Project Team has followed an extensive and replicable data preparation and conflation 
framework to develop the data product (P1) for RTI Project 0-7144. This document provides 
detailed information on the implementation of this replicable methodological procedure. 
These sources encompassed road inventory data, which was obtained through the RHiNO 
system, providing detailed information about the urban freeway infrastructure. For an in-depth 
understanding of traffic patterns, granular operating speed data was derived from the NPMRDS 
and INRIX XD, offering 10-minute interval operating speed data. The Project Team further 
gathered the weather data. Finally, crash data was collected from CRIS, enabling an analysis of 
safety factors and their impact on urban roadways. The databases were organized into two 
primary temporal clusters: 1) Annual level, and 2) Short-duration level. Figure 17 provides a 
flowchart of the data conflation procedure. 

Figure 17. Data Conflation on Texas Urban Roadways. 

3.3.1 RHiNO Segments 

The Project Team first collected the RHiNO dataset for the year 2021. This dataset encompasses 
a total of 883,837 roadway segments, divided into 341,843 rural and 541, 994 urban segments. 
The focus of 0-7144 Project is on the urban network, which the Project Team further categorized 



79 
 

based on functional classification into two groups: major urban roads with 173,913 segments, 
and minor urban roads with 368,081 segments (see Table 26).  

Table 26. Statistics of TxDOT Urban Facilities.  
Facility Code Facility Name Number of RHiNO Segments Total Lenth (mi.) 
U1 Urban Interstate 23,832 5,186.3 

U2 
Urban Other Freeway 
and Expressway 19,340 4,741.7 

U3 
Urban Other Principal 
Arterial  46,582 9,403.8 

U4 Urban Minor Arterial 32,683 9,144.1 
U5 Urban Major Collector 51,476 16,231.7 
U6 Urban Minor Collector 2,828 1,132.8 
U7 Urban Local 365,253 80,122.2 

Total 541,994 125,962.6 
U1-U5 Major Urban 173,913 44,707.5 
U6-U7 Minor Urban 368,081 81,255.1 

The data preparation was conducted by using R and Python programming languages and ArcGIS 
Pro software. Figure 18 illustrates the R code chunk used to extract the major and minor urban 
roadway segments from the overall dataset. In the code, “Urban1_5” indicates major urban 
roads, and “Urban6_7” indicates minor urban roads. 

Figure 18. R Code for Selecting Urban Roads. 
Upon a thorough examination of all data attributes within the accessible RHiNO dataset, the 
Project Team pinpointed six specific attributes capable of aiding in the identification of various 
urban facilities according to the definitions outlined in the HSM . Table 27 provides more details 
of these attributes. 
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Table 27. Attributes Relevant to Urban Roadway Selection. 
Item Name  Column Name  Definition  
RURAL-URBAN-CODE  RU  1=Rural (Population < 5,000)  

2=Small Urban (Population 5,000 – 49,999)  
3=Urbanized (Population 50,000 – 199,999)  
4=Large Urbanized (Population 200,000+) 

FUNCTIONAL-
CLASSIFICATION 
(Updated codes for 
YE2014)  

F_SYSTEM  1=Interstate  
2=Other Freeway and Expressway  
3=Other Principal Arterial  
4=Minor Arterial  
5=Major Collector  
6=Minor Collector  
7=Local 

RECORD-TYPE (Pre 
YE2004: 8=HPMS Tolls) 
(Updated for YE2018 to 
remove 6=Functionally 
Classified City Street) 

REC 0=Grade Separated Connector (YE2014 new code)  
On-System:  
1=On-System Mainlanes  
2=On-System Right Frontage Road  
3=On-System Left Frontage Road Off-System:  
5=County Road  
7=City Street  
8=Non-TxDOT Toll Authority Road (YE2014 new 
code)  
9=Federal Road (YE2014 new code) 

NUMBER-OF-
THROUGH-LANES 

NUM_LANES Does not include turning, climbing, or auxiliary 
lanes, but does include Super 2 and exclusive HOV / 
HOT lanes 

MEDIAN-TYPE MED_TYPE 0=No median  
2=Unprotected 
3=Curbed  
4=Positive Barrier - Unspecified  
5=Positive Barrier Flexible  
6=Positive Barrier Semi-Rigid  
7=Positive Barrier Rigid 99=Unknown 

CLIMBING-PASSING-
CENTERTURNING-
LANE 

CLMB_PS_LANE 1=Continuous Two-way Left Turn Lane  
2=Super 2 Lane  
3=Climbing / Passing Lane 

In addition, the Project Team further divided road segments based on the facility types and 
supplied the facility code for each segment. “UI”: urban interstate; “UIF”: urban interstate 
freeway; “UFE”: urban others minor freeway; “UFEF”: urban other main freeways; “1U”: urban 
1 lane undivided road; “2U”: urban 2 lanes undivided road; “2D”: urban 2 lanes divided road; 
“3T”: urban 3 lanes left turn road;  “3U”: urban 3 lanes undivided road;  “3D”: urban 3 lanes 
divided road;  “4U”: urban 4 lanes undivided road;  “4D”: urban 4 lanes divided road;  “5T”: 
urban 5 lanes left turn road;  “5U”: urban 5 lanes undivided road; “5D”: urban 5 lanes divided 
road; “6U”: urban 6 lanes undivided road; “6D”: urban 6 lanes divided road; “7T”: urban 7 lanes 
left turn road; “7U”: urban 7 lanes undivided road; “7D”: urban 7 lanes divided road; “8T”: 
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urban 8 lanes left turn road; “8U”: urban 8 lanes undivided road; “8D”: urban 8 lanes divided 
road; The R code, Figure 19, is used developed to cluster the data by these defined facility types. 

Figure 19. R Code for Dividing Roads by Facility Type. 

As RHiNO is only limited to roadway data, the Project Team used other data sources to acquire 
information on operational speed, crash, and precipitation information. This document offers 
concise instructions on both annual and short-duration speed, crash, and precipitation summaries 
for RHiNO segments. Due to the data size and processing issue, annual and short duration data 
preparations were conducted for major (U1 to U5) and minor (U6 and U7) urban roadways 
separately.  

3.4 ANNUAL DATA PREPARATION 

3.4.1 Speed Measure Assignment 

The original XD network of Texas provides operational speed information every ten seconds. To 
acquire the speed measures of RHiNO segments (conflating information from XD), the primary 
challenge of this conflation process lies in handling different segmentation and misalignment 
between the two networks. The core objective of conflation is to create an appropriate integration 
by establishing one-to-one or one-to-many relationships between XD segments and urban 
RHiNO roadways. This conflation process aims to harmonize and align data from the INRIX XD 
network with urban roadways, overcoming the challenges of segmentation and misalignment to 
provide a cohesive and accurate dataset for analysis. The main steps are outlined as follows: 

Step 1: Preprocessing of RHiNO 

In this initial step, a new field called ‘unique_id’ is introduced as a unique identifier for road 
segments within the existing layer. Additionally, the length of each segment is calculated and 
added to the ‘rhino_len’ field. The detailed code is shown in Figure 20. 
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Figure 20. Python Code for Preprocessing of RHiNO. 

Step 2: Creating Buffers Around RHiNO 

This step involves the creation of a buffer layer around urban roadways. The buffer distance is 
set to “25 m or 82 ft”. The side type of the buffer is ‘FULL,’ and the end type of the buffer is 
“FLAT”. The buffer is generated to provide spatial context and facilitate subsequent conflation. 
Figure 21 presents the Python code of this step. 

Figure 21. Python Code for Creating Buffers Around RHiNO. 

Step 3: Establish the relationship between RHiNO and XD 

For each buffered urban segment, the code, Figure 22, identifies any XD segments that intersect 
with it. During this process, the ‘Intersect_Length’ is calculated, representing the length of 
intersections between the polygon and XD segments. Furthermore, the ‘Percentage’ is computed 
as follows: Percentage = (Intersect_Length / Line_Length (XD)) * 100. 
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Figure 22. Python Code for Establish the Relationship Between RHiNO and XD. 

Step 4: Data Cleaning 

The output generated in the previous step requires further refinement. It begins with the 
calculation of the sum of urban segments based on the XD line percentage. If the sum exceeds 
100, corrective action is taken. Specifically, the percentages are sorted, and the one with the 
lowest percentage is eliminated until the sum is reduced to less than 100. Subsequently, the 
remaining percentages are adjusted proportionally to ensure that the cumulative percentage of 
each urban segment totals exactly 100. The detailed code is presented in Figure 23. 
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Figure 23. Python Code for Data Cleaning. 

Step 5: XD Level Speed Summary 

The result of Step 5 is a CSV file detailing the correlation between XD and RHiNO segments. 
This relationship is quantified by the overlap percentage of each RHiNO segment with 
corresponding XDs. The unique identifier for XD segments is labeled as ‘xd_id’, while for 
RHiNO segments, it's ‘unique_id’. Utilizing the ‘xd_id’ obtained from this step, raw XD speed 
data can be downloaded. Subsequently, a summary of XD-level speeds can be compiled using 
the Python code illustrated in Figure 24. 
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Figure 24. R Code for XD Level Speed Summary. 

Step 6: RHiNO Level Speed Summary 

XD-level speed summary was aggregated to the RHiNO level speed summary based on the CSV 
file acquired from Step 4 (see Figure 25). The speed measures used in this study are listed Table 
28. 

Figure 25. R Code for RHiNO Level Speed Summary. 
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Table 28. Speed Measure Variables and Definitions. 
Attribute Name Definition 
SpdAve Average speed determined for the year using all data 
SpdStd Standard deviation of speed determined for the year using all data 
Spd85 85th percentile speed determined for the year using all data 
PSL Post Speed Limit (not real posted speed, a measure derived from INRIX average 

speed values) 
SpdAveDay Average speed determined for the year (hour > 5 and hour < 18) using all data 
SpdStdDay Standard deviation of speed determined for the year (hour > 5 and hour < 18) using 

all data 
SpdAveNight Average speed determined for year (hour > 17 and hour < 24 and hour > -1 and hour 

< 6) using all data 
SpdStdNight Standard deviation of speed determined for year (hour > 17 and hour < 24 and hour > 

-1 and hour < 6) using all data 
SpdAveMTWT Average speed determined for the year (Mon, Tue, Wed, Thu) using all data 
SpdStdMTWT Standard deviation of speed determined for the year (Mon, Tue, Wed, Thu) using all 

data 
SpdAveFSS Average speed determined for the year (Fri, Sat, Sun) using all data 
SpdStdFSS Standard deviation of speed determined for the year (Fri, Sat, Sun) using all data 
SpdFFAve Average speed determined for the year using speed data where 5-min speed is > PSL 

(or PSL+5 or +10) 
SpdFF85 85th percentile speed determined for the year using speed data where 5-min speed is 

> PSL (or PSL+5 or +10) 

3.4.2 Crash Data Assignment 

This section provides an explanation of the RHiNO level annual crash summary. The Project 
Team downloaded Texas crash data (CRIS) from 2018 to 2022. The crash event files encompass 
various details, including the date and time of the crash, the severity of the crash, and the latitude 
and longitude coordinates corresponding to the crash events. The Project Team first displayed 
the crash points on the map using the “Display XY” tool. Then, the Project Team applied “Near” 
function tool in ArcGIS Pro (see Figure 26) to assign crash events to the nearest roadway 
segments. An attribute named ‘Near_FID’ was assigned to each crash, wherein ‘Near_FID’ 
signifies the FID number (the roadway segment's corresponding row number, commencing from 
0 in the crash characteristics file) where the crash occurred. The Project Team chose 25 meters as 
the threshold to assign a crash event on the nearest roadway segment. This means only if a crash 
event is within 25 meters of a roadway segment, this crash event is it assigned to this specific 
roadway segment. If a crash event cannot be assigned to any roadway segment, its “Near_FID” 
attribute is be equal to -1. The Project Team filtered out the crash events whose “Near_FID” 
equals -1 because they cannot relate to any roadway segments. After crash events are assigned to 
roadway segments, the Project Team summarized the total number of crashes that happened on 
each roadway segment by crash severity. Five crash severity levels (KABCO) were used to 



87 
 

assign the crashes by severity levels.  KABCO is an acronym used in the field of traffic safety 
and accident investigation to classify the severity of injuries resulting from motor vehicle 
crashes. Each letter in the acronym corresponds to a specific level of injury severity: K (Killed or 
Fatal), A (Apparent or Incapacitating Injury), B (Non-Incapacitating Injury), C (Possible Injury), 
and O (No Injury).  

Figure 26. Near (Analysis) Tool in ArcGIS Pro. 

3.4.3 Precipitation Measure Assignment 

For short-duration precipitation data, the first step was to download hourly precipitation data, 
one month at a time, for an entire year, for 2019, 2020, 2021, and 2022 from the Copernicus 
Climate Data Store (CDS). To access the data, two prerequisites need to be followed: 1) A valid 
account on cds.climate.copernicus.eu with login credentials; 2) Necessary permissions to access 
the ERA5-Land hourly data product (see Figure 27). The steps are described below. 
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3.4.4 Steps to Download Data  

Step 1: Log In and Navigate to the CDS: Access the CDS website and log in with your 
credentials. Once logged in, navigate to the 'Your Requests' section, as shown in Figure 28.  
Step 2: Queue the Download Requests: Submit 12 separate requests, each corresponding to a 
different month of the year for each year. This should be done by selecting the ERA5-Land 
hourly data product and specifying the time range for each month.  Ensure that all days for a 
month are selected, and all hours for each day.  There is also a need to set the bounding box to 
the bounding box of the state of Texas as seen in Figure 28.  
Step 3: Monitor Request Status: After submission, requests appear in the ‘Queued’ status. The 
system will automatically process these requests. The page will auto-refresh the status of the 
requests by default.  

Figure 27. Precipitation Gridded Binary Data Downloaded from Copernicus. 

Step 4: Downloading the Data: Once a request status changes to ‘Complete,’ a ‘Download’ 
button will appear. Click this button to download the dataset for the respective month. The file 
size will be indicated next to the button.  
Step 5: File Storage and Management: As the data is downloaded, files are stored in an 
organized manner in OneDrive storage. A separate folder is created for each year.  
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Step 6: Data Verification: After the downloading is completed, the integrity of the data files 
was verified by loading data using the R package ‘sp’ to load an object of class 
‘SpatialGridDataFrame’ for analysis. Each file corresponded to the monthly data requested, and 
files were labeled after verification according to the month and year of the data.  
Step 7: Repeat for All Months: Repeat the download process for each month/year until all 12 
monthly data files are successfully downloaded for each year.  

Figure 28. Data Requests Details. 
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3.4.5 Contents of the Precipitation GRIB Files  

After the data download completion, there are 48 Gridded Binary (GRIB) files for the years 
2019-2022, one for each month (see Figure 29).  Inside the files are bands that total the number 
of hours in each of the downloaded months.  For example, January of 2019 has 744 bands (31 
Days * 24 hours = 744 bands).  Each band is stored as a floating-point vector of length 
14,124.  Each band has a spatial attribute for ‘xmin’, ‘ymin’, ‘xmax’, and ‘ymax’ representing 
the grid area covered and spatial resolution.  In Figure 30, 14,124 bands are seen as .1 x .1 degree 
resolution grid squares, with NA grids being represented as gray grid squares.  

Figure 29. GRIB File for January 1st, 2019 at 0000-0059 Hours. 
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Converting GRIB files to CSV Files for Improved Processing Time  

Converting GRIB files containing hourly weather data for one month into more manageable 
hourly CSV files is useful for improved processing time. GRIB files are commonly used in 
meteorology but can be cumbersome for certain types of data processing due to their size, file 
type, and spatial nature.  

Step 1: Assessing GRIB File Size: The original GRIB file for January 2019 is approximately 29 
megabytes, which is manageable but not optimal for rapid data processing.  

Figure 30. Point Shapefile Corresponding to GRIB Data. 
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Step 2: Generating Point Shapefile from GRIB. A point shapefile is created from the GRIB 
file, where each point represents the center of a grid cell in the spatial data. The shapefile 
contains 14,124 points, each corresponding to a grid cell in the GRIB file, a zoomed-up image of 
the point shapefile can be seen in Figure 30.  

Figure 31. TIGRIS Shapefile of Texas. 

Step 3: Clipping the Shapefile to the Area of Interest: To focus on a specific region, such as 
Texas, the shapefile is clipped using a Texas boundary shapefile obtained from the TIGRIS 
database, as seen in Figure 31. The clipping is performed in a common Coordinate Reference 
System (CRS) to maintain geographical accuracy.  
Step 4: Reducing Data Points: After clipping, the number of data points is reduced to fit the 
Texas boundary, resulting in 6,607 points that fall within the state as seen in Figure 32.  The 
‘NEAR_FID’ column is maintained to match the original GRIB file index.  A nearest neighbor 



93 
 

index is created from this shapefile to reference the GRIB data, which is stored in the CSV file 
for faster processing in the next step.  

Figure 32 Precipitation Points Shapefile. 

Step 5: Converting to CSV: The clipped data is then exported to CSV format, creating one file 
per hour, thus converting the monthly GRIB data into 744 individual hourly CSV files for the 
month of January 2019 and the respective number of hourly CSV files for the number of hours in 
each month afterward.  
Step 6: Verifying CSV File Size: The size of each CSV file is approximately 82 KB, which is 
significantly smaller and more manageable than the original GRIB file. The advantages of 
conversion are described below: 
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 Improved Data Processing Speed: Smaller file sizes in CSV format allow for quicker data 
manipulation and analysis, especially when working with hourly data.  

 Targeted Dataset: Trimming the shapefile to the specific region of interest eliminates 
irrelevant data, resulting in a more refined and focused dataset suitable for analysis. 

 Compatibility and Accessibility: CSV files are widely supported by various software and 
programming languages, making it easier to share and work with the data across different 
platforms.  

 Ease of Use: CSV files are easier to inspect and modify, allowing for a more straightforward 
data validation and quality control process.  

3.4.6 Precipitation Data Processing  

The Project Team has developed an R script to process and analyze extensive precipitation data, 
specifically focusing on hourly precipitation measures. The script enables us to transform 
granular precipitation data into structured insights.  

 Initialization of Analytical Tools: The first step involves loading a suite of R packages. 
Several R packages were used in this process. The package ‘lubridate’ facilitates 
sophisticated date-time manipulation, ‘dplyr’ and ‘tidyr ‘are for data manipulation and 
tidying, and ‘data.table’ offers the capability to handle large datasets with speed and 
efficiency.  

 Workspace Configuration: To maintain consistency in file paths and operations, the Project 
Team configured the working directory dynamically to the script's location. This step is 
bypassed on Shiny servers during application development due to their unique operational 
environment.  

 Numerical Representation: The Project Team disabled R’s default scientific notation to 
ensure that numerical data is readily interpretable without the necessity for transformation. 

 Data Aggregation Workflow: The Project Team utilized a nested loop to iterate through 
years and months, systematically transforming hourly data into a structured statistical matrix. 
This approach enables efficient categorization and computation of aggregated statistics. 

 Spatial Data Integration: In Step 4 of the Data Conversion section, the Project Team 
integrates each precipitation data point with its corresponding geographic identifier by 
utilizing the id_match.csv file, thereby incorporating the relevant spatial dimension into the 
analysis. 

 Data Exportation: In the final stage of this process, the Project Team exported the 
amalgamated data into CSV files. These files serve as the endpoint of the analytical process, 
offering a comprehensive and easily accessible record for subsequent analysis, reporting, and 
peer review. 

Utilizing the precipitation data processing script, the Project Team employs the capabilities of 
data science to undertake comprehensive and replicable investigations.  
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3.5 SHORT DURATION DATA PREPARATION 

The previous section outlines the procedure for conflating annual speed, crash, and precipitation 
data. The current section details the short-duration aspects of these measures; the overall steps 
are very similar to the annual data preparation. The Project Team's goal is to obtain these 
measures by year, season (across all four seasons), day of the week (distinguishing between 
weekdays and weekends), and time of day (daytime and nighttime). 

3.5.1 Speed Measure Assignment 

In alignment with the annual speed summary procedure, the Project Team adapted and 
redeveloped the code for step 5 (Figure 33) and 6 (Figure 34) to obtain the short-duration speed 
summary. It's important to note that this process demands significant computational resources, 
often necessitating the use of high-performance computing to manage the extensive data 
processing involved. 

(a)  
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(b)  
Figure 33. Python Code for XD Level Short Duration Speed Summary. (a) Python Code 

Part 1; (b) Python Code Continued. 



97 
 

Figure 34. Python Code for RHiNO Level Short Duration Speed Summary. (a) Python 
Code Part 1; (b) Python Code Continued. 

(a)  

(b)  
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3.5.2 Crash Data Assignment  

To generate a comprehensive analysis akin to an annual crash summary, the Project Team 
initiated the process by employing the ‘Near’ feature tool within ArcGIS Pro. This tool was 
instrumental in effectively assigning crash events to specific roadway segments. The rationale 
behind this method lies in the accessibility of pertinent crash data and crash timestamps within 
the designated crash dataset. The Project Team executed a Python code designed to extract 
relevant insights from the available crash data. This two-tiered methodology, integrating ArcGIS 
Pro for initial segment assignment and Python coding for subsequent short-duration analysis, 
aligns with a systematic process to assign crashes to segments (see Figure 35). 

Figure 35. Python Code for Short Duration Crash Summary on RHINO Segments. 

3.5.3 Weather Measure Assignment  

The Project Team has developed an R script to process and analyze extensive precipitation data, 
specifically focusing on hourly precipitation measures. The script enables the user to transform 
granular precipitation data into structured insights.  

1. Initialization of Analytical Tools: The first step involves loading a suite of R packages. R 
package ‘lubridate’ facilitates sophisticated date-time manipulation, ‘dplyr’ and ‘tidyr’ are for 
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data manipulation and tidying, and ‘data.table’ offers us the capability to handle large datasets 
with speed and efficiency.  

2. Workspace Configuration: To maintain consistency in file paths and operations, the Project 
Team configures the working directory dynamically to the script's location. This step is 
bypassed on Shiny servers during application development due to their unique operational 
environment (see Figure 36). 

Figure 36. Temporal Categories Function. 
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3. Numerical Representation: The Project Team deactivates R's default scientific notation to 
ensure that the numerical data being worked with is immediately interpretable without the need 
for transformation. 

4. Defining Temporal Variables: The analysis spans multiple years, segmented into monthly 
intervals.  

5. Development of Classification Functions: Functions have been written by the Project Team 
to ascertain whether a date falls on a weekend or a weekday and to classify hours as daytime 
or nighttime based on predefined thresholds. These classifications are instrumental for the 
layered analysis that follows. 

6. Temporal Categorization Function: The custom function ‘temporalCategories’ tags each 
data column with time-based categories, delineating the data by both the day of the week and 
the hour of the day (see Figure 36).  

(a) 
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(b) 
Figure 37. Function ‘getMatrix’ 

7. Statistical Computation Function: The getMatrix (Figure 37) function aggregates the data 
to produce sums, averages, maximums, and minimums for the various time categories, thus 
enabling the Project Team to perform a comprehensive analysis.  

8. Data Aggregation Workflow: The Project Team utilizes a nested loop to iterate through the 
years and months, systematically processing hourly data into a structured statistical matrix. 
This approach allows for efficient categorization and computation of aggregated statistics. 

9. Spatial Data Integration: In the integration process, the Project Team leverages an 
id_match.csv file, as indicated in Step 4 of the Data Conversion section, to map each 
precipitation data point to its corresponding geographic identifier.  

10. Seasonal Data Aggregation: Acknowledging the significance of seasonal variations in 
weather patterns, the developed coding script groups data by meteorological seasons. This 
step involves recalculating aggregated statistics to capture variations during distinct periods. 

11. Data Exportation: In the final phase of the process, the Project Team exports the 
synthesized data into CSV files. These files serve as a comprehensive and accessible record 
for subsequent analysis, reporting, and peer review. 
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3.5.4 Driveway Density  

The Project Team used Longitudinal Employer-Household Dynamics (LEHD) (USCB, 2024) 
and Smart Location Database (SLD) (EPA, 2013) to determine driveway density type. An 
interactive tool (https://aitlab.shinyapps.io/DrivewayDensity_V03/) has been developed to show 
driveway types.  Figure 38 shows the interface of the tool.  

Figure 38. Interface of Driveway Density Type Interactive Tool. 

3.6 SUMMARY 

Chapter 3 focuses on the data preparation process for the safety evaluation of urban roadways. 
The Project Team gathered and integrated various datasets, including traffic crash data from the 
CRIS, roadway inventory data from the RHiNO, speed data from the NPMRDS and INRIX XD, 
and weather data from the C3S and CAMS. A comprehensive data conflation framework was 
developed to merge these diverse datasets. The preparation involved assigning speed measures, 
integrating crash data, and processing weather data, such as precipitation from Copernicus, to 
enhance the overall quality of the dataset. Additionally, both annual and short-duration data were 
processed to support long-term safety evaluation and real-time risk analysis.  

https://aitlab.shinyapps.io/DrivewayDensity_V03/
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CHAPTER 4: 
DATA ANALYSIS AND MODEL DEVELOPMENT 

4.1 INTRODUCTION 

This chapter offers a concise overview of the exploratory data analysis conducted on the 
databases created for both annual and short-duration data. It also includes annual-level SPFs for 
urban two-lane and multilane roadways. 

4.2 ANNUAL LEVEL DATABASES 

The predictive method in HSM Chapter 12 addresses the following urban and suburban arterial 
facilities: two- and four-lane undivided facilities, four-lane divided facilities, and three- and five-
lane facilities with center two-way left-turn lanes. Divided arterials are defined as nonfreeway 
facilities with travel lanes in both directions separated by a raised or depressed median and may 
include occasional grade-separated interchanges that are not the primary form of access. These 
predictive models exclude arterial sections within interchange limits that have free-flow ramp 
terminals. Arterials with a flush separator (painted median) between travel lanes are classified as 
undivided facilities, not divided. Separate prediction models are provided for arterials with a 
flush separator functioning as a center two-way left-turn lane. The specific site types are defined 
as follows: 

 Two-lane undivided arterial (2U): A roadway consisting of two lanes with a continuous 
cross-section providing two directions of travel, in which the lanes are not physically 
separated by distance or a barrier. 

 Three-lane arterial (3T): A roadway consisting of three lanes with a continuous cross-
section providing two directions of travel, in which the center lane is a TWLTL. 

 Four-lane undivided arterial (4U): A roadway consisting of four lanes with a 
continuous cross-section providing two directions of travel, in which the lanes are not 
physically separated by distance or a barrier. 

 Four-lane divided arterial (4D): A roadway consisting of four lanes with a continuous 
cross-section providing two directions of travel, in which opposing directions are 
physically separated by a raised or depressed median or by distance. 

 Five-lane arterial with center TWLTL (5T): A roadway consisting of five lanes with a 
continuous cross-section providing two directions of travel, in which the center lane is a 
TWLTL. 

This section presents the descriptive statistics of the key variables used for the annual level 
analysis. Table 29 lists crash frequencies by different crash severity type levels and roadway 
facility types. Figure 39 displays the distribution of urban roadways by facility types. Table 29 
through Table 34, list descriptive statistics of the key variables for annual level analysis.  
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Table 29. Total Road Length and Crash Counts by Facility Types for the Annual Model. 
Facility Type Total Length 

(miles) 
Total Number of Crashes (By Crash Severity Type) 
K A B C O 

Two-lane undivided roadways (2U) 28,265.17 773 3,175 10,368 14,771 63,537 
Three-lane roadways (3T)  115.47 24 54 217 340 1,197 
Four-lane divided roadways (4D) 671.00 1,259 5,109 24,170 42,247 150,939 
Four-lane undivided roadways (4U) 2,632.00 1,378 5,805 28,226 49,509 177,286 
Five-lane roadways (5T) 170.00 216 702 3,017 4,448 15,148 
All 31,853.63 3,650 14,845 65,998 111,315 408,107 

Figure 39. Distribution of Urban Roadways by Facility Types. 

Table 30. Descriptive Statistics of Urban Two-lane Undivided Roadways (Annual Level 
Data). 

Variables Code Mean SD Min Max 
AADT (vpd) ADT_CUR 5003.42 4927.74 2 56535.00 
Truck proportion TRK_AAD 6.55 6.55 0 94.10 
Lane width (ft) LANE_WI 12.06 3.34 4 20.00 
Inside shoulder width (ft) S_WID_I 2.04 3.60 0 30.00 
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Outside shoulder width (ft) S_WID_O 2.08 3.62 0 32.00 

K-factor K_FAC 10.79 2.88 3.9 99.90 
Minor Commercial Driveway MnrCmmr 1.87 3.33 0 55.00 
Major Commercial Driveway MjrCmmr 1.06 2.82 0 110.00 
Minor Other Driveway MnrOthr 0.07 0.55 0 31.00 
Major Industrial Driveway MjrInds 0.16 0.85 0 26.00 
Minor Industrial Driveway MnrInds 0.19 1.01 0 27.00 
Minor Residential Driveway MnrRsdn 0.50 1.53 0 25.00 
Average operating speed (mph) SpdAve 64.75 11.34 0 75.00 
85 percentile speed (mph) SEF 69.78 12.24 0 75.00 
Sum of precipitation (in) pS 34.23 20.13 0 66.60 
Average of precipitation (in) pA 0.01 0.00 0 0.02 

Table 31. Descriptive Statistics of Urban Three-lane Roadways (Annual Level Data). 
Variables Code Mean SD Min Max 
AADT (vpd) ADT_CUR 12361.88 6649.54 1035 41353.00 
Truck proportion TRK_AAD 7.88 5.04 1.6 32.10 
Lane width (ft) LANE_WI 12.74 3.13 10 20.00 
Inside shoulder width (ft) S_WID_I 4.32 3.97 0 14.00 
Outside shoulder width (ft) S_WID_O 4.31 3.91 0 13.00 
K-factor K_FAC 9.63 1.99 6 21.70 
Minor Commercial Driveway MnrCmmr 0.09 0.47 0 5.00 
Major Commercial Driveway MjrCmmr 1.62 1.48 0 7.00 
Minor Other Driveway MnrOthr 0.01 0.12 0 1.00 
Major Industrial Driveway MjrInds 0.25 0.69 0 5.00 
Minor Industrial Driveway MnrInds 0.01 0.08 0 1.00 
Minor Residential Driveway MnrRsdn 0.12 0.45 0 4.00 
Average operating speed (mph) SpdAve 70.67 9.25 0 75.00 
85 percentile speed (mph) SEF 72.23 8.89 0 75.00 
Sum of precipitation (in) pS 29.37 18.79 0 45.78 
Average of precipitation (in) pA 0.02 0.01 0 0.05 

Table 32. Descriptive Statistics of Urban Four-Lane Undivided Roadways (Annual Level 
Data). 

Variables Code Mean SD Min Max 
AADT (vpd) ADT_CUR 13357.15 8762.67 2 71576.00 
Truck proportion TRK_AAD 6.31 5.85 0 81.40 
Lane width (ft) LANE_WI 12.05 2.60 4 20.00 
Inside shoulder width (ft) S_WID_I 2.22 3.89 0 30.00 
Outside shoulder width (ft) S_WID_O 2.38 4.08 0 26.00 
K-factor K_FAC 9.81 1.94 4.3 50.00 
Minor Commercial Driveway MnrCmmr 0.75 2.47 0 47.00 
Major Commercial Driveway MjrCmmr 3.17 4.95 0 77.00 
Minor Other Driveway MnrOthr 0.04 0.35 0 12.00 
Major Industrial Driveway MjrInds 0.53 1.90 0 48.00 
Minor Industrial Driveway MnrInds 0.11 0.94 0 29.00 
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Minor Residential Driveway MnrRsdn 0.12 0.57 0 17.00 
Average operating speed (mph) SpdAve 69.86 12.14 0 80.00 
85 percentile speed (mph) SEF 74.41 13.21 0 80.00 
Sum of precipitation (in) pS 33.31 15.13 0 51.00 
Average of precipitation (in) pA 0.03 0.01 0 0.02 

Table 33. Descriptive Statistics of Urban Four-Lane Divided Roadways (Annual Level 
Data). 

Variables Code Mean SD Min Max 
AADT (vpd) ADT_CUR 20158.73 12155.84 250 140415.00 
Truck proportion TRK_AAD 9.48 8.01 0.1 81.40 
Lane width (ft) LANE_WI 12.41 1.56 6 20.00 
Inside shoulder width (ft) S_WID_I 6.07 5.43 0 30.00 
Outside shoulder width (ft) S_WID_O 12.30 7.64 0 44.00 
K-factor K_FAC 9.52 1.43 6 21.20 
Minor Commercial Driveway MnrCmmr 0.08 0.45 0 8.00 
Major Commercial Driveway MjrCmmr 1.73 2.88 0 31.00 
Minor Other Driveway MnrOthr 0.04 0.27 0 6.00 
Major Industrial Driveway MjrInds 1.12 1.89 0 23.00 
Minor Industrial Driveway MnrInds 0.02 0.22 0 5.00 
Minor Residential Driveway MnrRsdn 0.03 0.22 0 5.00 
Average operating speed (mph) SpdAve 70.23 11.45 0 80.00 
85 percentile speed (mph) SEF 72.12 12.75 0 80.00 
Sum of precipitation (in) pS 33.31 15.13 0 51.00 
Average of precipitation (in) pA 0.03 0.01 0 0.02 

Table 34. Descriptive Statistics of Urban Five-lane Roadways (Annual Level Data). 
Variables Code Mean SD Min Max 
AADT (vpd) ADT_CUR 19439.50 11000.37 2099 71576.00 
Truck proportion TRK_AAD 7.509 4.739 1.3 51.50 
Lane width (ft) LANE_WI 13.354 2.581 10 20.00 
Inside shoulder width (ft) S_WID_I 4.344 4.379 0 18.00 
Outside shoulder width (ft) S_WID_O 4.859 4.496 0 20.00 
K-factor K_FAC 9.198 1.384 6.4 21.50 
Minor Commercial Driveway MnrCmmr 0.027 0.170 0 2.00 
Major Commercial Driveway MjrCmmr 1.570 1.818 0 12.00 
Minor Other Driveway MnrOthr 0.006 0.077 0 1.00 
Major Industrial Driveway MjrInds 0.529 1.102 0 8.00 
Minor Industrial Driveway MnrInds 0.004 0.067 0 1.00 
Minor Residential Driveway MnrRsdn 0.028 0.198 0 2.00 
Average operating speed (mph) SpdAve 71.22 10.45 0 80.00 
85 percentile speed (mph) SEF 73.27 12.71 0 80.00 
Sum of precipitation (in) pS 34.72 13.39 0 57 
Average of precipitation (in) pA 0.009 0.004 0 0.02 



107 
 

4.3 ANNUAL LEVEL SAFETY PERFORMANCE FUNCTIONS 

The Project Team populated a list of speed measures that quantify speed with respect to different 
aspects. Given a long list, it is imperative to select a measure that is appropriate and meaningful 
to include in the SPF development. The team conducted the correlation analysis between speed 
measures for the year 2018 and calculated the Pearson correlation coefficient, as shown in Table 
35. The speed measures are highly correlated, and it was decided to use the 85th percentile speed 
where the operational speeds are higher than the posted speed limit and the standard deviation in 
the speed (SpdStd) in SPFs, given their wide range of use.  

Table 35. Correlation Analysis Results. 

Variable Spd 
Ave 

Spd 
Std Spd85 

Spd 
Ave 
Day 

Spd 
Std 
Day 

Spd 
Ave 

Night 

Spd 
Std 

Night 

Spd 
Ave 

MMW
T 

Spd 
Std 

MMW
T 

Spd 
Ave 
FSS 

Spd 
Std 
FSS 

Spd 
FF 

Ave 
PSL 

Spd 
Ave 1             

Spd 
Std 0.437 1            

Spd85 0.995 0.516 1           

SpdAve 
Day 0.998 0.403 0.989 1          

SpdStd 
Day 0.439 0.975 0.511 0.405 1         

SpdAve 
Night 0.998 0.470 0.997 0.991 0.472 1        

SpdStd 
Night 0.444 0.948 0.521 0.419 0.871 0.469 1       

SpdAve 
MMWT 1.000 0.430 0.994 0.998 0.432 0.997 0.439 1      

SpdStd 
MMWT 0.428 0.995 0.505 0.393 0.978 0.462 0.929 0.420 1     

SpdAve 
FSS 1.000 0.447 0.995 0.997 0.449 0.998 0.451 0.999 0.438 1    

SpdStd 
FSS 0.441 0.983 0.520 0.408 0.943 0.472 0.960 0.435 0.960 0.448 1   

SpdFF 
Ave 0.994 0.510 0.998 0.987 0.504 0.996 0.517 0.993 0.500 0.994 0.514 1  

PSL 0.989 0.538 0.997 0.982 0.529 0.992 0.548 0.988 0.527 0.989 0.544 0.998 1 

4.3.1 SPFs for Freeways 

For the SPF development, the team developed adjustment factors for different number of lanes 
since each type of cross section has different safety performance. Since PDO crashes are usually 
under-reported, it was decided to develop separate models for FI and PDO crashes. The Project 
Team first examined different functional forms with various combinations of variables while 
modeling the FI crashes. It is assumed that the FI crash model provides a true relationship 
between crashes and independent variables. The form presented below reflects the findings from 
several preliminary regression analyses. The same form is also used for modeling the PDO 
crashes, even if some variables are insignificant or counter-intuitive. The predicted crash 
frequency is calculated as follows using Equation (41). 
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𝑁𝑁 = 𝐿𝐿 × 𝑦𝑦 × 𝑒𝑒𝑏𝑏0+𝑏𝑏6𝐼𝐼6+𝑏𝑏8𝐼𝐼8+𝑏𝑏10𝐼𝐼10+𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ln(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) × 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡 × 𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙 × 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 × 𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜
× 𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚 × 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 

(41) 

With,  
𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑏𝑏 = 𝑒𝑒𝑏𝑏𝑎𝑎𝑡𝑡(𝑝𝑝𝑏𝑏_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑏𝑏 = �𝑒𝑒
𝑏𝑏𝑙𝑙𝑙𝑙(𝑡𝑡𝑏𝑏−12),   𝑓𝑓𝑓𝑓 𝑀𝑀𝑤𝑤 ≤ 12𝑓𝑓𝑡𝑡
𝑒𝑒𝑏𝑏𝑙𝑙𝑙𝑙,2 ,   𝑓𝑓𝑓𝑓 𝑀𝑀𝑤𝑤 > 12𝑓𝑓

𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑠𝑠𝑏𝑏 = �𝑒𝑒
𝑏𝑏𝑖𝑖𝑏𝑏𝑙𝑙(𝑝𝑝𝑠𝑠𝑏𝑏−4),   𝑓𝑓𝑓𝑓 𝑓𝑓𝑠𝑠𝑤𝑤 ≤ 4𝑓𝑓𝑡𝑡
𝑒𝑒𝑏𝑏𝑖𝑖𝑏𝑏𝑙𝑙,2 ,   𝑓𝑓𝑓𝑓 𝑓𝑓𝑠𝑠𝑤𝑤 > 4𝑓𝑓𝑡𝑡

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑠𝑠𝑏𝑏 = �𝑒𝑒
𝑏𝑏𝑜𝑜𝑏𝑏𝑙𝑙(𝑡𝑡𝑠𝑠𝑏𝑏−8),   𝑓𝑓𝑓𝑓 𝑝𝑝𝑠𝑠𝑤𝑤 ≤ 8𝑓𝑓𝑡𝑡
𝑒𝑒𝑏𝑏𝑜𝑜𝑏𝑏𝑙𝑙,2 ,   𝑓𝑓𝑓𝑓 𝑝𝑝𝑠𝑠𝑤𝑤 > 8𝑓𝑓𝑡𝑡

 

𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏 = � 𝑒𝑒𝑏𝑏𝑚𝑚𝑏𝑏(𝑏𝑏𝑏𝑏−30),    𝑝𝑝𝑠𝑠 𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑛𝑛 𝑏𝑏𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑛𝑛𝑝𝑝 

𝑒𝑒𝑏𝑏𝑚𝑚𝑙𝑙(𝑏𝑏𝑏𝑏−30),    𝑝𝑝𝑠𝑠 𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑛𝑛 𝑏𝑏𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑠𝑠 𝑛𝑛𝑡𝑡𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑛𝑛𝑝𝑝  

𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑝𝑝𝑝𝑝 = 𝑒𝑒𝑏𝑏𝑏𝑏𝑠𝑠𝑎𝑎(𝑆𝑆𝑠𝑠𝑝𝑝𝑠𝑠−𝑃𝑃𝑆𝑆𝑃𝑃) 
Where, 

𝑁𝑁 = Predicted annual average crash frequency, 
𝐿𝐿 = Segment length, miles, 
𝑦𝑦 = Number of years of crash data, 
𝐼𝐼6 = Indicator variable for 6-lane section (1 if 6 lanes, 0 otherwise), 
𝐼𝐼8 = Indicator variable for 8-lane section (1 if 8 lanes, 0 otherwise), 
𝐼𝐼10 = Indicator variable for 10+-lane section (1 if 10+ lanes, 0 otherwise), 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = Average Annual Daily Traffic, vehicles per day, 
𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡 = CMF for truck proportion in the traffic mix, 
𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙 = CMF for lane width, 
𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 = Crash Modification Factor for inside shoulder width, 
𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = CMF for outside shoulder width, 
𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚 = CMF for median width, 
𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 = CMF for excess speed, 
𝑡𝑡𝑡𝑡_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = Percent of trucks in the traffic mix, %, 

𝑙𝑙𝑙𝑙 = Lane width, feet, 
𝑖𝑖𝑖𝑖𝑖𝑖 = Inside shoulder width, feet, 
𝑜𝑜𝑜𝑜𝑜𝑜 = Outside shoulder width, feet, 
𝑚𝑚𝑚𝑚 = Median width when barrier is not present, feet, 
𝑃𝑃𝑃𝑃𝑃𝑃 = Posted speed limit, mph, 
𝑏𝑏𝑗𝑗 = Calibrated coefficients. 

Table 36 and Table 37 provide calibrated coefficients for FI crashes and PDO crashes, 
respectively. A significance level of 5 percent is used to include the variables in the model. 
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However, when the coefficient is not statistically significant but is intuitive and within logical 
boundaries, then those variables are considered as well. The NonLinear MIXED-effects models 
(NLMIXED) procedure in the Statistical Analysis System (SAS) software was used to estimate 
the proposed model coefficients. This procedure was used because the proposed predictive 
model is both nonlinear and discontinuous. The log-likelihood function for the al NB distribution 
was used to determine the best-fit model coefficients.  

Table 36. Calibrated Coefficients for Fatal and Injury Crashes on Freeways. 

Coefficient Variable Value Std. Dev t-statistic p-
value 

𝑏𝑏0 Intercept  -5.380 0.189 -28.51 <.0001 
𝑏𝑏6 Adjustment factor for 6 lanes 0.216 0.026 8.29 <.0001 
𝑏𝑏8 Adjustment factor for 8 lanes 0.359 0.035 10.18 <.0001 
𝑏𝑏10 Adjustment factor for 10+ lanes 0.450 0.052 8.58 <.0001 
𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 AADT  0.700 0.017 41.04 <.0001 
𝑏𝑏𝑡𝑡𝑡𝑡 Truck proportion -0.022 0.001 -21.02 <.0001 
𝑏𝑏𝑙𝑙𝑙𝑙 Lane width (if <12ft) -0.101 0.051 -2.00 0.0457 
𝑏𝑏𝑙𝑙𝑙𝑙,2 Lane width (if >12ft) 0.102 0.063 1.61 0.1084 
𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖 Inside shoulder width (if <4t) -0.021 0.004 -5.22 <.0001 
𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖,2 Inside shoulder width (if >4ft) -0.011 0.027 -0.39 0.6935 
𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜 Outside shoulder width (if <8ft) -0.005 0.006 -0.92 0.3575 
𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜,2 Outside shoulder width (if >8ft) 0.024 0.027 0.88 0.3785 
𝑏𝑏𝑚𝑚𝑚𝑚 Median width (if barrier is present) -0.168 0.034 -4.88 <.0001 

𝑏𝑏𝑚𝑚𝑚𝑚 Median width (if barrier is not 
present) 

-0.481 0.038 -12.55 <.0001 

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Excess speed 0.972 0.334 2.91 0.0036 
𝑘𝑘 Inverse dispersion parameter  1.714 0.017 100.77 <.0001 
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Table 37. Calibrated Coefficients for Property Damage Only Crashes on Freeways.  

Coefficient Variable Value Std. Dev t-statistic p-
value 

𝑏𝑏0 Intercept  -4.545 0.187 -24.27 <.0001 
𝑏𝑏6 Adjustment factor for 6 lanes 0.164 0.026 6.32 <.0001 
𝑏𝑏8 Adjustment factor for 8 lanes 0.286 0.035 8.15 <.0001 
𝑏𝑏10 Adjustment factor for 10+ lanes 0.470 0.053 8.84 <.0001 
𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 AADT  0.701 0.017 41.12 <.0001 
𝑏𝑏𝑡𝑡𝑡𝑡 Truck proportion -0.014 0.001 -14.51 <.0001 
𝑏𝑏𝑙𝑙𝑙𝑙 Lane width (if <12ft) -0.041 0.050 -0.82 0.4144 
𝑏𝑏𝑙𝑙𝑙𝑙,2 Lane width (if >12ft) 0.120 0.064 1.87 0.0618 
𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖 Inside shoulder width (if <4t) -0.013 0.004 -3.26 0.0011 
𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖,2 Inside shoulder width (if >4ft) 0.011 0.028 0.4 0.6896 
𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜 Outside shoulder width (if <8ft) -0.011 0.006 -1.81 0.0696 
𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜,2 Outside shoulder width (if >8ft) -0.030 0.027 -1.11 0.2659 
𝑏𝑏𝑚𝑚𝑚𝑚 Median width (if barrier is present) -0.201 0.032 -6.2 <.0001 

𝑏𝑏𝑚𝑚𝑚𝑚 Median width (if barrier is not 
present) 

-0.583 0.034 -17.01 <.0001 

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Excess speed 0.103 0.324 0.32 0.7497 
𝑘𝑘 Inverse dispersion parameter  1.628 0.015 110.44 <.0001 

A comparison of different calibrated freeway SPFs for four-lane freeways is shown in Figure 40 
and Figure 41 for FI crashes and total crashes, respectively.  The SPFs developed in this project 
are compared with the HSM-calibrated SPFs (Geedipally et al., 2022) and the Texas Roadway 
Safety Design Workbook (called as Texas WB going forward) (Bonneson and Pratt, 2008). The 
equations are plotted for the case of all CMFs equal to 1.0 (representing base conditions).  It is 
important to note that the SPFs do not include the same set of base conditions and thus they are 
not directly comparable to each other. In addition, the Texas WB SPFs are not calibrated to the 
current time period. The SPFs are shown for illustration purposes only. Since Texas WB includes 
SPFs for FI crashes only, the comparison is made just with HSM SPFs for total crashes.  



111 
 

Figure 40. SPF comparison for Fatal and Injury Crashes on Freeways. 

Figure 41. SPF comparison for Total Crashes on Freeways. 

Crash Modification Factors (CMF) 

CMFs were calibrated in conjunction with the SPFs. All of them were calibrated using the FI 
crash data. Collectively, they describe the relationship between various operational and 
geometric factors and crash frequency. These CMFs are described in this section and, where 
possible, compared with the findings from HSM and Texas WB as a means of model validation.  

Truck Proportion CMF 

The truck proportion CMF is described using Equation 42:  
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𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡 = 𝑒𝑒−0.022(𝑡𝑡𝑡𝑡_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) (42) 

The base condition for this CMF is no trucks in the traffic mix. The truck proportion CMF is 
shown in Figure 42. The CMF for truck proportion for urban arterials from Texas WB is used for 
comparison. Both CMFs show similar trends. The CMF shows that the crashes decrease as the 
proportion of trucks in traffic increases. Although this may seem counterintuitive, trucks usually 
travel on high-standard roads and that is reflected in this CMF.  

Figure 42. CMF for Truck Proportion on Freeways. 

Lane Width CMF 

The lane width CMF is described using Equation 43: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙 = �𝑒𝑒
−0.101×(𝑙𝑙𝑙𝑙−12),   𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙 ≤ 12𝑓𝑓𝑓𝑓

1.0,   𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙 > 12𝑓𝑓𝑓𝑓
 

(43) 

The base condition for this CMF is a 12-ft lane width. The lane width used in this CMF is an 
average for all through lanes on the segment. The lane width CMF developed in this study is 
shown in Figure 43 using a solid trend line. The lane widths used to calibrate this CMF range 
from 10 to 13 ft. The coefficient for lane widths greater than 12ft is found to be statistically 
insignificant and counterintuitive, so a value of 1.0 is used. Figure 43 also presents the CMFs 
from HSM and the Texas WB. Broken lines are used to differentiate these CMFs from the one 
proposed in this research project. The proposed CMF is shown to be more sensitive to lane width 
than the CMFs in HSM and Texas WB.  
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Figure 43. CMF for Lane Width on Freeways. 

Inside Shoulder Width CMF 

The inside shoulder width CMF is described using Equation 44: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 = �𝑒𝑒
−0.021×(𝑖𝑖𝑖𝑖𝑖𝑖−4),   𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 4𝑓𝑓𝑓𝑓

0.99,   𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖 > 4𝑓𝑓𝑓𝑓  (44) 

The base condition for this CMF is a 4-ft inside shoulder width. The width used in this CMF is 
an average for inside shoulders in both directions. The inside shoulder width CMF developed in 
this study is shown in Figure 44 using a solid trend line. The inside shoulder widths used to 
calibrate this CMF range from 2 to 8 ft. Also shown in Figure 44 are CMFs presented in the 
HSM and Texas WB. Broken lines are used to differentiate these CMFs from the one proposed 
in this research project. The proposed CMF closely tracks the CMFs presented in the HSM and 
Texas WB, however this study found that the rate of improvement with increased shoulder width 
diminishes after 4ft.  
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Figure 44. CMF for Inside Shoulder Width on Freeways. 

Outside Shoulder Width CMF 

The outside shoulder width CMF is described using Equation 45: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = �𝑒𝑒
−0.05×(𝑜𝑜𝑜𝑜𝑜𝑜−8),   𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜 ≤ 8𝑓𝑓𝑓𝑓

1.0,   𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜 > 8𝑓𝑓𝑓𝑓  (45) 

The base condition for this CMF is an 8-ft outside shoulder width. The width used in this CMF is 
average for outside shoulders in both directions. The outside shoulder width CMF developed in 
this study is shown in Figure 45 using a solid trend line. The outside shoulder widths used to 
calibrate this CMF range from 6 to 12 ft. The coefficient for shoulder widths greater than 8ft is 
found to be statistically insignificant and counterintuitive, so a value of 1.0 is used. Also shown 
in Figure 45 are CMFs presented in HSM and Texas WB. Since HSM and Texas WB have a 10-
ft base condition, the CMF developed in this study is adjusted accordingly. Broken lines are used 
to differentiate these CMFs from the one proposed in this research project. The proposed CMF 
closely tracks the CMFs presented in the Texas WB. The CMF presented in HSM is shown to be 
more sensitive to outside shoulder width than the proposed CMF or the one in the Texas WB.  
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Figure 45. CMF for Outside Shoulder Width on Freeways. 

Median Width CMF 

The median width CMF is described using Equation 46. 

𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚 = � 𝑒𝑒−0.168×0.01×(𝑚𝑚𝑚𝑚−30),    𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

𝑒𝑒−0.481×0.01×(𝑚𝑚𝑚𝑚−30),    𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  
(46) 

The base condition for this CMF is a 30-ft median width. The median width CMF is shown in 
Figure 46 using a solid trend line. The CMF proposed in this research is compared with the CMF 
in HSM and Texas WB in Figure 46. Broken lines are used to differentiate these CMFs from the 
one proposed in this research project. The proposed CMF closely tracks the CMFs presented in 
the HSM for medians with barriers present. 
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Figure 46. CMF for Median Width on Freeways. 

Excess Speed CMF 

The excess speed CMF is described using Equation 47. 

𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑒𝑒0.972×0.01×(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃) (47) 

The base condition for this CMF varies according to the posted speed limit. Since the operating 
speed CMF does not exist in HSM or Texas WB, a comparison could not be made. The CMF 
shows that exceeding the PSL by 10 mph increases the crashes by 10% (see Figure 47).  

Figure 47. CMF for Operating Speeds on Freeways. 
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4.3.2 SPFs for Multi-lane Divided Highways 

For the SPF development, the team developed adjustment factors for different number of lanes 
since each type of cross section has different safety performance. The predicted crash frequency 
is calculated as follows in Equation (48);  
𝑁𝑁 = 𝐿𝐿 × 𝑦𝑦 × 𝑒𝑒𝑏𝑏0+𝑏𝑏6𝐹𝐹6+𝑏𝑏8𝐹𝐹8+𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎 ln(𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴) × 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑏𝑏 × 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑏𝑏 × 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑠𝑠𝑏𝑏 × 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑠𝑠𝑏𝑏 ×
𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏 × 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑏𝑏 × 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑝𝑝𝑝𝑝; 

(48) 

With,  
𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑏𝑏 = 𝑒𝑒𝑏𝑏𝑎𝑎𝑡𝑡(𝑝𝑝𝑏𝑏_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑏𝑏 = �𝑒𝑒
𝑏𝑏𝑙𝑙𝑙𝑙(𝑡𝑡𝑏𝑏−12),   𝑓𝑓𝑓𝑓 𝑀𝑀𝑤𝑤 ≤ 12𝑓𝑓𝑡𝑡
𝑒𝑒𝑏𝑏𝑙𝑙𝑙𝑙,2 ,   𝑓𝑓𝑓𝑓 𝑀𝑀𝑤𝑤 > 12𝑓𝑓𝑡𝑡

𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑠𝑠𝑏𝑏 = �𝑒𝑒
𝑏𝑏𝑖𝑖𝑏𝑏𝑙𝑙(𝑝𝑝𝑠𝑠𝑏𝑏−4),   𝑓𝑓𝑓𝑓 𝑓𝑓𝑠𝑠𝑤𝑤 ≤ 4𝑓𝑓𝑡𝑡
𝑒𝑒𝑏𝑏𝑖𝑖𝑏𝑏𝑙𝑙,2 ,   𝑓𝑓𝑓𝑓 𝑓𝑓𝑠𝑠𝑤𝑤 > 4𝑓𝑓𝑡𝑡

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑠𝑠𝑏𝑏 = �𝑒𝑒
𝑏𝑏𝑜𝑜𝑏𝑏𝑙𝑙(𝑡𝑡𝑠𝑠𝑏𝑏−8),   𝑓𝑓𝑓𝑓 𝑝𝑝𝑠𝑠𝑤𝑤 ≤ 8𝑓𝑓𝑡𝑡
𝑒𝑒𝑏𝑏𝑜𝑜𝑏𝑏𝑙𝑙,2 ,   𝑓𝑓𝑓𝑓 𝑝𝑝𝑠𝑠𝑤𝑤 > 8𝑓𝑓𝑡𝑡

 

𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏 = � 𝑒𝑒𝑏𝑏𝑚𝑚𝑏𝑏(𝑏𝑏𝑏𝑏−30),    𝑝𝑝𝑠𝑠 𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑛𝑛 𝑏𝑏𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑛𝑛𝑝𝑝 

𝑒𝑒𝑏𝑏𝑚𝑚𝑙𝑙(𝑏𝑏𝑏𝑏−30),    𝑝𝑝𝑠𝑠 𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑛𝑛 𝑏𝑏𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑠𝑠 𝑛𝑛𝑡𝑡𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑛𝑛𝑝𝑝 

𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑏𝑏 = 𝑒𝑒𝑏𝑏𝑎𝑎𝑙𝑙(0.01×𝑃𝑃𝑃𝑃) 
𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑝𝑝𝑝𝑝 = 𝑒𝑒𝑏𝑏𝑏𝑏𝑠𝑠𝑎𝑎(𝑆𝑆𝑠𝑠𝑝𝑝𝑠𝑠−𝑃𝑃𝑆𝑆𝑃𝑃) 

Where, 

𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑 = Crash Modification Factor for driveway density, 
𝐷𝐷𝐷𝐷 = Driveway density. 

Table 38 and Table 39 provide calibrated coefficients for FI crashes and PDO crashes 
respectively.  
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Table 38. Calibrated Coefficients for FI Crashes on Multi-lane Divided Highways.  

Coefficient Variable Value Std. Dev t-statistic p-
value 

𝑏𝑏0 Intercept  -5.083 0.221 -22.98 <.0001 
𝑏𝑏6 Adjustment factor for 6 lanes 0.330 0.032 10.15 <.0001 
𝑏𝑏8 Adjustment factor for 8+ lanes 0.541 0.113 4.78 <.0001 

𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 AADT  0.647 0.022 29.78 <.0001 
𝑏𝑏𝑡𝑡𝑡𝑡 Truck proportion -0.017 0.002 -9.18 <.0001 
𝑏𝑏𝑙𝑙𝑙𝑙 Lane width (if <12ft) -0.098 0.032 -3.06 0.0022 
𝑏𝑏𝑙𝑙𝑙𝑙,2 Lane width (if >12ft) 0.100 0.041 2.44 0.0147 
𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖 Inside shoulder width (if <4t) -0.030 0.004 -7.84 <.0001 
𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖,2 Inside shoulder width (if >4ft) 0.110 0.047 2.34 0.0193 
𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜 Outside shoulder width (if <8ft) -0.034 0.004 -7.79 <.0001 
𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜,2 Outside shoulder width (if >8ft) 0.074 0.032 2.33 0.0199 
𝑏𝑏𝑚𝑚𝑚𝑚 Median width (if barrier is present) -0.265 0.051 -5.21 <.0001 

𝑏𝑏𝑚𝑚𝑚𝑚 Median width (if barrier is not 
present) 

-0.213 0.030 -7.18 <.0001 

𝑏𝑏𝑑𝑑𝑑𝑑 Driveway density 0.016 0.002 6.32 <.0001 
𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Excess speed 3.463 0.460 7.52 <.0001 
𝑘𝑘 Inverse dispersion parameter  1.394 0.018 75.92 <.0001 
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Table 39. Calibrated Coefficients for PDO Crashes on Multi-lane Divided Highways.  

Coefficient Variable Value Std. Dev t-statistic p-
value 

𝑏𝑏0 Intercept  -4.723 0.203 -23.27 <.0001 
𝑏𝑏6 Adjustment factor for 6 lanes 0.320 0.031 10.23 <.0001 
𝑏𝑏8 Adjustment factor for 8+ lanes 0.629 0.111 5.67 <.0001 

𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 AADT  0.678 0.020 33.94 <.0001 
𝑏𝑏𝑡𝑡𝑡𝑡 Truck proportion -0.011 0.002 -6.5 <.0001 
𝑏𝑏𝑙𝑙𝑙𝑙 Lane width (if <12ft) -0.140 0.031 -4.53 <.0001 
𝑏𝑏𝑙𝑙𝑙𝑙,2 Lane width (if >12ft) 0.130 0.040 3.28 0.001 
𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖 Inside shoulder width (if <4t) -0.033 0.004 -9.01 <.0001 
𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖,2 Inside shoulder width (if >4ft) 0.082 0.046 1.79 0.073 
𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜 Outside shoulder width (if <8ft) -0.033 0.004 -8.03 <.0001 
𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜,2 Outside shoulder width (if >8ft) 0.090 0.030 2.97 0.0029 
𝑏𝑏𝑚𝑚𝑚𝑚 Median width (if barrier is present) -0.190 0.051 -3.74 0.0002 

𝑏𝑏𝑚𝑚𝑚𝑚 Median width (if barrier is not 
present) 

-0.255 0.028 -9.07 <.0001 

𝑏𝑏𝑑𝑑𝑑𝑑 Driveway density 0.021 0.002 8.85 <.0001 
𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Excess speed 3.280 0.435 7.54 <.0001 
𝑘𝑘 Inverse dispersion parameter  1.376 0.016 87.87 <.0001 

A comparison of different calibrated multi-lane divided SPFs is shown in Figure 48 and Figure 
49 for FI crashes and total crashes, respectively.  The SPFs developed in this project are 
compared with the calibrated HSM SPFs and Texas WB. The equations are plotted for the case 
of all CMFs equal to 1.0 (representing base conditions).  It is important to note that the SPFs do 
not include the same set of base conditions and thus they are not directly comparable to each 
other. In addition, the Texas WB SPFs are not calibrated to the current time period. The SPFs are 
shown for illustration purposes only. Since Texas WB includes SPFs for FI crashes only, the 
comparison is made just with HSM SPFs for total crashes.  
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Figure 48. SPF Comparison for FI Crashes on Multi-lane Divided Highways. 

Figure 49. SPF Comparison for Total Crashes on Multi-lane Divided Highways. 

Crash Modification Factors 

Several CMFs were calibrated in conjunction with the SPFs. All of them were calibrated using 
the FI crash data. These CMFs are described in this section and, where possible, compared with 
the findings from the HSM and Texas WB as a means of model validation.  

Truck Proportion CMF 

The truck proportion CMF is described using Equation 49:  

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡 = 𝑒𝑒−0.017(𝑡𝑡𝑡𝑡_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) (49) 
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The base condition for this CMF is no trucks in the traffic mix. The truck proportion CMF is 
shown in Figure 50. The CMF for truck proportion for urban arterials from Texas WB is used for 
comparison. Both CMFs show similar trends. The CMF shows that the crashes decrease with the 
increase in truck proportion in traffic. Although this may seem counterintuitive, trucks usually 
travel on high-standard roads, and that is reflected in this CMF.  

Figure 50. CMF for Truck Proportion on Multi-Lane Divided Highways. 

Lane Width CMF 

The lane width CMF is described using Equation 50: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙 = �𝑒𝑒
−0.098(𝑙𝑙𝑙𝑙−12),   𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙 ≤ 12𝑓𝑓𝑓𝑓

1.0,   𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙 > 12𝑓𝑓𝑓𝑓
 

(50) 

The base condition for this CMF is a 12-ft lane width. The lane width used in this CMF is an 
average for all through lanes on the segment. The lane width CMF developed in this study is 
shown in Figure 51 using a solid trend line. The lane widths used to calibrate this CMF range 
from 10 to 13 ft. The coefficient for lane widths greater than 12ft is found to be marginally 
significant and counterintuitive, so a value of 1.0 is used. Also shown in Figure 51 is the CMF 
presented in the Texas WB. Broken lines are used to differentiate this CMF from the one 
proposed in this research project. It is important to note that the HSM does not include a CMF 
for lane width for urban arterials. The proposed CMF is shown to be more sensitive to lane width 
than the CMF in the Texas WB.  
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Figure 51. CMF for Lane Width on Multi-Lane Divided Highways. 

Inside Shoulder Width CMF 

The inside shoulder width CMF is described using Equation 51: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 = �𝑒𝑒
−0.030×(𝑖𝑖𝑖𝑖𝑖𝑖−4),   𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 4𝑓𝑓𝑓𝑓

1.0,   𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖 > 4𝑓𝑓𝑓𝑓  (51) 

The base condition for this CMF is a 4-ft inside shoulder width. The width used in this CMF is 
an average for inside shoulders in both directions. The inside shoulder width CMF developed in 
this study is shown in Figure 52 using a solid trend line. The coefficient for inside shoulder 
widths greater than 4ft is found to be marginally significant and counterintuitive, so a value of 
1.0 is used. The inside shoulder widths used to calibrate this CMF range from 2 to 10 ft. Also 
shown in Figure 52 is the CMF presented in the Texas WB. It is important to note that the HSM 
does not include a CMF for inside shoulder width for urban arterials. The proposed CMF tracks 
well with the CMF in the Texas WB.  
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Figure 52. CMF for Inside Shoulder Width on Multi-lane Divided Highways. 

Outside Shoulder Width CMF 

The outside shoulder width CMF is described using Equation 52: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = �𝑒𝑒
−0.034×(𝑜𝑜𝑜𝑜𝑜𝑜−8),   𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜 ≤ 8𝑓𝑓𝑓𝑓

1.0,   𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜 > 8𝑓𝑓𝑓𝑓  (52) 

The base condition for this CMF is an 8-ft outside shoulder width. The width used in this CMF is 
an average for outside shoulders in both directions. The outside shoulder width CMF developed 
in this study is shown in Figure 53 using a solid trend line. The outside shoulder widths used to 
calibrate this CMF range from 6 to 12 ft. The coefficient for outside shoulder widths greater than 
8ft is found to be marginally significant and counterintuitive, so a value of 1.0 is used. Also 
shown in Figure 53 are CMF presented in the Texas WB. Broken lines are used to differentiate 
this CMF from the one proposed in this research project. It is important to note that the HSM 
does not include a CMF for outside shoulder width for urban arterials. The proposed CMF is 
more sensitive to the outside shoulder width than the Texas WB CMF.  



124 
 

Figure 53. CMF for Outside Shoulder Width on Multi-lane Divided Highways. 

Median Width CMF 

The median width CMF is described using Equation 53. 

𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚 = � 𝑒𝑒−0.265×0.01×(𝑚𝑚𝑚𝑚−30),    𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

𝑒𝑒−0.213×0.01×(𝑚𝑚𝑚𝑚−30),    𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  
(53) 

The base condition for this CMF is a 30-ft median width. The median width CMF is shown in 
Figure 54 using a solid trend line for median with barriers and with dotted lines for median 
without barriers. The CMF proposed in this research is compared with the CMF in HSM. The 
proposed CMFs are more sensitive to the median width than the CMF presented in the HSM. 

Figure 54. CMF for Median Width on Multi-lane Divided Highways. 
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Excess Speed CMF 

The excess speed CMF is described using Equation 54. 

𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑒𝑒3.463×0.01×(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃) (54) 

The base condition for this CMF varies according to the posted speed limit. Figure 55 shows the 
CMF for excess speeds on multi-lane divided highways. Since the operating speed CMF does not 
exist in HSM or Texas WB, a comparison could not be made. The CMF shows that exceeding 
the PSL by 10 mph increases the crashes by 40%. Over speeding has a more pronounced effect 
on multi-lane divided arterials than on freeways. 

Figure 55. CMF for Excess Speeds on Multi-Lane Divided Highways. 

Driveway CMF 

The driveway CMF is described using Equation 55. 

𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑒𝑒0.016(0.1×𝐷𝐷𝐷𝐷) (55) 

The base condition for this CMF is no driveways. The driveway CMF is shown in Figure 56 
using a solid trend line for residential driveway density. The Project Team developed an equation 
to convert industrial and commercial driveways into equivalent residential driveways based on 
traffic volumes in their previous research (Geedipally et al., 2021). Mainly, it was found that one 
industrial driveway is equivalent to 3 residential and one commercial driveway is equivalent to 
12 residential driveways. 
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Figure 56. CMF for Driveway Density on Multi-lane Divided Highways. 

4.3.3 SPFs for Multi-lane Undivided Highways 

For the SPF development, the team just considered the four-lane highways, given the large 
sample size in that category. The predicted crash frequency is calculated as follows in Equation 
(56).  
𝑁𝑁 = 𝐿𝐿 × 𝑦𝑦 × 𝑒𝑒𝑏𝑏0+𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ln(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) × 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡 × 𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙 × 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 × 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 × 𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑 ×
𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝;  

(56) 

With,  
𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑏𝑏 = 𝑒𝑒𝑏𝑏𝑙𝑙𝑙𝑙(𝑡𝑡𝑏𝑏−12) 
𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑏𝑏 = 𝑒𝑒𝑏𝑏𝑏𝑏𝑙𝑙(𝑠𝑠𝑏𝑏−6) 
𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑝𝑝𝑝𝑝 = 𝑒𝑒𝑏𝑏𝑏𝑏𝑠𝑠𝑎𝑎(𝑆𝑆𝑠𝑠𝑝𝑝𝑠𝑠−𝑃𝑃𝑆𝑆𝑃𝑃)

𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑏𝑏 = 𝑒𝑒𝑏𝑏𝑎𝑎𝑙𝑙(0.01×𝑃𝑃𝑃𝑃) 
𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑒𝑒𝑏𝑏𝑠𝑠𝑝𝑝𝑏𝑏(𝑝𝑝𝑝𝑝𝑝𝑝)×0.1 

Where, 

𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 = Crash Modification Factor for average shoulder width, 
𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 = Crash Modification Factor for average daily precipitation, 

𝑠𝑠𝑠𝑠 = Average shoulder width, feet, 
𝑝𝑝𝑝𝑝𝑝𝑝 = Average yearly precipitation, inches, 
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Table 40 and Table 41 provide calibrated coefficients for FI crashes and PDO crashes, 
respectively.  

Table 40. Calibrated Coefficients for FI Crashes on Multi-lane Undivided Highways.  

Coefficient Variable Value Std. Dev t-statistic p-
value 

𝑏𝑏0 Intercept  -6.679 0.168 -39.75 <.0001 
𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 AADT  0.863 0.017 50.28 <.0001 
𝑏𝑏𝑡𝑡𝑡𝑡 Truck proportion -0.017 0.002 -10.49 <.0001 
𝑏𝑏𝑙𝑙𝑙𝑙 Lane width -0.015 0.013 -1.14 0.2528 
𝑏𝑏𝑠𝑠𝑠𝑠 Shoulder width -0.020 0.002 -9.32 <.0001 
𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Excess speed 0.025 0.003 8.1 <.0001 
𝑏𝑏𝑑𝑑𝑑𝑑 Driveway density 0.011 0.002 5.66 <.0001 
𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝 Precipitation  0.076 0.019 4 <.0001 

𝑘𝑘 Inverse dispersion 
parameter  

1.563 0.016 99.5 <.0001 

Table 41. Calibrated Coefficients for PDO Crashes on Multi-lane Undivided Highways.  

Coefficient Variable Value Std. Dev t-statistic p-
value 

𝑏𝑏0 Intercept  -5.829 0.156 -37.4 <.0001 
𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 AADT  0.857 0.016 53.71 <.0001 
𝑏𝑏𝑡𝑡𝑡𝑡 Truck proportion -0.005 0.002 -3.48 0.0005 
𝑏𝑏𝑙𝑙𝑙𝑙 Lane width -0.069 0.013 -5.34 <.0001 
𝑏𝑏𝑠𝑠𝑠𝑠 Shoulder width -0.020 0.002 -9.57 <.0001 
𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Excess speed 0.018 0.003 5.87 <.0001 
𝑏𝑏𝑑𝑑𝑑𝑑 Driveway density 0.011 0.002 6.17 <.0001 
𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝 Precipitation  0.007 0.018 0.38 0.7072 

𝑘𝑘 Inverse dispersion 
parameter  

1.520 0.013 117.21 <.0001 

A comparison of different calibrated multi-lane undivided SPFs is shown in Figure 57 and Figure 
58 for FI crashes and total crashes, respectively.  The SPFs developed in this project are 
compared with the HSM-calibrated SPFs and Texas WB. The equations are plotted for the case 
of all CMFs equal to 1.0 (representing base conditions).  It is important to note that the SPFs do 
not include the same set of base conditions and thus they are not directly comparable to each 
other. In addition, the Texas WB SPFs are not calibrated to the current time period. The SPFs are 
shown for illustration purposes only. Since Texas WB includes SPFs for FI crashes only, the 
comparison is made just with HSM SPFs for total crashes.  
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Figure 57. SPF comparison for Fatal and Injury Crashes on Multi-lane Undivided 
Highways. 

Figure 58. SPF comparison for Total Crashes on Multi-lane Undivided Highways. 

Crash Modification Factors 

Several CMFs were calibrated in conjunction with the SPFs. All of them were calibrated using 
the FI crash data. These CMFs are described in this section and, where possible, compared with 
the findings from HSM and Texas WB as a means of model validation.  

Truck Proportion CMF 

The truck proportion CMF is described using Equation 57:  
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𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡 = 𝑒𝑒−0.017(𝑡𝑡𝑡𝑡_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) (57) 

The base condition for this CMF is no trucks in the traffic mix. The truck proportion CMF is 
shown in Figure 59. The CMF for truck proportion for urban arterials from Texas WB is used for 
comparison. Both CMFs show similar trends. The CMF shows that the crashes decrease with the 
increase in truck proportion in traffic. Although this may seem counterintuitive, trucks usually 
travel on high-standard roads.  

Figure 59. CMF for Truck Proportion on Multi-Lane Undivided Highways. 

Lane Width CMF 

The lane width CMF is described using Equation 58: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙 = 𝑒𝑒−0.015(𝑙𝑙𝑙𝑙−12) (58) 

The base condition for this CMF is a 12-ft lane width. The lane width used in this CMF is an 
average for all through lanes on the segment. The lane width CMF developed in this study is 
shown in Figure 60 using a solid trend line. The lane widths used to calibrate this CMF range 
from 10 to 13 ft. The coefficient for lane widths greater than 12ft is found to be marginally 
significant and counterintuitive, so a value of 1.0 is used. Also shown in Figure 60 is the CMF 
presented in the Texas WB. Broken lines are used to differentiate this CMF from the one 
proposed in this research project. It should be noted that the HSM does not include CMF for lane 
width for urban arterials. The proposed CMF is shown to be less sensitive to lane width than the 
CMF in the Texas WB.  
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Figure 60. CMF for Lane Width on Multi-Lane Undivided Highways. 

Shoulder Width CMF 

The shoulder width CMF is described using Equation 59: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑒𝑒−0.020×(𝑠𝑠𝑠𝑠−6) (59) 

The base condition for this CMF is a 6-ft shoulder width. The width used in this CMF is an 
average for shoulders in both directions. The shoulder width CMF developed in this study is 
shown in Figure 61 using a solid trend line. The shoulder widths used to calibrate this CMF 
range from 0 to 8 ft. Also shown in Figure 61 is the CMF presented in the Texas WB. It should 
be noted that HSM does not include CMF for shoulder width for urban arterials. The proposed 
CMF is shown to be less sensitive to shoulder width than the CMF in the Texas WB.  
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Figure 61. CMF for Shoulder Width on Multi-lane Undivided Highways. 

Excess Speed CMF 

The excess speed CMF is described using Equation 60. 

𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑒𝑒0.025×(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃) (60) 

The base condition for this CMF varies according to the posted speed limit. Figure 62 shows the 
CMF for excess speeds on multi-lane undivided highways. Since the operating speed CMF does 
not exist in HSM or Texas WB, a comparison could not be made. The CMF shows that 
exceeding the PSL by 10 mph increases the crashes by 30%.  

Figure 62. CMF for Excess Speeds on Multi-Lane Undivided Highways. 

Driveway CMF 

The driveway CMF is described using Equation 61. 

𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑒𝑒0.011(0.1×𝐷𝐷𝐷𝐷) (61) 

The base condition for this CMF is no driveways. The driveway CMF is shown in Figure 63 for 
residential driveway density. 
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Figure 63. CMF for Driveway Density on Multi-lane Undivided Highways. 

Precipitation CMF 

The precipitation CMF is described using Equation 62. 

𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑒𝑒0.076(0.1×𝑝𝑝𝑝𝑝𝑝𝑝) (62) 

The base condition for this CMF is an annual average precipitation of 0 inches. Since the 
precipitation CMF does not exist in HSM or Texas WB, a comparison could not be made. The 
precipitation CMF is shown in Figure 64 using a solid trend line. The CMF shows that 
precipitation has a greater influence on the occurrence of crashes. For instance, every 1 inch of 
rainfall increases crashes by 1 percent. 
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Figure 64. CMF for Precipitation on Multi-lane Undivided Highways. 

4.3.4 SPFs for Multi-lane Undivided Highways with Continuous Left Turn Lane 

For the SPF development, the team considered all multi-lane highways that had a continuous left 
turn lane. The predicted crash frequency is calculated as follows.  
𝑁𝑁 = 𝐿𝐿 × 𝑦𝑦 × 𝑒𝑒𝑏𝑏0+𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎 ln(𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴) × 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑏𝑏 × 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑏𝑏 × 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑝𝑝𝑝𝑝 × 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑏𝑏;  (63) 

With,  
𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑏𝑏 = 𝑒𝑒𝑏𝑏𝑙𝑙𝑙𝑙(𝑡𝑡𝑏𝑏−12) 
𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑏𝑏 = 𝑒𝑒𝑏𝑏𝑏𝑏𝑙𝑙(𝑠𝑠𝑏𝑏−6) 
𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑝𝑝𝑝𝑝 = 𝑒𝑒𝑏𝑏𝑏𝑏𝑠𝑠𝑎𝑎(𝑆𝑆𝑠𝑠𝑝𝑝𝑠𝑠−𝑃𝑃𝑆𝑆𝑃𝑃) 
𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑏𝑏 = 𝑒𝑒𝑏𝑏𝑎𝑎𝑙𝑙(0.01×𝑃𝑃𝑃𝑃) 

Table 42 and Table 43 provide calibrated coefficients for FI crashes and PDO crashes, 
respectively.  
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Table 42. Calibrated Coefficients for FI Crashes on Multi-lane Undivided Highways with 
Continuous Turn Lane. 

Coefficient Variable Value Std. Dev t-statistic p-
value 

𝑏𝑏0 Intercept  -9.029 0.550 -16.41 <.0001 
𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 AADT  1.030 0.056 18.30 <.0001 
𝑏𝑏𝑙𝑙𝑙𝑙 Lane width -0.028 0.011 -2.52 0.0117 
𝑏𝑏𝑠𝑠𝑠𝑠 Shoulder width -0.056 0.006 -8.69 <.0001 
𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Excess speed 0.038 0.012 3.18 0.0015 
𝑏𝑏𝑑𝑑𝑑𝑑 Driveway density 0.030 0.006 4.92 <.0001 

𝑘𝑘 Inverse dispersion 
parameter  

1.671 0.049 34.19 <.0001 

Table 43. Calibrated Coefficients for PDO Crashes on Multi-lane Undivided Highways 
with Continuous Turn Lane. 

Coefficient Variable Value Std. Dev t-statistic p-
value 

𝑏𝑏0 Intercept  -8.666 0.532 -16.28 <.0001 
𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 AADT  1.061 0.055 19.44 <.0001 
𝑏𝑏𝑙𝑙𝑙𝑙 Lane width -0.040 0.010 -3.91 <.0001 
𝑏𝑏𝑠𝑠𝑠𝑠 Shoulder width -0.057 0.006 -9.15 <.0001 
𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Excess speed 0.025 0.012 2.09 0.0366 
𝑏𝑏𝑑𝑑𝑑𝑑 Driveway density 0.037 0.006 6.52 <.0001 

𝑘𝑘 Inverse dispersion 
parameter  

1.656 0.041 39.99 <.0001 

A comparison of different calibrated multi-lane undivided with continuous turn lane SPFs is 
shown in Figure 65 and Figure 66 for FI crashes and total crashes, respectively.  The SPFs 
developed in this project are compared with the calibrated HSM SPFs and Texas WB. The 
equations are plotted for the case of all CMFs equal to 1.0 (representing base conditions).  It is 
important to note that the SPFs do not include the same set of base conditions and thus they are 
not directly comparable to each other. In addition, the Texas WB SPFs are not calibrated to the 
current time period. The SPFs are shown for illustration purposes only. Since Texas WB includes 
SPFs for FI crashes only, the comparison is made just with HSM SPFs for total crashes.  
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Figure 65. SPF comparison for Fatal and Injury Crashes on Multi-lane Undivided 
Highways with Continuous Left Turn Lane. 

Figure 66. SPF comparison for Total Crashes on Multi-lane Undivided Highways with 
Continuous Left Turn Lane. 

Crash Modification Factors 

Several CMFs were calibrated in conjunction with the SPFs. All of them were calibrated using 
the FI crash data. These CMFs are described in this section and, where possible, compared with 
the findings from HSM and Texas WB as a means of model validation.  

Lane Width CMF 

The lane width CMF is described using Equation 64: 
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𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙 = 𝑒𝑒−0.015(𝑙𝑙𝑙𝑙−12) (64) 

The base condition for this CMF is a 12-ft lane width. The lane width used in this CMF is an 
average for all through lanes on the segment. The lane width CMF developed in this study is 
shown in Figure 67 using a solid trend line. The lane widths used to calibrate this CMF range 
from 10 to 13 ft. Also shown in Figure 67 is the CMF presented in the Texas WB. Broken lines 
are used to differentiate these CMFs from the one proposed in this research project. It should be 
noted that the HSM does not include CMF for the lane width for urban arterials. The proposed 
CMF is shown to be less sensitive to lane width than the CMF in the Texas WB.  

Figure 67. CMF for Lane Width on Multi-Lane Undivided Highways with Continuous Left 
Turn Lane. 

Shoulder Width CMF 

The shoulder width CMF is described using Equation 65: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑒𝑒−0.056×(𝑠𝑠𝑠𝑠−6) (65) 

The base condition for this CMF is a 6-ft shoulder width. The width used in this CMF is an 
average for shoulders in both directions. The shoulder width CMF developed in this study is 
shown in Figure 68 using a solid trend line. The inside shoulder widths used to calibrate this 
CMF range from 0 to 8 ft. Also shown in Figure 68 is the CMF presented in the Texas WB. It 
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should be noted that the HSM does not include CMF for the shoulder width for urban arterials. 
The proposed CMF is shown to be less sensitive to shoulder width than the CMF in the Texas 
WB.  

Figure 68. CMF for Shoulder Width on Multi-lane Undivided Highways with Continuous 
Left Turn Lane. 

Excess Speed CMF 

The excess speed CMF is described using Equation 66. 

𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑒𝑒0.038×(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃) (66) 

The base condition for this CMF varies according to the posted speed limit. Figure 69 shows the 
CMF for excess speeds on multi-lane, undivided highways with a continuous left turn lane. Since 
the operating speed CMF does not exist in HSM or Texas WB, a comparison could not be made. 
The CMF shows that exceeding the PSL by 10 mph increases the crashes by 45%.  
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Figure 69. CMF for Excess Speeds on Multi-Lane Undivided Highways with Continuous 
Left Turn Lane. 

Driveway CMF 

The driveway CMF is described using Equation 67. 

𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑒𝑒0.03(0.1×𝐷𝐷𝐷𝐷) (67) 

The base condition for this CMF is no driveways. The driveway CMF is shown in Figure 70 for 
residential driveway density. 
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Figure 70. CMF for Driveway Density on Multi-lane Undivided Highways with Continuous 
Left Turn Lane. 

SPFs for Two-lane Undivided Highways with Continuous Left Turn Lane 

For the SPF development, the team considered all two-lane highways that had a continuous left 
turn lane. The predicted crash frequency is calculated as follows. 
𝑁𝑁 = 𝐿𝐿 × 𝑦𝑦 × 𝑒𝑒𝑏𝑏0+𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎 ln(𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴) × 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑏𝑏 × 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑝𝑝𝑝𝑝 × 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑏𝑏;  (68) 

With,  
𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑏𝑏 = 𝑒𝑒𝑏𝑏𝑏𝑏𝑙𝑙(𝑠𝑠𝑏𝑏−6) 
𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑝𝑝𝑝𝑝 = 𝑒𝑒𝑏𝑏𝑏𝑏𝑠𝑠𝑎𝑎(𝑆𝑆𝑠𝑠𝑝𝑝𝑠𝑠−𝑃𝑃𝑆𝑆𝑃𝑃) 
𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑏𝑏 = 𝑒𝑒𝑏𝑏𝑎𝑎𝑙𝑙(0.01×𝑃𝑃𝑃𝑃) 

Table 44 and Table 45 provide calibrated coefficients for FI crashes and PDO crashes, 
respectively.  
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Table 44. Calibrated Coefficients for FI Crashes on Two-lane Undivided Highways with 
Continuous Turn Lane. 

Coefficient Variable Value Std. Dev t-statistic p-
value 

𝑏𝑏0 Intercept  -7.946 1.365 -5.82 <.0001 
𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 AADT  0.895 0.146 6.14 <.0001 
𝑏𝑏𝑠𝑠𝑠𝑠 Shoulder width -0.036 0.020 -1.84 0.0664 
𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Excess speed 0.018 0.018 0.98 0.3279 
𝑏𝑏𝑑𝑑𝑑𝑑 Driveway density 0.048 0.014 3.56 0.0004 

𝑘𝑘 Inverse dispersion 
parameter  

1.655 0.139 11.88 <.0001 

Table 45. Calibrated Coefficients for PDO Crashes on Two-lane Undivided Highways with 
Continuous Turn Lane. 

Coefficient Variable Value Std. Dev t-statistic p-
value 

𝑏𝑏0 Intercept  -6.349 1.183 -5.37 <.0001 
𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 AADT  0.808 0.128 6.33 <.0001 
𝑏𝑏𝑠𝑠𝑠𝑠 Shoulder width -0.031 0.017 -1.82 0.0698 
𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Excess speed -- -- -- -- 
𝑏𝑏𝑑𝑑𝑑𝑑 Driveway density 0.050 0.012 4.04 <.0001 

𝑘𝑘 Inverse dispersion 
parameter  

1.746 0.109 16.01 <.0001 

A comparison of different calibrated two-lane undivided with continuous turn lane SPFs is 
shown in Figure 71 and Figure 72 for FI crashes and total crashes, respectively.  The SPFs 
developed in this project are compared with the calibrated HSM SPFs and Texas WB. The 
equations are plotted for the case of all CMFs equal to 1.0 (representing base conditions).  It is 
important to note that the SPFs do not include the same set of base conditions and thus they are 
not directly comparable to each other. In addition, the Texas WB SPFs are not calibrated to the 
current time period. The SPFs are shown for illustration purposes only. Since Texas WB includes 
SPFs for FI crashes only, the comparison is made just with HSM SPFs for total crashes.  
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Figure 71. SPF comparison for Fatal and Injury Crashes on Two-lane Undivided Highways 
with Continuous Left Turn Lane. 

Figure 72. SPF comparison for Total Crashes on Two-lane Undivided Highways with 
Continuous Left Turn Lane. 

Crash Modification Factors 
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Several CMFs were calibrated in conjunction with the SPFs. All of them were calibrated using 
the FI crash data. These CMFs are described in this section and, where possible, compared with 
the findings from HSM and Texas WB as a means of model validation.  

Shoulder Width CMF 

The shoulder width CMF is described using Equation 69: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑏𝑏 = 𝑒𝑒−0.036×(𝑠𝑠𝑏𝑏−6) (69) 

The base condition for this CMF is a 6-ft shoulder width. The width used in this CMF is an 
average for shoulders in both directions. The shoulder width CMF developed in this study is 
shown in Figure 73 using a solid trend line. The inside shoulder widths used to calibrate this 
CMF range from 0 to 8 ft. Also shown in Figure 73  is the CMF presented in the Texas WB. The 
proposed CMF is shown to be less sensitive to shoulder width than the CMF in the Texas WB.  

Figure 73. CMF for Shoulder Width on Two-lane Undivided Highways with Continuous 
Left Turn Lane. 

Excess Speed CMF 

The excess speed CMF is described using Equation 70. 

𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑝𝑝𝑝𝑝 = 𝑒𝑒0.018×(𝑆𝑆𝑠𝑠𝑝𝑝𝑠𝑠−𝑃𝑃𝑆𝑆𝑃𝑃) (70) 

The base condition for this CMF varies according to the posted speed limit. Figure 74 shows the 
CMF for excess speeds on multi-lane undivided highways. Since the operating speed CMF does 
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not exist in HSM or Texas WB, a comparison could not be made. The CMF shows that 
exceeding the PSL by 10 mph increases the crashes by 20%.  

Figure 74. CMF for Excess Speeds on Two-Lane Undivided Highways with Continuous 
Left Turn Lane. 

Driveway CMF 

The driveway CMF is described using Equation 71. 

𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑝𝑝𝑝𝑝 = 𝑒𝑒0.03(0.1×𝑃𝑃𝑃𝑃) (71) 

The base condition for this CMF is no driveways. The driveway CMF is shown in Figure 75 for 
residential driveway density. 
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Figure 75. CMF for Driveway Density on Two-lane Undivided Highways with Continuous 
Turn Lane. 

4.3.5 SPFs for Two-lane Highways 

The predicted crash frequency is calculated as follows.  
𝑁𝑁 = 𝐿𝐿 × 𝑦𝑦 × 𝑒𝑒𝑏𝑏0+𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎 ln(𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴) × 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑏𝑏 × 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑏𝑏 × 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑏𝑏 × 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑝𝑝𝑝𝑝 × 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑏𝑏 ×
𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝;  

(72) 

With, 
𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑏𝑏 = 𝑒𝑒𝑏𝑏𝑙𝑙𝑙𝑙(𝑡𝑡𝑏𝑏−12) 
𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑏𝑏 = 𝑒𝑒𝑏𝑏𝑏𝑏𝑙𝑙(𝑠𝑠𝑏𝑏−6) 
𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑝𝑝𝑝𝑝 = 𝑒𝑒𝑏𝑏𝑏𝑏𝑠𝑠𝑎𝑎(𝑆𝑆𝑠𝑠𝑝𝑝𝑠𝑠−𝑃𝑃𝑆𝑆𝑃𝑃) 
𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑏𝑏 = 𝑒𝑒𝑏𝑏𝑎𝑎𝑙𝑙(0.01×𝑃𝑃𝑃𝑃) 
𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑒𝑒𝑏𝑏𝑠𝑠𝑝𝑝𝑏𝑏(𝑝𝑝𝑝𝑝𝑝𝑝)×0.1 

Table 46 and Table 47 provide calibrated coefficients for FI crashes and PDO crashes, 
respectively.  
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Table 46. Calibrated Coefficients for FI Crashes on Two-lane Highways.  

Coefficient Variable Value Std. Dev t-statistic p-
value 

𝑏𝑏0 Intercept  -6.611 0.147 -45.07 <.0001 
𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 AADT  0.797 0.016 48.68 <.0001 
𝑏𝑏𝑡𝑡𝑡𝑡 Truck proportion -0.006 0.002 -3.55 0.0004 
𝑏𝑏𝑙𝑙𝑙𝑙 Lane width -0.025 0.043 -0.59 0.5523 
𝑏𝑏𝑠𝑠𝑠𝑠 Shoulder width -0.010 0.003 -3.30 0.001 
𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Excess speed -- -- -- -- 
𝑏𝑏𝑑𝑑𝑑𝑑 Driveway density 0.034 0.003 10.82 <.0001 
𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝 Precipitation  0.114 0.021 5.34 <.0001 

𝑘𝑘 Inverse dispersion 
parameter  

1.230 0.022 56.13 <.0001 

Table 47. Calibrated Coefficients for PDO Crashes on Two-lane Highways.  

Coefficient Variable Value Std. Dev t-statistic p-
value 

𝑏𝑏0 Intercept  -6.102 0.132 -46.18 <.0001 
𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 AADT  0.834 0.015 57.22 <.0001 
𝑏𝑏𝑡𝑡𝑡𝑡 Truck proportion -0.002 0.001 -1.15 0.2497 
𝑏𝑏𝑙𝑙𝑙𝑙 Lane width 0.090 0.014 6.28 <.0001 
𝑏𝑏𝑠𝑠𝑠𝑠 Shoulder width -0.023 0.003 -7.81 <.0001 
𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Excess speed -0.007 0.004 -1.59 0.1111 
𝑏𝑏𝑑𝑑𝑑𝑑 Driveway density 0.042 0.003 14.39 <.0001 
𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝 Precipitation  0.017 0.020 0.88 0.3814 

𝑘𝑘 Inverse dispersion 
parameter  

1.164 0.016 72.03 <.0001 

A comparison of different calibrated multi-lane undivided SPFs is shown in Figure 76 and Figure 
77 for FI crashes and total crashes, respectively. The SPFs developed in this project are 
compared with the calibrated HSM SPFs and Texas WB. The equations are plotted for the case 
of all CMFs equal to 1.0 (representing base conditions).  It is important to note that the SPFs do 
not include the same set of base conditions and thus they are not directly comparable to each 
other. In addition, the Texas WB SPFs are not calibrated to the current time period. The SPFs are 
shown for illustration purposes only. Since Texas WB includes SPFs for FI crashes only, the 
comparison is made just with HSM SPFs for total crashes.  
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Figure 76. SPF comparison for FI Crashes on Two-lane Undivided Highways. 

Figure 77. SPF comparison for Total Crashes on Two-lane Undivided Highways. 

Crash Modification Factors 

Several CMFs were calibrated in conjunction with the SPFs. All of them were calibrated using 
the FI crash data. These CMFs are described in this section and, where possible, compared with 
the findings from the HSM and Texas WB as a means of model validation.  

Truck Proportion CMF 

The truck proportion CMF is described using Equation 73:  
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𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑏𝑏 = 𝑒𝑒−0.006(𝑝𝑝𝑏𝑏_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) (73) 

The base condition for this CMF is no trucks in the traffic mix. The truck proportion CMF is 
shown in Figure 78. The CMF for truck proportion for urban arterials from Texas WB is used for 
comparison. Both CMFs show similar trends. The CMF shows that the crashes decrease with the 
increase in truck proportion in traffic. Although this may seem counterintuitive, trucks usually 
travel on high standard roads.  

Figure 78. CMF for Truck Proportion on Two-Lane Undivided Highways. 

Lane Width CMF 

The lane width CMF is described using Equation 74: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑏𝑏 = 𝑒𝑒−0.025(𝑡𝑡𝑏𝑏−12) (74) 

The base condition for this CMF is a 12-ft lane width. The lane width used in this CMF is an 
average for all through lanes on the segment. The lane width CMF developed in this study is 
shown in Figure 79 using a solid trend line. The lane widths used to calibrate this CMF range 
from 10 to 13 ft. Also shown in Figure 79 is the CMF presented in the Texas WB. Broken lines 
are used to differentiate this CMF from the one proposed in this research project. The proposed 
CMF is shown to be less sensitive to lane width than the CMF in the Texas WB.  
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Figure 79. CMF for Lane Width on Two-Lane Undivided Highways. 

Shoulder Width CMF 

The shoulder width CMF is described using Equation 75: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑠𝑠𝑏𝑏 = 𝑒𝑒−0.01×(𝑠𝑠𝑏𝑏−6) (75) 

The base condition for this CMF is a 6-ft shoulder width. The width used in this CMF is an 
average for shoulders in both directions. The shoulder width CMF developed in this study is 
shown in Figure 80 using a solid trend line. The inside shoulder widths used to calibrate this 
CMF range from 0 to 8 ft. Also shown in Figure 80 is the CMF presented in the Texas WB. The 
proposed CMF is shown to be less sensitive to shoulder width than the CMF in the Texas WB.  

Figure 80. CMF for Shoulder Width on Two-lane Undivided Highways. 
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Driveway CMF 

The driveway CMF is described using Equation 76. 

𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑝𝑝𝑝𝑝 = 𝑒𝑒0.034(0.1×𝑃𝑃𝑃𝑃) (76) 

The base condition for this CMF is no driveways. The driveway CMF is shown in Figure 81 for 
residential driveway density. 

Figure 81. CMF for Driveway Density on Two-lane Divided Highways. 

Precipitation CMF 

The precipitation CMF is described using Equation 77. 

𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑒𝑒0.114(0.1×𝑝𝑝𝑝𝑝𝑝𝑝) (77) 

The base condition for this CMF is an annual average precipitation of 0 inches. Since the 
precipitation CMF does not exist in HSM or Texas WB, a comparison could not be made. The 
precipitation CMF is shown in Figure 82 using a solid trend line. The CMF shows that 
precipitation has a greater influence on the occurrence of crashes. For instance, every 2 inches of 
rainfall increases crashes by 2 percent. 
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Figure 82. CMF for Precipitation on Two-lane Undivided Highways. 

4.4 SENSITIVITY ANALYSIS 

The relationship between crash frequency and traffic volume for all facilities, as obtained from 
the SPFs, is illustrated in Figure 83 for a 1-mile urban highway segment. The trend lines shown 
in Figure 83 indicate that the 4-lane undivided (4U) highway has the worst performance and the 
two-lane highway with a continuous left turn lane (2T) has the best performance, probably due to 
lower speeds. The 4-lane divided (4D) highway also has a much lower crash frequency 
compared to an undivided highway. It should be noted that the freeway SPF does not include 
other influential variables such as ramp presence, distance to nearest ramps, and presence of 
managed lanes, so the crashes on 4-lane freeways (4F) may be overestimated.  

Figure 83. SPF Comparison for All Facilities. 
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Figure 84 shows the CMFs for the excess speed for all facilities. The trend lines shown in Figure 
84 indicate that the excess speed has a more pronounced effect on 4T and the least on 4F. 
Researchers were not able to quantify the effect of excess speed on 2U facilities. 

Figure 84. Excess Speed CMF Comparison Among All Facilities. 

Figure 85 shows the CMFs for the precipitation for all facilities. The trend lines shown in Figure 
85 indicate that precipitation has a more pronounced effect on 2U than on 4U. Researchers were 
not able to quantify the effect of precipitation on other facilities. 

Figure 85. Precipitation CMF Comparison Among Undivided Facilities. 
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4.5 SHORT DURATION LEVEL DATABASES 

This section presents the descriptive statistics of key variables categorized by season, day of the 
week, and time of day. Table 48 shows a sample of short-duration weather and speed 
measurements for a specific road segment, with 45 rows per segment. Table 49 to Table 53 
provide detailed descriptive statistics of the key variables for short-duration analysis. 

Table 48. Sample Short-Duration Weather and Speed Measurements for a Specific Road 
Segment. 

Year Season DOW TOD 
Prcip 
_Sum 

Prcip 
_Avg 

Prcip 
_Max SpdAvg SpdStd PSL TTAvg 

2019 All All All 1.84 0.00 0.01 46.60 6.39 50 49.47 
2019 All All Daytime 0.64 0.00 0.01 48.94 5.77 50 46.88 
2019 All All Nighttime 1.20 0.00 0.01 43.83 5.96 50 52.53 
2019 All Weekday All 1.49 0.00 0.01 47.42 6.05 50 48.50 
2019 All Weekday Daytime 0.53 0.00 0.01 49.79 5.47 50 46.06 
2019 All Weekday Nighttime 0.96 0.00 0.01 44.63 5.49 50 51.37 
2019 All Weekend All 0.35 0.00 0.01 44.54 6.73 50 51.92 
2019 All Weekend Daytime 0.11 0.00 0.00 46.83 5.94 50 48.94 
2019 All Weekend Nighttime 0.24 0.00 0.01 41.83 6.60 50 55.45 
2019 Fall All All 0.70 0.00 0.01 47.99 7.02 50 48.25 
2019 Fall All Daytime 0.25 0.00 0.01 50.66 6.04 50 45.29 
2019 Fall All Nighttime 0.45 0.00 0.01 44.83 6.78 50 51.76 
2019 Fall Weekday All 0.64 0.00 0.01 48.90 6.50 50 47.12 
2019 Fall Weekday Daytime 0.23 0.00 0.01 51.56 5.61 50 44.43 
2019 Fall Weekday Nighttime 0.41 0.00 0.01 45.77 6.08 50 50.30 
2019 Fall Weekend All 0.06 0.00 0.00 45.71 7.71 50 51.10 
2019 Fall Weekend Daytime 0.02 0.00 0.00 48.43 6.48 50 47.43 
2019 Fall Weekend Nighttime 0.04 0.00 0.00 42.49 7.82 50 55.43 
2019 Spring All All 0.50 0.00 0.00 44.74 5.15 50 51.18 
2019 Spring All Daytime 0.20 0.00 0.00 46.76 4.58 50 48.85 
2019 Spring All Nighttime 0.30 0.00 0.00 42.36 4.74 50 53.93 
2019 Spring Weekday All 0.38 0.00 0.00 45.59 4.92 50 50.18 
2019 Spring Weekday Daytime 0.16 0.00 0.00 47.67 4.35 50 47.92 
2019 Spring Weekday Nighttime 0.22 0.00 0.00 43.13 4.39 50 52.85 
2019 Spring Weekend All 0.12 0.00 0.00 42.60 5.09 50 53.72 
2019 Spring Weekend Daytime 0.04 0.00 0.00 44.45 4.35 50 51.22 
2019 Spring Weekend Nighttime 0.08 0.00 0.00 40.40 5.03 50 56.68 
2019 Summer All All 0.52 0.00 0.01 47.53 6.71 50 48.58 
2019 Summer All Daytime 0.15 0.00 0.00 50.09 6.08 50 45.94 
2019 Summer All Nighttime 0.37 0.00 0.01 44.50 6.15 50 51.71 
2019 Summer Weekday All 0.36 0.00 0.01 48.21 6.45 50 47.84 
2019 Summer Weekday Daytime 0.10 0.00 0.00 50.88 5.67 50 45.19 
2019 Summer Weekday Nighttime 0.26 0.00 0.01 45.06 5.87 50 50.97 
2019 Summer Weekend All 0.16 0.00 0.01 45.88 7.04 50 50.37 
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2019 Summer Weekend Daytime 0.05 0.00 0.00 48.19 6.59 50 47.72 
2019 Summer Weekend Nighttime 0.11 0.00 0.01 43.15 6.57 50 53.50 
2019 Winter All All 0.12 0.00 0.00 46.14 5.99 50 49.87 
2019 Winter All Daytime 0.04 0.00 0.00 48.26 5.39 50 47.45 
2019 Winter All Nighttime 0.08 0.00 0.00 43.63 5.69 50 52.73 
2019 Winter Weekday All 0.11 0.00 0.00 47.01 5.68 50 48.82 
2019 Winter Weekday Daytime 0.04 0.00 0.00 49.07 5.30 50 46.68 
2019 Winter Weekday Nighttime 0.08 0.00 0.00 44.57 5.14 50 51.35 
2019 Winter Weekend All 0.01 0.00 0.00 43.87 6.18 50 52.58 
2019 Winter Weekend Daytime 0.00 0.00 0.00 46.15 5.05 50 49.43 
2019 Winter Weekend Nighttime 0.01 0.00 0.00 41.19 6.31 50 56.30 

Table 49. Descriptive Statistics of Urban Two-lane Undivided Roadways (Short Duration). 
Variables Code Mean SD Min Max 
AADT  ADT_CUR 19439 11000 2099 71576 
Truck proportion TRK_AAD 7.509 4.739 1.3 51.50 
Lane width LANE_WI 13.354 2.581 10 20.00 
Inside shoulder width S_WID_I 4.344 4.379 0 18.00 
Outside shoulder width S_WID_O 4.859 4.496 0 20.00 
K-factor K_FAC 9.198 1.384 6.4 21.50 
Minor Commercial Driveway MnrCmmr 0.027 0.170 0 2.00 
Major Commercial Driveway MjrCmmr 1.570 1.818 0 12.00 
Minor Other Driveway MnrOthr 0.006 0.077 0 1.00 
Major Industrial Driveway MjrInds 0.529 1.102 0 8.00 
Minor Industrial Driveway MnrInds 0.004 0.067 0 1.00 
Minor Residential Driveway MnrRsdn 0.028 0.198 0 2.00 
Daytime 85 percentile speed (mph) Spd85D 78.88 14.17 0 85.00 
Nighttime 85 percentile speed (mph) Spd 85N 76.96 14.61 0 85.00 
Weekday 85 percentile speed (mph) Spd 85WD 78.08 14.39 0 85.00 
Weekend 85 percentile speed (mph) Spd 85WE 79.08 14.63 0 85.00 
Daytime Sum of precipitation (in) PreD 8.76 4.40 0 1.74 
Nighttime Sum of precipitation (in) PreN 11.12 5.86 0 2.27 

Table 50. Descriptive Statistics of Urban Three-lane Roadways (Short Duration). 
Variables Code Mean SD Min Max 
AADT  ADT_CUR 12361 6649 1035 41353 
Truck proportion TRK_AAD 7.88 5.04 1.6 32.10 
Lane width LANE_WI 12.74 3.13 10 20.00 
Inside shoulder width S_WID_I 4.32 3.97 0 14.00 
Outside shoulder width S_WID_O 4.31 3.91 0 13.00 
K-factor K_FAC 9.63 1.99 6 21.70 
Minor Commercial Driveway MnrCmmr 0.09 0.47 0 5.00 
Major Commercial Driveway MjrCmmr 1.62 1.48 0 7.00 
Minor Other Driveway MnrOthr 0.01 0.12 0 1.00 
Major Industrial Driveway MjrInds 0.25 0.69 0 5.00 
Minor Industrial Driveway MnrInds 0.01 0.08 0 1.00 
Minor Residential Driveway MnrRsdn 0.12 0.45 0 4.00 
Daytime 85 percentile speed (mph) Spd85D 68.77 41.05 0 80.00 
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Nighttime 85 percentile speed (mph) Spd 85N 67.60 42.58 0 80.00 
Weekday 85 percentile speed (mph) Spd 85WD 68.25 41.79 0 80.00 
Weekend 85 percentile speed (mph) Spd 85WE 68.69 42.49 0 80.00 
Daytime Sum of precipitation (in) PreD 8.41 5.00 0 1.34 
Nighttime Sum of precipitation (in) PreN 11.05 6.85 0 1.92 

Table 51. Descriptive Statistics of Urban Four-Lane Undivided Roadways (Short 
Duration). 

Variables Code Mean SD Min Max 
AADT  ADT_CUR 13357 8762 2 71576 
Truck proportion TRK_AAD 6.31 5.85 0 81.40 
Lane width LANE_WI 12.05 2.60 4 20.00 
Inside shoulder width S_WID_I 2.22 3.89 0 30.00 
Outside shoulder width S_WID_O 2.38 4.08 0 26.00 
K-factor K_FAC 9.81 1.94 4.3 50.00 
Minor Commercial Driveway MnrCmmr 0.75 2.47 0 47.00 
Major Commercial Driveway MjrCmmr 3.17 4.95 0 77.00 
Minor Other Driveway MnrOthr 0.04 0.35 0 12.00 
Major Industrial Driveway MjrInds 0.53 1.90 0 48.00 
Minor Industrial Driveway MnrInds 0.11 0.94 0 29.00 
Minor Residential Driveway MnrRsdn 0.12 0.57 0 17.00 
Daytime 85 percentile speed (mph) Spd85D 78.47 32.02 0 85.00 
Nighttime 85 percentile speed (mph) Spd 85N 85.47 33.12 0 95.00 
Weekday 85 percentile speed (mph) Spd 85WD 78.00 32.53 0 85.00 
Weekend 85 percentile speed (mph) Spd 85WE 78.39 33.15 0 85.00 
Daytime Sum of precipitation (in) PreD 8.76 4.39 0 1.82 
Nighttime Sum of precipitation (in) PreN 11.05 5.81 0 2.37 

Table 52. Descriptive Statistic of Urban Four-Lane Divided Roadways (Short Duration). 
Variables Code Mean SD Min Max 
AADT  ADT_CUR 20158 12155 250 140415 
Truck proportion TRK_AAD 9.48 8.01 0.1 81.40 
Lane width LANE_WI 12.41 1.56 6 20.00 
Inside shoulder width S_WID_I 6.07 5.43 0 30.00 
Outside shoulder width S_WID_O 12.30 7.64 0 44.00 
K-factor K_FAC 9.52 1.43 6 21.20 
Minor Commercial Driveway MnrCmmr 0.08 0.45 0 8.00 
Major Commercial Driveway MjrCmmr 1.73 2.88 0 31.00 
Minor Other Driveway MnrOthr 0.04 0.27 0 6.00 
Major Industrial Driveway MjrInds 1.12 1.89 0 23.00 
Minor Industrial Driveway MnrInds 0.02 0.22 0 5.00 
Minor Residential Driveway MnrRsdn 0.03 0.22 0 5.00 
Daytime 85 percentile speed (mph) Spd85D 78.90 48.29 0 90.00 
Nighttime 85 percentile speed (mph) Spd 85N 76.49 48.94 0 85.00 
Weekday 85 percentile speed (mph) Spd 85WD 77.89 48.66 0 85.00 
Weekend 85 percentile speed (mph) Spd 85WE 78.54 49.32 0 85.00 
Daytime Sum of precipitation (in) PreD 8.74 4.23 0 1.70 
Nighttime Sum of precipitation (in) PreN 11.05 5.65 0 2.21 
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Table 53. Descriptive Statistic of Urban Five-lane Roadways (Short Duration). 
Variables Code Mean SD Min Max 
AADT  ADT_CUR 19439 11000 2099 71576 
Truck proportion TRK_AAD 7.509 4.739 1.3 51.50 
Lane width LANE_WI 13.354 2.581 10 31.00 
Inside shoulder width S_WID_I 4.344 4.379 0 18.00 
Outside shoulder width S_WID_O 4.859 4.496 0 20.00 
K-factor K_FAC 9.198 1.384 6.4 21.50 
Minor Commercial Driveway MnrCmmr 0.027 0.170 0 2.00 
Major Commercial Driveway MjrCmmr 1.570 1.818 0 12.00 
Minor Other Driveway MnrOthr 0.006 0.077 0 1.00 
Major Industrial Driveway MjrInds 0.529 1.102 0 8.00 
Minor Industrial Driveway MnrInds 0.004 0.067 0 1.00 
Minor Residential Driveway MnrRsdn 0.028 0.198 0 2.00 
Daytime 85 percentile speed (mph) Spd85D  78.47   32.02  0 85.00 
Nighttime 85 percentile speed (mph) Spd 85N  85.47   33.12  0 90.00 
Weekday 85 percentile speed (mph) Spd 85WD  78.00   32.53  0 85.00 
Weekend 85 percentile speed (mph) Spd 85WE  78.39   33.15  0 85.00 
Daytime Sum of precipitation (in) PreD  8.76   4.39  0 1.82 
Nighttime Sum of precipitation (in) PreN  11.05   5.81  0 2.37 

4.6 SHORT DURATION SAFETY PERFORMANCE FUNCTIONS 

The negative binomial Lindley model is preferred over the traditional negative binomial model for 
datasets associated with preponderant zeros. To begin, we document the formulation of the NB. 
The NB model can either be formulated as a sequence of Bernoulli trials or a mixture of the Poisson 
and gamma distributions. The Poisson-gamma mixture is normally used for analyzing crash data. 
The NB Generalized Linear Model (GLM) is formulated as follows: 

P(Y = y; μ,ϕ) = NB(y;  μ,ϕ)  =  
Γ(ϕ + y)

Γ(ϕ)Γ(y + 1) �
ϕ

μ + ϕ�
ϕ

�
μ

μ + ϕ�
y

;  ϕ > 0, μ > 0 
(78) 

where, µ = mean response of the observation and ϕ = inverse of the dispersion parameter. The µ 
is assumed to have a loglinear relationship with the covariates as shown in Equation (79): 

ln( μ) =  β0 + �βjX
m

j=1

 
(79) 

where X= explanatory variables considered for the study, β0  is the intercept and  βj is the 
regression coefficient for the j-th covariate, and m = total number of covariates in the model. 
For NBL models, the Lindley distributions provide extra flexibility to address the excess zeros 
problems. The NBL is the mixture of the NB and Lindley distributions. The NB-L model can be 
formulated as follows: 

P(Y = y;  μ,ϕ, θ) =  ∫NB(y;ϕ, εμ)Lindley(ε ;θ) dε (80) 
where ε is the frailty term and θ is the Lindley parameter. Equation (80) however does not have a 
closed form. Therefore, it is often rewritten as a multi-level hierarchical structure, as shown in 
Equation (81) to Equation (84): 
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yi|εiμi,ϕ~NB(εiμi,ϕ) (81) 
εi|zI, θ~ gamma(1 + zI, θ) (82) 

zi|θ~Bernoulli �
1

1 + θ�
 (83) 

ln(μi|β0,β1 ⋅ ⋯βm) = β0 + �βjXij        
m

j=1

 
(84) 

As short duration weather data is not available for 2018, the Project Team developed yearly 
models for the following urban roadways for 2022, 2021, 2020, and 2019 separately.  

4.6.1 Short Duration SPFs (2022 Data) 

2U Roadways 

Considering crashes occurring on urban 2-way undivided roads, the crash variables were 
separated into two parts. The variables that were fixed over the months, like shoulder width and 
surface width and variables that were observed to change over months, like standard deviation of 
speed, standard deviation of travel time, monthly average daily traffic (MADT) and sum of 
monthly precipitation. As shown in Table 54, the variable for shoulder width had a negative 
relationship with crash count, indicating that an increase in shoulder width is likely to result in a 
reduction in the number of crashes. On the other hand, an increase in road surface width (i.e., 
cross-sectional width of the road without shoulders) is likely to increase the number of crashes. 
For variables that changed with months, the standard deviation of speed and travel time had a 
negative relationship with crash frequency, meaning an increase in the standard deviation of 
speed and travel time is likely to reduce the number of crashes. The MADT and the sum of 
precipitation have a positive association with the number of crashes, indicating that an increase 
in those variables increases the number of crashes. Finally, the variable for minor commercial 
driveways had a positive association with crash counts. The results indicate the number of 
crashes is likely to increase in minor commercial areas. 

Table 54. Short duration SPFs (2022 Data) for 2U Roadways. 

Variables Mean Standard deviation Credible interval 
2.5% 97.5% 

Intercept -9.925 0.145 -10.200 -9.641 
Shoulder width -0.013 0.001 -0.016 -0.010 
Surface width 0.009 0.001 0.007 0.012 
Speed standard deviation -0.001 0.009 -0.018 0.015 
Travel time standard deviation -0.004 0.002 -0.009 0.000 
Log (MADT) 1.001 0.016 0.971 1.033 
Sum precipitation 0.077 0.017 0.044 0.107 
MnrCmmr (1 if MnrCmmr is 4, 0 otherwise) 0.206 0.126 -0.021 0.504 
Dispersion parameter 6.047 0.909 4.614 8.111 
Model Performance     
DIC 71,020    
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WAIC 73,030    

4U Roadways 

For short duration SPFs for four-lane undivided (4U) roadways, as presented in Table 55, the 
analysis indicates that shoulder width has a negligible effect on crash counts, evidenced by a 
mean close to zero and a credible interval that crosses zero. This contrasts with the findings for 
2U roadways, where shoulder width showed a more significant impact. The average speed of 
vehicles has a negative relationship with crash counts, as indicated by the negative mean value. 
This suggests that higher average speeds are associated with a reduction in the number of 
crashes. In contrast, the standard deviation of speed shows a positive relationship with crash 
counts. A higher variability in speed among vehicles is associated with an increase in crashes. 
The standard deviation of travel time has a negative relationship with crash frequency. This 
means that greater variability in travel time is linked to a decrease in the number of crashes, 
possibly due to drivers adjusting their behavior in response to varying conditions. (MADT) 
shows a positive association with crash counts. This indicates that as traffic volume increases, so 
does the likelihood of crashes. Similarly, the sum of precipitation is positively associated with 
crash counts, suggesting that more precipitation leads to a higher number of crashes, likely due 
to reduced visibility and more slippery road conditions. 

Table 55. Short duration SPFs (2022 Data) for 4U Roadways. 
Variables Mean Standard  

deviation 
Credible interval 
2.50% 97.50% 

Intercept -6.124 0.138 -6.388 -5.871 
Shoulder width -2.49E-04 9.52E-04 -0.002 0.002 
Average speed -0.051 8.53E-04 -0.052 -0.049 
Speed standard deviation 0.102 0.008 0.087 0.118 
Travel time standard deviation -0.007 0.002 -0.01 -0.004 
Log (MADT) 0.817 0.014 0.790 0.845 
Sum precipitation 0.071 0.012 0.047 0.092 
Dispersion Parameter 93.980 22.200 58.680 143.900 
Model Performance         
DIC 71,210       
WAIC 92,710       

4D Roadways 

The results of short-duration SPFs for four-lane divided (4D) roadways, as shown in Table 56, 
highlight key factors related to crash risk. Wider road surfaces and higher average speeds are 
linked to fewer crashes. In contrast, greater speed variability increases crash risk, emphasizing 
the importance of maintaining consistent speeds. Average travel time does not significantly 
affect crash counts, as its impact is minimal. However, MADT is associated with an increase in 
crashes, pointing to the influence of traffic density on safety. Additionally, increased 
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precipitation correlates with higher crash counts, likely due to reduced visibility and slippery 
conditions in wet weather. 

Table 56. Short duration SPFs (2022 Data) for 4D Roadways. 
Variables Mean Standard  

deviation 
Credible interval 
2.50% 97.50% 

Intercept -6.300 0.222 -6.732 -5.859 
Surface width -0.004 0.001 -0.006 -0.002 
Average speed -0.038 0.001 -0.039 -0.036 
Speed standard deviation 0.091 0.006 0.078 0.102 
Average travel time 0.001 0.001 -0.001 0.002 
Log (MADT) 0.790 0.021 0.748 0.832 
Sum Precipitation 0.062 0.020 0.023 0.099 
Dispersion parameter 22.590 7.907 12.270 43.490 
Model Performance         
DIC 37280       
WAIC 47260       

3T Roadways 

As shown in Table 57, various factors affect crash counts on three-lane roadways with a center 
left turn lane. The results indicate that wider road surfaces are linked to more crashes, while 
higher average speeds tend to reduce crash counts, possibly due to better road design or 
management. However, increased variability in vehicle speeds leads to more crashes, 
highlighting the importance of maintaining consistent speeds for safety. Higher traffic volumes 
are also associated with an increase in crashes, emphasizing the role of traffic density in crash 
risk. In contrast, the width of the shoulder does not significantly impact crash counts. In 
summary, these findings suggest that maintaining consistent speeds and managing traffic 
volumes are essential for enhancing safety on 3T roadways. 

Table 57. Short duration SPFs (2022 Data) for 3T Roadways. 
Variables Mean Standard  

deviation 
Credible interval 
2.50% 97.50% 

Intercept -14.040 1.643 -17.300 -10.930 
Surface width 0.031 0.007 0.016 0.045 
Shoulder width 0.008 0.012 -0.016 0.032 
Average speed -0.022 0.009 -0.039 -0.006 
Speed standard deviation 0.222 0.059 0.110 0.340 
Log (MADT) 1.293 0.161 0.992 1.623 
Dispersion Parameter 12.040 8.268 3.051 34.820 
Model Performance         
DIC 1,245       
WAIC 1,270       
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5T Roadways 

The factors influencing crash counts on five-lane roadways with a center turn lane indicate that 
higher average speeds are associated with fewer crashes, suggesting that effective road design or 
traffic management may contribute to safer conditions at these speeds. However, increased 
variability in vehicle speeds is linked to more crashes, emphasizing the need for consistent 
driving speeds to enhance safety. Lane width does not significantly impact crash counts, as 
indicated by the near-zero mean and credible interval crossing zero. In contrast, MADT are 
associated with a greater number of crashes, underscoring the impact of traffic density on crash 
risk. These findings are presented in Table 58. 

Table 58. Short duration SPFs (2022 Data) for 5T Roadways. 
Variables Mean Standard  

deviation 
Credible interval 
2.50% 97.50% 

Intercept -6.545 0.527 -7.531 -5.536 
Lane width -0.004 0.010 -0.024 0.017 
Average speed -0.052 0.002 -0.057 -0.047 
Speed standard deviation 0.090 0.021 0.051 0.132 
Log (MADT) 0.851 0.050 0.757 0.953 
Dispersion Parameter 37.790 14.310 17.340 71.500 
Model Performance         
DIC 10,900       
WAIC 11,060       

4.6.2 Short Duration SPFs (2021 Data) 

2U Roadways 

The factors affecting crash counts on two-lane undivided roadways show that increasing 
shoulder width is associated with fewer crashes, suggesting that wider shoulders can enhance 
safety. Variability in vehicle speed (speed standard deviation) also has a negative relationship 
with crash counts, indicating that more consistent driving speeds can reduce crash risk. 
Conversely, higher ADT and increased precipitation are linked to more crashes, emphasizing the 
influence of traffic volume and weather conditions on safety. Lane width has a slight positive 
relationship with crash counts, though its impact is uncertain as the credible interval includes 
zero. The presence of minor commercial driveways is positively associated with crash counts, 
suggesting these areas may have a higher risk of crashes, though this effect is not particularly 
strong. These findings are outlined in Table 59. 

Table 59. Short duration SPFs (2021 Data) for 2U Roadways. 
Variables Mean Standard  

deviation 
Credible interval 
2.50% 97.50% 

Intercept -9.178 0.151 -9.480 -8.894 
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Shoulder width -0.014 0.001 -0.017 -0.011 
Average speed 0.001 0.001 -0.001 0.003 
Speed standard deviation -0.040 0.008 -0.056 -0.027 
Lane width 0.007 0.005 -0.002 0.017 
Average travel time -0.002 0.000 -0.003 -0.001 
MnrCmmr (1 if MnrCmmr is 4, 0 otherwise) 0.209 0.138 -0.068 0.469 
Log (MADT) 0.975 0.015 0.945 1.003 
Sum precipitation 0.045 0.014 0.020 0.074 
Dispersion Parameter 4.835 0.639 3.813 6.313 
Model Performance 

    

DIC 69,250 
   

WAIC 71,240 
   

4U Roadways 

The factors influencing crash counts on four-lane undivided roadways indicate that both surface 
width and shoulder width have a slight negative relationship with crash counts, suggesting that 
wider surfaces and shoulders may help reduce crashes, though these effects are minimal and less 
certain. Higher average speeds are associated with fewer crashes, possibly due to better road 
conditions or traffic management, while variability in vehicle speed (speed standard deviation) is 
linked to more crashes, highlighting the importance of consistent driving speeds. Average travel 
time is negatively related to crash counts, implying that longer travel times might be associated 
with fewer crashes, potentially due to more careful driving or less congestion. Higher traffic 
volumes, indicated by the log of MADT, correlate with more crashes, underscoring the role of 
traffic density in crash risk. Increased precipitation is also associated with a higher number of 
crashes, pointing to the influence of weather conditions on safety. Interestingly, the presence of 
minor industrial areas has a slight negative association with crash counts, suggesting that these 
areas may experience fewer crashes, although this effect is not particularly strong. These 
findings are shown in Table 60. 

Table 60. Short duration SPFs (2021 Data) for 4U Roadways. 
Variables Mean Standard  

deviation 
Credible interval 
2.50% 97.50% 

Intercept -5.662 0.142 -5.959 -5.387 
Surface width -0.001 0.001 -0.003 0.000 
Shoulder width -0.002 0.001 -0.004 0.000 
Average speed -0.046 0.001 -0.048 -0.044 
Speed standard deviation 0.062 0.007 0.049 0.075 
Average travel time -0.002 0.000 -0.002 -0.001 
Log (MADT) 0.788 0.015 0.760 0.818 
Sum precipitation 0.028 0.010 0.008 0.047 
MnrInds (1 if MnrInds is 1, 0 otherwise) -0.146 0.073 -0.294 -0.005 
Dispersion Parameter 74.910 19.080 44.250 119.200 
Model Performance         
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DIC 91290       
WAIC 92990       

4D Roadways 

The factors affecting crash counts on four-lane divided roadways show that both surface width 
and shoulder width have a slight negative relationship with crash counts, suggesting that wider 
road surfaces and shoulders can help reduce crashes, although these effects are relatively small. 
Higher average speeds are associated with fewer crashes, which may indicate that roads designed 
for higher speeds have better safety features or conditions. However, greater variability in speed 
(speed standard deviation) is linked to more crashes, emphasizing that inconsistent driving 
speeds increase crash risk. Average travel time shows a slight positive relationship with crash 
counts, indicating that longer travel times might be associated with a higher likelihood of 
crashes, potentially due to driver fatigue or other factors. Increased MADT is positively 
associated with crash counts, demonstrating that higher traffic volumes lead to more crashes. The 
sum of precipitation has a small positive relationship with crash counts, suggesting that weather 
conditions might slightly influence crash risk. The presence of minor commercial areas is also 
positively associated with crash counts, implying that these areas could experience more crashes, 
possibly due to increased traffic and turning movements. These findings are outlined in Table 61. 

Table 61. Short duration SPFs (2021 Data) for 4D Roadways. 
Variables Mean Standard  

deviation 
Credible interval 
2.50% 97.50% 

Intercept -5.796 0.217 -6.230 -5.347 
Surface width -0.003 0.001 -0.005 -0.001 
Shoulder width -0.002 0.001 -0.005 0.000 
Average speed -0.036 0.001 -0.038 -0.034 
Speed standard deviation 0.076 0.007 0.063 0.089 
Average travel time 0.001 0.001 0.000 0.003 
Log (MADT) 0.732 0.021 0.690 0.774 
Sum precipitation 0.021 0.016 -0.007 0.052 
MnrCmmr (1 if MnrCmmr is 1, 0 otherwise) 0.170 0.059 0.053 0.282 
Dispersion Parameter 6.243 0.927 4.761 8.396 
Model Performance         
DIC 46,740       
WAIC 48,050       

3T Roadways 

For three-lane roadways with a center turn lane, increasing surface and shoulder width is 
associated with more crashes, suggesting that wider roads may lead to riskier driving behavior. 
Higher average speeds are linked to fewer crashes, indicating these roads may be designed for 
safer high-speed travel. However, greater variability in speed increases crash risk, highlighting 
the importance of consistent driving speeds. Greater variability in travel time is slightly 
associated with fewer crashes, possibly encouraging more cautious driving. Higher traffic 
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volumes are linked to an increase in crashes, emphasizing the role of traffic density in crash risk. 
These findings are presented in Table 62. 

Table 62. Short duration SPFs (2021 Data) for 3T Roadways. 
Variables Mean Standard  

deviation 
Credible interval 
2.50% 97.50% 

Intercept -9.523 1.515 -12.48 -6.51 
Surface width 0.02718 0.007503 0.012 0.04181 
Shoulder width 0.03241 0.01304 0.007037 0.05775 
Average speed -0.04703 0.007619 -0.06185 -0.03174 
Speed standard deviation 0.1928 0.06302 0.06364 0.3119 
Travel time standard deviation -0.02939 0.01865 -0.06618 0.007677 
Log (MADT) 0.9531 0.1586 0.6477 1.264 
Dispersion Parameter 6.994 6.061 1.543 22.88 
Model Performance         
DIC 1,236       
WAIC 1,267       

5T Roadways 

The factors influencing crash counts on three-lane roadways with a center turn lane suggest that 
lane width has a slight negative relationship with crash counts, indicating that wider lanes might 
help reduce crash risk. However, the effect is not strong, and the credible interval crosses zero, 
showing some uncertainty. Higher average speeds are linked to fewer crashes, suggesting that 
these roads may be better designed or offer conditions that support safer travel at higher speeds. 
The travel time standard deviation shows a slight positive relationship with crash counts, but this 
effect is weak, and the credible interval includes zero, indicating that variability in travel time 
has a limited impact on crash risk. Higher traffic volumes are associated with more crashes, 
highlighting the impact of traffic density on crash occurrence. These findings are presented in 
Table 63. 

Table 63. Short duration SPFs (2021 Data) for 5T Roadways. 
Variables Mean Standard  

deviation 
Credible interval 
2.50% 97.50% 

Intercept -6.338 0.512 -7.375 -5.363 
Lane width -0.016 0.010 -0.036 0.004 
Average speed -0.045 0.003 -0.050 -0.040 
Travel time standard deviation 0.007 0.004 -0.002 0.015 
Log (MADT) 0.853 0.048 0.762 0.948 
Dispersion Parameter 33.920 13.400 15.120 66.950 
Model Performance         
DIC 10600       
WAIC 10810       
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4.6.3 Short Duration SPFs (2020 Data) 

2U Roadways 

The factors affecting crash counts on two-lane undivided roadways suggest that wider shoulders 
and more consistent driving speeds help reduce crashes, while wider lanes might increase crash 
risk. Average speed and travel time have minimal effects on crash counts, with slight indications 
that longer travel times might improve safety. Higher traffic volumes are linked to more crashes, 
highlighting the role of traffic density. Precipitation does not have a significant impact on crash 
counts. These findings are outlined in Table 64. 

Table 64. Short duration SPFs (2020 Data) for 2U Roadways. 
Variables Mean Standard  

deviation 
Credible interval 
2.50% 97.50% 

Intercept -9.066 0.169 -9.385 -8.732 
Shoulder width -0.013 0.002 -0.016 -0.010 
Average speed -0.002 0.001 -0.004 0.000 
Speed standard deviation -0.019 0.008 -0.035 -0.004 
Lane width 0.028 0.005 0.016 0.038 
Average travel time -0.002 0.000 -0.003 -0.001 
Log (MADT) 0.930 0.017 0.896 0.962 
Sum precipitation 0.008 0.016 -0.024 0.042 
Dispersion Parameter 4.494 0.637 3.473 6.018 
Model Performance         
DIC 61100       
WAIC 62870       

4U Roadways 

The factors influencing crash counts on four-lane undivided roadways suggest that increasing 
surface and shoulder widths slightly reduces crashes. Higher average speeds are linked to fewer 
crashes, while greater speed variability increases crash risk. More variability in travel time may 
be associated with safer driving, possibly due to cautious behavior in changing conditions. 
Higher traffic volumes lead to more crashes, highlighting the impact of traffic density. 
Precipitation has a slightly negative effect on crash counts but is not a major factor. The presence 
of minor industrial areas has a weak negative association with crash risk, but this impact is not 
significant. These findings are presented in Table 65. 

Table 65. Short duration SPFs (2020 Data) for 4U Roadways. 
Variables Mean Standard  

deviation 
Credible interval 
2.50% 97.50% 

Intercept -5.440 0.149 -5.728 -5.144 
Surface width -0.001 0.001 -0.002 0.000 
Shoulder width -0.002 0.001 -0.004 0.000 
Average speed -0.050 0.001 -0.051 -0.048 
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Speed standard deviation 0.110 0.006 0.098 0.123 
Travel time standard deviation -0.011 0.002 -0.014 -0.008 
Log (MADT) 0.743 0.016 0.712 0.773 
Sum precipitation -0.018 0.013 -0.043 0.005 
MnrInds( 1 if MnrInds is 1, 0 otherwise) -0.088 0.078 -0.243 0.075 
Dispersion Parameter 71.300 18.510 42.750 112.400 
Model Performance         
DIC 81700       
WAIC 83390       

4D Roadways 

The factors affecting crash counts on four-lane divided roadways suggest that wider road and 
shoulder widths may slightly reduce crashes, although the effects are minimal. Higher average 
speeds are linked to fewer crashes, likely due to better road design or management, while 
increased speed variability raises crash risk, highlighting the need for consistent speeds. 
Variability in travel time is slightly associated with more crashes, possibly due to unpredictable 
traffic conditions. Higher traffic volumes also lead to more crashes, emphasizing the role of 
traffic density in crash risk. Minor commercial areas are associated with higher crash counts, 
likely due to increased traffic and turning movements. These findings are outlined in Table 66. 

Table 66. Short duration SPFs (2020 Data) for 4D Roadways. 
Variables Mean Standard  

deviation 
Credible interval 
2.50% 97.50% 

Intercept -6.836 0.244 -7.331 -6.350 
Surface width -0.002 0.001 -0.005 0.000 
Shoulder width -0.001 0.001 -0.004 0.001 
Average speed -0.033 0.001 -0.035 -0.031 
Speed standard deviation 0.096 0.009 0.078 0.114 
Travel time standard deviation 0.005 0.003 0.000 0.011 
Log (MADT) 0.803 0.024 0.755 0.853 
MnrCmmr (1 if MnrCmmr is 1, 0 otherwise) 0.205 0.059 0.091 0.322 
Dispersion Parameter 4.608 0.602 3.617 5.974 
Model Performance         
DIC 42,090       
WAIC 43,310       

3T Roadways 

Wider road surfaces on three-lane roadways with a center turn lane are associated with more 
crashes, while higher average speeds tend to reduce crash counts. Variability in driving speeds 
increases crash risk, highlighting the importance of maintaining consistent speeds. Variations in 
travel time may slightly reduce crashes, but this effect is weak. Higher traffic volumes lead to 
more crashes, underlining the need to manage traffic levels on these roads. These findings are 
indicated in Table 67. 
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Table 67. Short duration SPFs (2020 Data) for 3T Roadways. 
Variables Mean Standard  

deviation 
Credible interval 
2.50% 97.50% 

Intercept -7.106 2.164 -11.490 -2.936 
Surface width 0.023 0.009 0.005 0.040 
Shoulder width 0.008 0.014 -0.018 0.035 
Average speed -0.030 0.009 -0.046 -0.011 
Speed standard deviation 0.140 0.079 -0.012 0.299 
Travel time standard deviation -0.033 0.024 -0.084 0.014 
Log(MADT) 0.667 0.227 0.226 1.126 
Dispersion Parameter 7.850 6.856 1.491 26.720 
Model Performance         
DIC 950.5       
WAIC 972.6       

5T Roadways 

For five-lane roadways with a center turn lane, higher average speeds are linked to fewer 
crashes, suggesting these roads can safely handle higher speeds. Variability in travel time 
increases crash risk, indicating that inconsistent travel times may lead to more crashes. Lane 
width has little impact on crash counts, while higher traffic volumes are associated with more 
crashes, highlighting the need to manage traffic density. These findings are shown in Table 68. 

Table 68. Short duration SPFs (2020 Data) for 5T Roadways. 
Variables Mean Standard  

deviation 
Credible interval 
2.50% 97.50% 

Intercept -7.454 0.577 -8.532 -6.239 
Lane width -0.012 0.010 -0.032 0.008 
Average speed -0.044 0.003 -0.050 -0.039 
Travel time standard deviation 0.024 0.005 0.015 0.034 
Log (MADT) 0.938 0.055 0.831 1.043 
Dispersion Parameter 27.580 11.680 11.580 57.720 
Model Performance         
DIC 9,613       
WAIC 9,828       

4.6.4 Short Duration SPFs (2019 Data) 

2U Roadways 

For two-lane undivided roadways, increasing shoulder width is linked to fewer crashes, 
suggesting that wider shoulders improve safety. Higher average speeds have little impact on 
crash counts. Variability in speed slightly increases crash risk, while greater variability in travel 
time is associated with fewer crashes, possibly due to safer driving behaviors. Wider road 
surfaces are linked to more crashes, indicating potential for riskier driving. Higher traffic 
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volumes also lead to more crashes, emphasizing the impact of traffic density on safety. Increased 
precipitation is associated with more crashes, highlighting the role of weather conditions in crash 
risk. These findings are indicated in Table 69. 

Table 69. Short duration SPFs (2019 Data) for 2U Roadways. 
Variables Mean Standard  

deviation 
Credible interval 
2.50% 97.50% 

Intercept -9.642 0.149 -9.932 -9.354 
Shoulder width -0.009 0.002 -0.013 -0.006 
Average speed -0.001 0.001 -0.003 0.001 
Speed standard deviation 0.012 0.007 -0.001 0.025 
Surface width 0.007 0.001 0.004 0.010 
Travel time standard deviation -0.007 0.002 -0.011 -0.003 
Log (MADT) 0.978 0.016 0.946 1.009 
Sum precipitation 0.036 0.015 0.004 0.067 
Dispersion Parameter 9.902 2.786 6.265 16.980 
Model Performance         
DIC 63210       
WAIC 65010       

4U Roadways 

Increasing shoulder width on four-lane undivided roadways is linked to fewer crashes, 
suggesting that wider shoulders enhance safety, while surface width has no significant impact. 
Higher average speeds are associated with fewer crashes, indicating these roads may handle 
higher speeds safely. However, variability in speed leads to more crashes, highlighting the risk of 
inconsistent driving speeds. Greater variability in travel time appears to reduce crashes, possibly 
by encouraging safer driving behaviors. Higher traffic volumes are linked to more crashes, 
emphasizing the role of traffic density in crash risk. The impact of precipitation on crash counts 
is minimal. These findings are highlighted in Table 70. 

Table 70. Short duration SPFs (2019 Data) for 4U Roadways. 
Variables Mean Standard  

deviation 
Credible interval 
2.50% 97.50% 

Intercept -6.922 0.153 -7.211 -6.630 
Surface width 0.000 0.001 -0.001 0.001 
Shoulder width -0.004 0.001 -0.006 -0.001 
Average speed -0.051 0.001 -0.052 -0.049 
Speed standard deviation 0.099 0.007 0.086 0.112 
Travel time standard deviation -0.006 0.001 -0.009 -0.003 
Log (MADT) 0.896 0.016 0.866 0.925 
Sum precipitation 0.001 0.011 -0.022 0.023 
Dispersion Parameter 62.840 17.470 36.110 103.400 
Model Performance         
DIC 89,360       
WAIC 91,110       
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4D Roadways 

Increasing both surface width and shoulder width on four-lane divided roadways is linked to a 
reduction in crashes, suggesting that wider roads and shoulders enhance safety. Higher average 
speeds are associated with fewer crashes, indicating these roads can safely accommodate higher 
speeds. However, increased speed variability is linked to more crashes, highlighting the need for 
consistent driving speeds. The effect of the average travel time on crash counts is minimal, with 
a slight tendency to reduce crashes. Higher traffic volumes lead to more crashes, underscoring 
the impact of traffic density on safety. The presence of minor commercial areas is associated 
with more crashes, likely due to increased traffic and turning movements. These findings are 
outlined in Table 71. 

Table 71. Short duration SPFs (2019 Data) for 4D Roadways. 
Variables Mean Standard  

deviation 
Credible interval 
2.50% 97.50% 

Intercept -6.441 0.250 -6.927 -5.972 
Surface width -0.002 0.001 -0.005 0.000 
Shoulder width -0.004 0.001 -0.006 -0.002 
Average speed -0.035 0.001 -0.037 -0.033 
Speed standard deviation 0.103 0.007 0.088 0.116 
Average travel time -0.001 0.001 -0.002 0.000 
Log (MADT) 0.783 0.025 0.736 0.833 
MnrCmmr (1 if MnrCmmr is 1, 0 otherwise) 0.138 0.059 0.022 0.253 
Dispersion Parameter 4.018 0.446 3.268 4.988 
Model Performance         
DIC 43900       
WAIC 45180       

3T Roadways 

Higher average speeds on three-lane roadways with a center turn lane are linked to fewer 
crashes, suggesting these roads may allow safer driving at higher speeds. In contrast, speed 
variability increases crash risk, indicating that inconsistent speeds are a concern. Greater 
variability in travel time is associated with fewer crashes, possibly encouraging more cautious 
driving. The effects of surface width and shoulder width on crash counts are positive but not 
strong, with credible intervals including zero, indicating uncertainty in their impact. Higher 
traffic volumes lead to more crashes, emphasizing the need to manage traffic density on these 
roads. These findings are shown in Table 72. 
 

Table 72. Short duration SPFs (2019 Data) for 3T Roadways. 
Variables Mean Standard  

deviation 
Credible interval 
2.50% 97.50% 

Intercept -11.000 1.922 -14.730 -7.347 
Surface width 0.011 0.009 -0.006 0.029 
Shoulder width 0.015 0.013 -0.011 0.041 
Average speed -0.021 0.006 -0.034 -0.009 
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Speed standard deviation 0.258 0.064 0.134 0.378 
Travel time standard deviation -0.039 0.018 -0.074 -0.004 
Log (MADT) 1.061 0.190 0.688 1.437 
Dispersion Parameter 2.842 2.558 0.875 9.657 
Model Performance         
DIC 1,185       
WAIC 1,218       

5T Roadways 

Higher traffic volumes, measured by the log of MADT, are associated with an increase in 
crashes, emphasizing the importance of managing traffic density to enhance safety on these 
roads. Higher average speeds on five-lane roadways with a center turn lane are associated with 
fewer crashes, suggesting these roads may support safer high-speed driving. Increased variability 
in travel time leads to more crashes, highlighting the risk posed by inconsistent travel times. 
Lane width has minimal impact on crash counts, indicating it does not significantly affect safety. 
Higher traffic volumes are linked to more crashes, underscoring the need to manage traffic 
density to improve safety on these roads. These findings are identified in Table 73. 

Table 73. Short duration SPFs (2019 Data) for 5T Roadways. 
Variables Mean Standard  

deviation 
Credible interval 
2.50% 97.50% 

Intercept -8.979 0.523 -10.030 -7.966 
Lane width -0.009 0.009 -0.027 0.010 
Average speed -0.042 0.002 -0.046 -0.037 
Travel time standard deviation 0.022 0.003 0.015 0.028 
Log (MADT) 1.069 0.048 0.976 1.161 
Dispersion Parameter 32.400 12.810 14.760 61.790 
Model Performance         
DIC 11,170       
WAIC 11,400       

4.7 SUMMARY 

This chapter provides an in-depth analysis of SPFs for various urban roadways in Texas, 
exploring factors influencing crash frequencies across different roadway configurations, such as 
two-lane undivided, four-lane divided, and multi-lane facilities with center turn lanes. The 
analysis includes annual-level data for SPFs and examines the influence of roadway 
characteristics, traffic volumes, and environmental conditions on crash occurrences. The study 
identifies critical variables, such as lane width, shoulder width, average speed, speed variability, 
and precipitation, that significantly affect crash frequencies. Additionally, the chapter discusses 
the calibration of CMFs for different road types and presents comparisons with existing models 
to validate findings. In addition, short duration yearly models were developed for five urban 
roadway facilities. The annual and short-duration SPFs are used for developing the decision 
support tool.    
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CHAPTER 5 
DECISION SUPPORT TOOL 

5.1 INTRODUCTION 

This chapter presents a brief overview of the developed decision support tool (P2). The Project 
Team developed a geographic information system (GIS)-based prototype decision support tool 
that can estimate and visually illustrate the expected number of annual crashes on the roadway 
network. Segments with a high number of expected crashes have the highest potential for 
improvement.  

5.2 DECISION SUPPORT TOOL 

The Project Team used the open-source software platform Shiny to develop the decision support 
tool. Two versions of the tool were developed to accommodate different user needs: one with a 
data upload option and another without it. The version with the data upload option is accessible 
via the following link: https://aitlab.shinyapps.io/0_7144_V03/. The version without the data 
upload option can be accessed here: https://aitlab.shinyapps.io/7144Tool/. This chapter can be 
considered as a software manual that guides the use of the interactive tool developed for this 
project.  

5.2.1 Interface 

Figure 86 shows the interface of the opening page for the decision support tool. This page 
includes a brief introduction to this project, the components of the tool, and the basic steps of 
using the tool. 

Figure 86. Interface of the 0-7144 Decision Support Tool. 

https://aitlab.shinyapps.io/0_7144_V03/
https://aitlab.shinyapps.io/7144Tool/
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The web interface has two tabs: 
 Introduction (the interface shown in Figure 86) 
 0-7144 Tool (users can go to this page by clicking on the tab) 

5.2.2 Decision Support Tool 

The team developed two versions of the decision support tool: one without a data upload option 
and another with a data upload option. The version without data upload enables the visualization 
of urban roads using existing data and predictions. The version with data upload allows users to 
update the existing dataset and generate estimates based on the newly uploaded information. 

Without Data Upload Option 

Figure 87 shows the interface of the decision support tool. This page contains two components in 
the top panel: the map (on the left side) and the drop-down selection panel (on the right side). 
After selecting the filters and clicking the ‘Refresh Map’ button, an interactive table will appear 
below the top panel. The top panel has the following features: 
 Filtering option selection: several drop-down panels (District, County, Facility, AADT 

Ranges, and Crash Severity).  
 Plot: “Refresh Map” button under the drop-down panels. 
 Data download: ‘Download Data’ button to download data after the filters are selected. 
 Note: Two notes providing instruction on the data dictionary and interactive table.  
 Zoom in/out in the map: Plus/minus button on the top left side of the map. 
 Popup information in the map: Hovering on a segment to see the information of the segment 

(will show up after selecting the filters and map refreshing). 

Figure 87. Decision Support Tool without Data Upload Option. 
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With Data Upload Option 

Compared to the data upload version, the version (see Figure 88) with uploaded data includes the 
following features in the top panel after selecting ‘District’: 
 Upload Your CSV: data uploading from a local device 

Figure 88. Decision Support Tool with Data Upload Option. 

5.2.3 Map Generation Steps 

Detailed explanation of the tool 

Six different roadway facility types are included in this tool: Urban Two Lane, Urban Two Lane 
with a TWLTL, Urban Interstate Highway, Urban Multilane Divided, Urban Multilane 
Undivided, and Urban Multilane with a TWLTL. The tool provides the 5-year observed number 
of crashes and the 5-year expected number of crashes for each roadway segment. The tool is 
based on 5 years of crash data (2018-2022) from CRIS (Texas Department of Transportation, 
2025b). Other sources of data include roadway inventory data from the RHiNO database, 
weather data from the NOAA, and operating speed data from the NPMRDS/INRIX XD (Texas 
A&M Transportation Institute, 2025; Texas Department of Transportation, 2025a). 

The results can be filtered by the following in the 0-7144 Tool tab: 
 District (TxDOT districts) 
 County (Counties in Texas) 
 Facility Type (All facilities; Urban Two Lane, Urban Two Lane with a TWLTL, Urban 

Interstate Highway, Urban Multilane Divided, Urban Multilane Undivided, and Urban 
Multilane with a TWLTL) 
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 AADT Ranges (Less than 2000 vehicles per day or vpd, 2,001-10,000 vpd, and greater than 
10,000 vpd) 

 Crash Severity Level (Total, fatal and injury, and no injury) 

Once the levels are selected, the user needs to: 
 Click ‘Refresh Map’ (in the blue box) [It is important to note that it may take some time to 

load the map] 

The results can be filtered by the following in the 0-7144 Tool tab: 
 Detailed data can be downloaded by clicking the ‘Download Data’ button (grey box below 

blue box). 
 Data dictionary (see Appendix B: Data Dictionary) can be downloaded after refreshing the 

map (see Note 1 in the 0-7144 Tool tab). 
 Results can be shown in lists of 10, 25, 50, or 100 entries. 
 Results can be sorted (up or down) by using the arrows at the top of each variable’s column. 
 A search box provides the opportunity to search for the results. 

Figure 89 shows the image of the interface after selecting ‘all’ from the four drop-down panels. 
The map shows the entire state-maintained urban roadway networks. The color of the segments 
is based on the number of estimated/expected crashes on the individual segment. Below the 
interactive map, an interactive table produces the result of the final selection. The column names 
and associated descriptions can be downloaded by clicking the ‘Data Dictionary’ button ‘here’ in 
Note 1. The interactive table can display 10, 25, 50, or 100 entries using the drop-down menu to 
the left. Each column in the table can be sorted using the up or down arrows at the head of the 
column, or the data can be searched using the search box below. 
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Figure 89. Interface of the Tool after Selecting ‘all’ from the Four Drop-down Panels. 

After the generation of the map, the user can hover over a segment to see the segment-specific 
information (see Figure 90).  

Figure 90. Hovering Option Details. 

Example #1 

A Safety Engineer from the Houston District wants to explore the tool to understand the safety 
condition of the median-volume urban two-lane roadways. 

The safety engineer needs to select the following options: 
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 District: Houston 
 County: All Counties 
 Facility: Urban Two-lane 
 AADT Ranges: 2,001 to 10,000 

The user can select the ‘Crash Severity’ option as needed. For example, if ‘Total’ is selected 
from ‘Crash Severity,’ a map will be generated after clicking ‘Refresh Map.’ Figure 91 displays 
the map generated after selecting the options. The red boundary indicates the boundary of the 
district, and the green boundaries indicate the boundaries of the counties. The segments are 
color-coded based on the total number of expected crashes. The lighter yellow color indicates a 
lower number of expected crashes, and the darker red indicates a higher number of expected 
crashes.  

Figure 91. District Specific Map Details. 

The user also have options to explore a specific county. For example, if the user selects Harris 
County, the map will display only urban two-lane median volume roadways in Harris County 
(see Figure 92). The user can also download the data after finalizing the selection by clicking the 
‘Download Data’ button. To get more details on the segment, the user can zoom in or out of the 
map by clicking the plus or minus buttons on the top left of the map. As mentioned earlier, the 
map is interactive, and it has a hovering option to get more details on a particular segment. 
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Figure 92. County Specific Map Details. 
Crash Estimation Update with New Data: The tool provides users with the option to upload 
data.  For example, if the user wants to update historical data and predict crashes in a particular 
county in the Houston District, the data can be uploaded by “Upload Your CSV” (see Figure 93). 
To begin, users must select a district and county from the dropdown menus provided. This initial 
step is crucial as it narrows the dataset to specific geographic segments, ensuring the results are 
relevant to the selected area. The dropdown menus allow for easy navigation through the various 
districts and counties available in the dataset. 

When a user needs to update the crash data for road segments in a county, the application offers 
the option to upload custom CSV files. These files may contain specific roadway or crash data, 
enabling users to enhance the analysis with modified information. However, to ensure successful 
integration, the uploaded data must include specific columns, such as County, ADT, Control 
Section, FromDFO, ToDFO, MedType (Median Type), NumLane (Number of Lanes), and 
SpdAve (Speed Average). A built-in validation mechanism automatically checks the presence of 
these columns and notifies users if any required fields are missing. This ensures that only 
properly formatted data is processed.  Once the custom data is uploaded, the application proceeds 
to verify its consistency with the district and county selected earlier. This validation step includes 
checking whether the number of rows in the uploaded dataset corresponds to the selected 
geographic parameters. If any discrepancies are detected, the system promptly alerts users, 
ensuring that the analysis remains accurate and aligned with the selected district and county. 

With the data validated, the application begins processing the crash data. During this phase, it 
calculates the expected number of crashes, including Fatal/Injury crashes (FICrE), Property 
Damage Only crashes (PDOCrE), and Total crashes (TotalCrE). While these calculations are 
being performed, a spinning ‘busy’ icon appears on the screen, signaling to users that the 
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processing is underway. This visual feedback helps manage user expectations during potentially 
time-consuming operations. Upon completing the calculations, the application generates a 
detailed hotspot map. This map highlights areas within the selected district and county that are 
prone to crashes, based on the uploaded data and calculated metrics. Users can refine the 
visualization by applying filters for factors such as Facility Type, AADT Range, and Crash 
Severity. This flexibility allows for a more targeted analysis, enabling users to focus on specific 
safety concerns or roadway conditions. After the analysis is done, the application provides 
options to download the results. The processed data can be saved as a CSV file, along with a 
detailed map of crash hotspots. Additionally, a downloadable spreadsheet containing definitions 
for all variable names is available, ensuring users have a comprehensive understanding of the 
data and its context. 

The user also have options to upload the data they have. For example, if the user wants to update 
historical data and predict crashes in Harris County, the data can be uploaded by “Upload Your 
CSV” (see Figure 93).  

Figure 93. County Specific Map with Uploaded Data.  

Figure 94 illustrates the attributes of a specific segment in the default database before and after 
new data is uploaded. Upon uploading new data, the number of crashes is updated based on 
historical records. 
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Figure 94. Comparison of Segment Attributes Before and After Data Uploaded. 

a) Before New Data is Loaded 

b) After New Data is Loaded 

Example #2 

A Safety Engineer from the Wichita Falls District wants to explore the tool to understand the 
safety condition of urban interstate highways.  
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The safety engineer needs to select the following options: 
 District: Wichita Falls 
 County: All Counties 
 Facility: Urban Interstate Highways 
 AADT Ranges: All levels 

The user can select the ‘Crash Severity’ option as needed. For example, if ‘Fatal and injury’ is 
selected from ‘Crash Severity,’ a map will be generated after clicking ‘Refresh Map.’ Figure 95 
displays the generated map after selecting the options. The red boundary indicates the boundary 
of the district and the green boundaries indicate the boundaries of the counties. The segments are 
color-coded based on the total number of expected crashes. The lighter yellow color indicates a 
lower number of expected crashes and a darker red indicates a higher number of expected 
crashes.  

Figure 95. Screenshot Showing Wichita Falls District.  

Example #3 

A Safety Engineer from the Austin District wants to explore the tool to understand the safety 
condition of high-volume urban roadways.  

The safety engineer needs to select the following options: 
 District: Austin 
 County: All Counties 
 Facility: All Facilities 
 AADT Ranges: Greater than 10,000 
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The user can select the ‘Crash Severity’ option as needed. For example, if ‘Fatal and injury’ is 
selected from ‘Crash Severity,’ a map will be generated after clicking ‘Refresh Map.’ Figure 96 
displays the generated map after selecting the options. The red boundary indicates the boundary 
of the district, and the green boundaries indicate the boundaries of the counties. The segments 
are color-coded based on the total number of expected crashes. The lighter yellow color indicates 
a lower number of expected crashes and a darker red indicates a higher number of expected 
crashes.  

Figure 96. Screenshot Showing Austin District.  

5.3 SUMMARY 

This chapter presents the development of the Decision Support Tool for assessing safety risks on 
urban roadways. This tool was developed to assist transportation professionals visualize and 
analyze crash risks across different roadway segments. The tool integrates data from various 
sources, including crash data, speed data, and weather conditions, and uses these inputs to 
calculate and display SPFs for each roadway segment. It includes an interactive, map-based 
interface built using GIS technology, which allows users to view risk assessments for urban 
roadways, prioritize high-risk areas, and make data-driven decisions about where to implement 
safety improvements. The decision support tool is dynamic, with the capability to update risk 
scores as new data is integrated into the system. The platform includes three key components: a 
cloud-based data warehouse, a computational platform, and a web server. This chapter describes 
how the tool was developed, its functionality, and its potential impact on urban roadway safety 
planning. 
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CHAPTER 6 
CONCLUSIONS AND RECOMMENDATIONS  

6.1 INTRODUCTION 

Texas Strategic Highway Safety Plan (SHSP) has identified speeding related crashes as one of 
the seven research emphasis areas for 2018-2022. The conventional crash risk analysis method 
typically omits real-time speed, real-time volume, and weather data. This can significantly limit 
their predictive performances. To address this gap, in this study, the Project Team utilized data 
from several sources: (1) NPMRDS and INRIX XD (real-time speed data); (2) TMAS (traffic 
volume data), CRIS (Crash data), RHiNO (roadway inventory data), and NOAA (precipitation 
data). For annual level data analysis, the Project Team developed SPFs for five distinct urban 
facility types: freeways, multi-lane divided highways, multi-lane undivided highways, multi-lane 
undivided highways with continuous left-turn lanes (CLTL), and two-lane highways. Moreover, 
since the annual level safety prediction model can limit the SPFs’ performance to reflect the 
effects of time-sensitive variables such as operating speeds, operating speed variance, and 
weather condition factors, the Project Team applied the NB-Lindley model to develop a monthly 
level model by year as well. In the final step, the Project Team developed an interactive decision 
support tool using the open-source software platform Shiny. 

6.2 RESEARCH PRODUCTS 

Annual SPFs for Urban Facilities: The annual-level SPFs were generated for five distinct 
urban facility types: freeways, multi-lane divided highways, multi-lane undivided highways, 
multi-lane undivided highways with CLTL, and two-lane highways. These models incorporated 
factors such as lane and shoulder width, average speed, speed variability, and precipitation to 
analyze their influence on crash frequency.  

Short-duration SPFs for Urban Facilities: In contrast, short-duration SPFs were developed for 
the same five facility types using year-specific data from 2019 to 2022, allowing for an 
assessment of temporal variability and seasonal effects.  

Decision Support Tool: The decision support tool developed in TxDOT Project 0-7144 
represents a significant advancement in crash risk analysis by integrating traditionally 
overlooked but critical variables such as operating speed, traffic volume, and weather data. 
Developed using the open-source Shiny platform, the GIS-based tool estimates and visualizes 
expected crash frequencies across various urban roadway types in Texas. Users can interactively 
explore roadway safety conditions using filters like district, county, facility type, AADT range, 
and crash severity. One version of the tool operates on built-in datasets and offers visualization, 
filtering, and downloading capabilities. The inclusion of multiple national datasets 
(NPMRDS/INRIX XD) for speed data, TMAS for traffic volume, and NOAA for real-time 
weather) enhances the analytical power of the tool, addressing the complex interdependencies 
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among roadway geometry, speed, and crash frequency, which are often ignored in conventional 
models and even in HSM’s SPFs. 

What sets this tool apart is its ability to consider user-upload data for customized crash 
estimation, making it a highly adaptable and dynamic platform for transportation agencies. Users 
can upload CSV files containing local or updated traffic and roadway characteristics to produce 
refined crash predictions specific to their area of interest. The tool validates the structure of the 
uploaded data, aligns it with the selected geographic scope, and updates crash predictions in real 
time, distinguishing between fatal/injury crashes, property damage only crashes, and total 
crashes. The platform also provides downloadable outputs and documentation to support 
decision-making and facilitate transparency in safety planning efforts. 

6.3 FINDINGS AND CONCLUSIONS 

The Project Team developed SPFs using the crash data with an annual aggregation interval. The 
SPFs are developed for FI and PDO crashes, and both types together. The findings from the 
annual level model are as follows: 
 The freeway SPFs showed that higher AADT and excess speed significantly increase crash 

frequency, while wider lanes, shoulders, and medians reduce it. Truck-heavy routes showed 
lower crash rates, likely due to higher roadway standards. The developed CMFs were more 
sensitive than those in national models, offering improved calibration for Texas-specific 
conditions. 

 Key findings for multi-lane divided highways include increased AADT, a higher number of 
lanes, excess speed, and driveway density significantly increase crash risk, while wider 
shoulders, medians, and lane widths generally reduce it. CMFs for factors such as truck 
proportion, shoulder widths, and excess speed were shown to be more sensitive and context-
specific than those in the HSM and Texas WB, indicating the models’ improved calibration 
for Texas conditions. 

 The SPFs for multi-lane undivided highways focused on four-lane segments and incorporated 
CMFs for factors like shoulder width, speed, truck proportion, and precipitation. AADT, 
excess speed, driveway density, and precipitation were significant predictors of increased 
crash frequency, while wider shoulders helped reduce crashes. Compared to HSM and Texas 
WB models, the proposed CMFs offer enhanced sensitivity to local conditions, particularly 
for precipitation and excess speed, which showed a 30–40% crash increase per 10 mph over 
the limit. 

 The SPFs for multi-lane undivided highways with continuous left turn lanes showed that 
AADT, excess speed, and driveway density significantly increase crash risk, while wider 
shoulders and lanes help reduce it. A 10 mph increase over the speed limit raises crash risk 
by 45%, highlighting the sensitivity of these segments to speeding. Compared to Texas WB 
and HSM models, the proposed CMFs offer updated, locally calibrated insights that better 
reflect the safety impacts of geometric and operational features on these roadway types. 
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 The SPFs for two-lane undivided highways with continuous left turn lanes showed that 
AADT and driveway density significantly increased crash risk, while wider shoulders 
reduced it. Excess speed was not statistically significant for FI crashes and was excluded 
from the PDO model. Compared to standard two-lane highways, the influence of driveways 
was more pronounced, and the models emphasized the critical role of access management 
and cross-sectional design in improving safety. 

The key findings from short duration analysis are below: 
 Crash risk is consistently increased by higher MADT, greater speed variability, and 

precipitation, while wider shoulders and higher average speeds (in well-designed roads) tend 
to reduce crash counts. Surface width has a mixed impact, often increasing crashes on narrow 
roads (e.g., 2U, 3T) but reducing them on divided roadways. 

 While core predictors remain stable (MADT, speed variability), their magnitudes and 
significance vary by year. For instance, shoulder width had a stronger negative impact on 
crash counts in 2019–2021 than in 2022 for certain facilities (e.g., 2U roads), and the effect 
of precipitation fluctuated across years, sometimes becoming non-significant (e.g., in 2020). 

 2U roads are more sensitive to shoulder width and commercial driveways, while 4U and 4D 
roadways show pronounced effects from speed variability. Three- and five-lane roads (3T, 
5T) exhibit the highest crash increases from travel time variability, suggesting a need for 
better signal timing and access control. 

 The study used Negative Binomial-Lindley models to better handle excess zeros in crash 
data, outperforming traditional NB models. This hierarchical modeling approach improves fit 
and interpretability for short-duration monthly datasets. 

 Unlike traditional SPFs based on yearly averages, these short-duration SPFs capture seasonal 
dynamics, monthly variability in traffic, speed, and weather, enabling more targeted, time-
sensitive safety interventions at a granular level for each road type. 

6.4 RECOMMENDATIONS 

6.4.1 Recommendations for TxDOT Implementation  

 Update urban roadway SPFs for Texas by incorporating key operational parameters such as 
operating speed, speed variability, travel time variability, monthly traffic volumes, and 
precipitation. These variables demonstrated a strong influence on crash frequency across 
urban road types, including 2U, 4U, 4D, 3T, and 5T facilities. 

 Refine safety analysis guidelines to emphasize not just average speed but also speed 
consistency (standard deviation of speed) and travel time variability, especially for urban 
multilane and turn-lane facilities where crash risk increases significantly with inconsistent 
flow patterns. 

 Leverage the decision support tool to enable countermeasures for urban corridors, such as 
adjusting signal timing, access management, and cross-section design. The tool should 
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provide roadway-specific risk profiles at both annual and short-duration (e.g., monthly or 
seasonal) levels. 

6.4.2 Updated Recommendations for Future Tool Enhancements 

 Enhance the decision support tool’s data integration features, allowing TxDOT engineers and 
planners to upload short-duration datasets (e.g., monthly or daily MADT, weather, speed 
profiles) for real-time or retrospective evaluations. 

 Integrate short-duration SPFs into the tool, enabling evaluation of monthly/seasonal crash 
patterns and temporal safety diagnostics (e.g., AASHTOWare Safety Analyst does not 
currently support at such a fine resolution). 

 Build modules for daily-level modeling by incorporating emerging data sources (e.g., probe-
based traffic counts, connected vehicle data) to evaluate rapidly changing urban conditions 
like peak-period safety performance. 

 Develop a dedicated urban safety evaluation module within the web-based decision support 
tool, enabling facility-type specific recommendations (e.g., 3T roads needing consistent 
speed management vs. 2U roads sensitive to commercial access). This module should offer 
interactive visualization and intervention simulation capabilities. 

6.4.3 Comparison with AASHTOWare Safety Analyst 

 Unlike AASHTOWare, which primarily relies on annualized SPFs and lacks weather or 
short-duration modeling integration, the TxDOT Decision Support Tool incorporates both 
annual and short-duration SPFs, flexible covariate structures (e.g., MADT, speed variability), 
and support for operational data fusion (weather, driveway density, etc.). 

 0-7144 project’s use of Negative Binomial-Lindley (NBL) models provides superior 
handling of overdispersion and excess zeros, offering more robust predictions than the 
standard GLM-based AASHTOWare approach. 

 The urban-specific modules in the TxDOT tool address key facility design variations (e.g., 
continuous left-turn lanes, multilane undivided/divided configurations), providing TxDOT 
with a more granular, localized, and adaptable solution for urban safety planning. 

 Conduct an implementation project on the comparison between AASHTOWare safety scores 
with safety scores generated from 0-7144 project. 
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APPENDIX A: HSM SAFETY PERFORMANCE FUNCTIONS 
Predictive models can be used to estimate total average crashes (i.e., all crash severities and 
collision types) or can be used to predict the average frequency of specific crash severity types 
or specific collision types. The predictive model for an individual roadway segment or 
intersection combines the SPF, CMFs, and a calibration factor. Chapter 12 of the HSM 
contains separate predictive models for roadway segments and for intersections. The predictive 
models for roadway segments estimate the predicted average crash frequency of non-
intersection-related crashes. Non-intersection-related crashes may include crashes that occur 
within the limits of an intersection but are not related to the intersection. The roadway segment 
predictive models estimate crashes that would occur regardless of the presence of the 
intersection. 

In the predictive method, the appropriate SPFs are used to predict crash frequencies for 
specific base conditions. SPFs are regression models that estimate the predicted average crash 
frequency of individual roadway segments or intersections. Each SPF in the predictive method 
was developed with observed crash data for a set of similar sites. The SPFs, like all regression 
models, estimate the value of a dependent variable as a function of a set of independent 
variables. In the SPFs developed for the HSM, the dependent variable estimated is the 
predicted average crash frequency for a roadway segment or intersection under base 
conditions, and the independent variables are the AADTs of the roadway segment or 
intersection legs (and, for roadway segments, the length of the roadway segment). The effect of 
traffic volume (AADT) on crash frequency is incorporated through the SPF, while the effects 
of geometric design and traffic control features are incorporated through the CMFs. 
SPFs and adjustment factors are provided for five types of roadway segments on urban and 
suburban arterials: 

 Two-lane undivided arterials (2U) 
 Three-lane arterials including a center two-way left-turn lane (TWLTL) (3T) 
 Four-lane undivided arterials (4U) 
 Four-lane divided arterials (i.e., including a raised or depressed median) (4D) 
 Five-lane arterials including a center TWLTL (5T) 

The SPFs for roadway segments on urban and suburban arterials are applicable to the 
following AADT ranges: 

 2U: 0 to 32,600 vehicles per day 
 3T: 0 to 32,900 vehicles per day 
 4U: 0 to 40,100 vehicles per day 
 4D: 0 to 66,000 vehicles per day 
 5T: 0 to 53,800 vehicles per day 
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Application to sites with AADTs substantially outside these ranges may not provide reliable 
results. Other types of roadway segments may be found on urban and suburban arterials but are 
not addressed by the predictive model in Chapter 12 of HSM. The procedure addresses five 
types of collisions. 

 Multiple-vehicle non-driveway collisions 
 Single-vehicle crashes 
 Multiple-vehicle driveway-related collisions 
 Vehicle-pedestrian collisions 
 Vehicle-bicycle collisions 

The effect of traffic volume on predicted crash frequency is incorporated through the SPFs, 
while the effects of geometric design and traffic control features are incorporated through the 
CMFs. SPFs are provided for multiple-vehicle non-driveway collisions and single-vehicle 
crashes. Adjustment factors are provided for multi-vehicle driveway-related, vehicle-
pedestrian, and vehicle-bicycle collisions. 

Multiple-Vehicle Non-driveway Collisions 

The SPF for multiple-vehicle non-driveway collisions is applied as follows: 
𝑁𝑁𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏 = 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑎𝑎 + 𝑏𝑏 × 𝑀𝑀𝑛𝑛(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) + 𝑀𝑀𝑛𝑛(𝐿𝐿)) (85) 

Where, 

(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) = Average annual daily traffic volume (vehicles/day) on roadway 
segment, 

𝐿𝐿 = Length of roadway segment (mi), and 
𝑎𝑎, 𝑏𝑏 = Regression coefficients. 

Equation (85) is first applied to determine 𝑁𝑁𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏 using the coefficients for total crashes. 
𝑁𝑁𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏(𝐹𝐹𝐹𝐹) is then divided into components by severity level, for fatal-and-injury crashes and 
𝑁𝑁𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏(𝑃𝑃𝑃𝑃𝑃𝑃), designated as 𝑁𝑁′𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏(𝐹𝐹𝐹𝐹) and 𝑁𝑁′𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏(𝑃𝑃𝑃𝑃𝑃𝑃) in Equation (86), are determined with 
Equation (85) using the coefficients for fatal-and-injury and property-damage-only crashes, 
respectively. The following adjustments are then made to assure that 𝑁𝑁𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏(𝐹𝐹𝐹𝐹) and 𝑁𝑁𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏(𝑃𝑃𝑃𝑃𝑃𝑃) 
sum to 𝑁𝑁𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏: 

𝑁𝑁𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏(𝐹𝐹𝐹𝐹) = 𝑁𝑁𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏(𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡)(
𝑁𝑁′

𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏(𝐹𝐹𝐹𝐹)

𝑁𝑁′
𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏(𝐹𝐹𝐹𝐹) + 𝑁𝑁′

𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏(𝑃𝑃𝑃𝑃𝑃𝑃)
) 

(86) 

𝑁𝑁𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏(𝑃𝑃𝑃𝑃𝑃𝑃) = 𝑁𝑁𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏(𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡) − 𝑁𝑁𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏(𝐹𝐹𝐹𝐹) (87) 

Single-Vehicle Crashes 

SPFs for single-vehicle crashes for roadway segments are applied as follows: 
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𝑁𝑁𝑏𝑏𝑝𝑝𝑠𝑠𝑏𝑏 = 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑎𝑎 + 𝑏𝑏 × 𝑀𝑀𝑛𝑛(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) + 𝑀𝑀𝑛𝑛(𝐿𝐿)) (88) 
Equation (88) is first applied to determine 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 using the coefficients for total crashes. 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
is then divided into components by severity level; 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐹𝐹𝐹𝐹) for fatal-and-injury crashes and 
𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑃𝑃𝑃𝑃𝑃𝑃) for property-damage-only crashes. Preliminary values of 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐹𝐹𝐹𝐹) and 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑃𝑃𝑃𝑃𝑃𝑃), 
designated as 𝑁𝑁′𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐹𝐹𝐹𝐹) and 𝑁𝑁′𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑃𝑃𝑃𝑃𝑃𝑃) in Equation (89), are determined with Equation (88) 
using the coefficients for fatal-and-injury and property-damage-only crashes, respectively. The 
following adjustments are then made to assure that 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐹𝐹𝐹𝐹) and 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑃𝑃𝑃𝑃𝑃𝑃) sum to 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏: 

𝑁𝑁𝑏𝑏𝑝𝑝𝑠𝑠𝑏𝑏(𝐹𝐹𝐹𝐹) = 𝑁𝑁𝑏𝑏𝑝𝑝𝑠𝑠𝑏𝑏(𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡)(
𝑁𝑁′

𝑏𝑏𝑝𝑝𝑠𝑠𝑏𝑏(𝐹𝐹𝐹𝐹)

𝑁𝑁′
𝑏𝑏𝑝𝑝𝑠𝑠𝑏𝑏(𝐹𝐹𝐹𝐹) + 𝑁𝑁′

𝑏𝑏𝑝𝑝𝑠𝑠𝑏𝑏(𝑃𝑃𝑃𝑃𝑃𝑃)
) 

(89) 

𝑁𝑁𝑏𝑏𝑝𝑝𝑠𝑠𝑏𝑏(𝑃𝑃𝑃𝑃𝑃𝑃) = 𝑁𝑁𝑏𝑏𝑝𝑝𝑠𝑠𝑏𝑏(𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡) − 𝑁𝑁𝑏𝑏𝑝𝑝𝑠𝑠𝑏𝑏(𝐹𝐹𝐹𝐹) (90) 

Multiple-Vehicle Driveway-Related Collisions 

The model presented above for multiple-vehicle collisions addressed only collisions that are 
not related to driveways. Driveway-related collisions also generally involve multiple vehicles, 
but are addressed separately because the frequency of driveway-related collisions on a roadway 
segment depends on the number and type of driveways. Only unsignalized driveways are 
considered; signalized driveways are analyzed as signalized intersections. The total number of 
multiple-vehicle driveway-related collisions within a roadway segment is determined as:  

𝑁𝑁𝑏𝑏𝑝𝑝𝑝𝑝𝑏𝑏𝑦𝑦 = � 𝑛𝑛𝑗𝑗 ×
𝑡𝑡𝑡𝑡𝑡𝑡 

𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑝𝑝𝑏𝑏𝑡𝑡𝑦𝑦
𝑝𝑝𝑦𝑦𝑝𝑝𝑝𝑝𝑠𝑠

𝑁𝑁𝑗𝑗 × (
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
15,000

)(𝑝𝑝) (91) 

Where, 

𝑁𝑁𝑗𝑗 = Number of driveway-related collisions per driveway per year 
for driveway type j, 

𝑛𝑛𝑗𝑗 = Number of driveways within roadway segment of driveway 
type j including all driveways on both sides of the road, and 

𝑡𝑡 = Coefficient for traffic volume adjustment. 
The number of driveways of a specific type, n, is the sum of the number of driveways of that 
type for both sides of the road combined. The number of driveways is determined separately 
for each side of the road and then added together. 
Seven specific driveway types have been considered in modeling. These are: 
 Major commercial driveways 
 Minor commercial driveways 
 Major industrial/institutional driveways 
 Minor industrial/institutional driveways 
 Major residential driveways 
 Minor residential driveways 
 Other driveways 
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Major driveways are those that serve sites with 50 or more parking spaces. Minor driveways 
are those that serve sites with less than 50 parking spaces. It is not intended that an exact count 
of the number of parking spaces be made for each site. Driveways can be readily classified as 
major or minor from a quick review of aerial photographs that show parking areas or through 
user judgment based on the character of the establishment served by the driveway. Commercial 
driveways provide access to establishments that serve retail customers. Residential driveways 
serve single- and multiple-family dwellings. Industrial/institutional driveways serve factories, 
warehouses, schools, hospitals, churches, offices, public facilities, and other places of 
employment. Commercial sites with no restriction on access along an entire property frontage 
are generally counted as two driveways. 
Driveway-related collisions can be separated into components by severity level as follows: 

𝑁𝑁𝑏𝑏𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏(𝐹𝐹𝐹𝐹) = 𝑁𝑁𝑏𝑏𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏(𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡) × 𝑓𝑓𝑝𝑝𝑏𝑏𝑏𝑏 (92) 
𝑁𝑁𝑏𝑏𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏(𝑃𝑃𝑃𝑃𝑃𝑃) = 𝑁𝑁𝑏𝑏𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏(𝑝𝑝𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡) × 𝑁𝑁𝑏𝑏𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏(𝐹𝐹𝐹𝐹) (93) 

Where, 

𝑓𝑓𝑝𝑝𝑏𝑏𝑏𝑏 = Proportion of driveway-related collisions that involve fatalities 
or injuries, 

Vehicle-Pedestrian Collisions 

The number of vehicle-pedestrian collisions per year for a roadway segment is estimated as: 
𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑁𝑁𝑏𝑏𝑝𝑝 × 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (94) 

Where, 

𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = Pedestrian crash adjustment factor. 

Vehicle-Bicycle Collisions 

The number of vehicle-bicycle collisions per year for a roadway segment is estimated as: 
𝑁𝑁𝑏𝑏𝑝𝑝𝑏𝑏𝑝𝑝𝑝𝑝 = 𝑁𝑁𝑏𝑏𝑝𝑝 × 𝑓𝑓𝑏𝑏𝑝𝑝𝑏𝑏𝑝𝑝𝑝𝑝 (95) 

Where, 

𝑓𝑓𝑏𝑏𝑝𝑝𝑏𝑏𝑝𝑝𝑝𝑝 = Bicycle crash adjustment factor. 
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APPENDIX B: DATA DICTIONARY 

Column Name Details Source 
UnqID Unique ID TXST generated 
GID RDBD_GMTRY_LN_ID RHiNO 
Frm_Dfo FROM-DFO RHiNO 
To_Dfo TO-DFO RHiNO 
C_Sec CONTROL-SECTION RHiNO 
Hwy SIGNED-HIGHWAY RHiNO 
Ste_Nam STREET-NAME RHiNO 
District_Code DISTRICT-ID RHiNO 
District DISTRICT-NAME RHiNO 
County_Code COUNTY-NUMBER RHiNO 
County COUNTY-NAME RHiNO 
City CITY-NUMBER RHiNO 
Ru RURAL-URBAN-CODE RHiNO 
F_Syste FUNCTIONAL-CLASSIFICATION RHiNO 
Ru_F_Sy FUNCTIONAL-CLASSIFICATION RHiNO 
Spd_Max SPEED-LIMIT-MAXIMUM RHiNO 
Med_Typ MEDIAN-TYPE RHiNO 
Med_Wid MEDIAN-WIDTH RHiNO 
Num_Lan NUMBER-OF-THROUGH-LANES  RHiNO 
Hov_Lan HOV-LANES RHiNO 
Hov_Typ HOV-TYPE RHiNO 
Rb_Wid ROADBED-WIDTH RHiNO 
Sur_W SURFACE-WIDTH RHiNO 
S_Type_I SHOULDER-TYPE-INSIDE RHiNO 
S_Wid_I SHOULDER-WIDTH-INSIDE RHiNO 
S_Use_I SHOULDER-USE-INSIDE RHiNO 
S_Type_O SHOULDER-TYPE-OUTSIDE  RHiNO 
S_Wid_O SHOULDER-WIDTH-OUTSIDE  RHiNO 
S_Use_O SHOULDER-USE-OUTSIDE  RHiNO 
Curb_L CURB-TYPE-LEFT RHiNO 
Srf_Typ SURFACE-TYPE RHiNO 
Adt_Yea YEAR-OF-ANNUAL-AVERAGE-DAILYTRAFFIC RHiNO 
Adt_Cur AADT-CURRENT RHiNO 
Adt_Adj AADT-ADJUST-CURRENT RHiNO 
K_Fac PEAK-FACTOR RHiNO 
D_Fac DIRECTIONAL-DISTRIBUTION-FACTOR RHiNO 
Trk_Aad TRUCK-AADT-PCT RHiNO 
Hy_1 ADT-HISTORY-YEAR-1 RHiNO 
Hy_2 ADT-HISTORY-YEAR-2 RHiNO 
Hy_3 ADT-HISTORY-YEAR-3 RHiNO 
Hy_4 ADT-HISTORY-YEAR-4 RHiNO 
Hy_5 ADT-HISTORY-YEAR-5 RHiNO 
Hy_6 ADT-HISTORY-YEAR-6 RHiNO 
Hy_7 ADT-HISTORY-YEAR-7 RHiNO 
Hy_8 ADT-HISTORY-YEAR-8 RHiNO 
Hy_9 ADT-HISTORY-YEAR-9 RHiNO 
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Desgn_Y DESIGN-YEAR RHiNO 
Len_Sec LENGTH-OF-SECTION RHiNO 
Ln_Mile LANE-MILES RHiNO 
Dvmt DAILY-VEHICLE-MILES-OF-TRAVEL RHiNO 
Fclty_C Facility type of each RHiNO segement RHiNO 
Spd18 Average speed in 2018 (mph) INRIX XD 
Ss18 Speed standard deviation in 2018 (mph) INRIX XD 
Spd19 Average speed in 2019 (mph) INRIX XD 
Ss19 Speed standard deviation in 2019 (mph) INRIX XD 
Spd20 Average speed in 2020 (mph) INRIX XD 
Ss20 Speed standard deviation in 2020 (mph) INRIX XD 
Spd21 Average speed in 2021 (mph) INRIX XD 
Ss21 Speed standard deviation in 2021 (mph) INRIX XD 
Spd22 Average speed in 2022(mph) INRIX XD 
Ss22 Speed standard deviation in 2022 (mph) INRIX XD 
Sef22 85 percentile speed in 2022 (mph) INRIX XD 
PrcSum19 Sum of precipitation in 2019 (in) NOAA (CDS) 
PrcAvg19 Average of precipitation in 2019 (in) NOAA (CDS) 
PrcSum20 Sum of precipitation in 2020 (in) NOAA (CDS) 
PrcAvg20 Average of precipitation in 2020 (in) NOAA (CDS) 
PrcSum21 Sum of precipitation in 2021 (in) NOAA (CDS) 
PrcAvg21 Average of precipitation in 2021 (in) NOAA (CDS) 
PrcSum22 Sum of precipitation in 2022 (in) NOAA (CDS) 
PrcAvg22 Average of precipitation in 2022 (in) NOAA (CDS) 
A_18 Number of Incapacitating injury crashes in 2018                                                     CRIS 
B_18 Number of non-incapacitating injury crashes in 2018 CRIS 
C_18 Number of possible injury crashes in 2018 CRIS 
K_18 Number of fatal crashes in 2018     CRIS 
O_18 Number of not injured crashes in 2018      CRIS 
U_18 Number of unknown crashes in 2018      CRIS 
A_19 Number of Incapacitating injury crashes in 2019                                                     CRIS 
B_19 Number of non-incapacitating injury crashes in 2019 CRIS 
C_19 Number of possible injury crashes in 2019 CRIS 
K_19 Number of fatal crashes in 2019     CRIS 
O_19 Number of not injured crashes in 2019      CRIS 
U_19 Number of unknown crashes in 2019      CRIS 
A_20 Number of Incapacitating injury crashes in 2020                                                    CRIS 
B_20 Number of non-incapacitating injury crashes in 2020 CRIS 
C_20 Number of possible injury crashes in 2020 CRIS 
K_20 Number of fatal  crashes in 2020  CRIS 
O_20 Number of not injured crashes in 2020     CRIS 
U_20 Number of unknown crashes in 2020     CRIS 
A_21 Number of Incapacitating injury crashes in 2021                                                CRIS 
B_21 Number of non-incapacitating injury crashes in 2021 CRIS 
C_21 Number of possible injury crashes in 2021 CRIS 
K_21 Number of fatal crashes in 2021 CRIS 
O_21 Number of not injured crashes in 2021  CRIS 
U_21 Number of unknown crashes in 2021    CRIS 
A_22 Number of Incapacitating injury crashes in 2022                                           CRIS 
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B_22 Number of non-incapacitating injury crashes in 2022 CRIS 
C_22 Number of possible injury crashes in 2022 CRIS 
K_22 Number of fatal crashes in 2022    CRIS 
O_22 Number of not injured crashes in 2022   CRIS 
U_22 Number of unknown crashes in 2022 CRIS 
MnrCmmr Count of Minor Commercial Driveway TXST generated 
MjrCmmr Count of Major Commercial Driveway TXST generated 
MnrInds Count of Minor Industrial Driveway TXST generated 
MnrRsdn Count of Minor Residential Driveway TXST generated 
MjrInds Count of Major Industrial Driveway TXST generated 
Other Count of Other Driveway TXST generated 
MjrRsdn Count of Major Residential Driveway TXST generated 
Fclty_C1 Facility Codes TXST generated 
Facility Facility Names TXST generated 
Cr18_22_FI Count of Fatal and Injury Crashes (2018 - 2022)                                           TXST generated 
Cr18_22_PDO Count of PDO Crashes (2018 - 2022)     TXST generated 
TotalCrash Count of Total Crashes (2018 - 2022)                                           TXST generated 
Pav_S_Wid Paved Shoulder Width (ft) TXST generated 
Sw* Weight Factor TXST generated 
Equi_Dwy Count of Equivalent Driveway TXST generated 
Equi_Dwy_M* Weight Factor TXST generated 
Spd* Weight Factor TXST generated 
Prc_Avg* Weight Factor TXST generated 
Site_No* Weight Factor TXST generated 
Predicted_FI SPF-based Predicted Fatal and Injury Crashes  TXST generated 
Estimated_FI EB based Estimated Fatal and Injury Crashes TXST generated 
Predicted_PDO SPF based Predicted PDO Crashes  TXST generated 
Estimated_PDO EB based Estimated PDO Crashes TXST generated 
Estimated_Total EB based Estimated Total Crashes TXST generated 
UnqID Unique Segment ID2 TXST generated 

* indicates weight factor used for normalization of variable measures.  
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APPENDIX C: DECISION SUPPORT TOOL SCRIPTS 

# Developed by Subasish Das and David Mills 
# With Data Upload Option. 
# 1. After selecting District and County, user has option to upload 
custom data. 
# 2. App checks for required Columns for CSV file upload to make sure 
we can match data to shapefile. 
#    County - ADT, ControlS - ToDFO, MedType, NumLane, SpdAve <- Look 
at yellow columns in 7144. 
# 3. App checks # of rows for district/county selection to make sure 
data matches. 
# 4. App provides a notice to user if the selection # is different. 
# 5. App processes function to calculate Expected Crashes based on 
user uploaded data. 
# 6. Busy icon spins while processing data. 
# 7. Hot spot map loads for user to view and data can be downloaded. 
# 8. Output only shows FICrE, PDOCrE, TotalCrE. 

library(shiny) 
library(shinydashboard) 
library(shinyjs) 
library(sf) 
library(leaflet) 
library(leaflet.extras) 
library(dplyr) 
library(DT) 
library(htmltools) 
library(shinybusy) 
library(data.table) 
library(openxlsx) 

options(shiny.maxRequestSize = 105*1024^2)  # Sets the limit to 105MB 

# Read State/Counties CSV File 
StateCountyData = read.csv("County_District_List/CountyList.csv")   

# Create State and Initial County List 
StateCountyData$District <- as.character(StateCountyData$District) 
StateCountyData$County <- as.character(StateCountyData$County) 

DistrictList <- unique(StateCountyData$District) 
CountyList <- StateCountyData$County 

DistrictNameList <- data.frame( 
  unique(StateCountyData[c("District","DistrictID")]) 
) 
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# Load custom shapefile and CSV 
shapefile <- st_transform(st_read("0_data/tmc_shapefile.shp"), 4326) 
demo_data <- read.csv("0_data/demo_data.csv") 

# Save original column names for restoration 
original_demo_colnames <- names(demo_data) 

# Merge without unnecessary suffixes 
TX_shp <- shapefile %>% 
  left_join(demo_data, by = "un_d_nw") 

# Join displaydata with StateCountyData using district and county IDs 
TX_shp <- left_join(TX_shp, StateCountyData, by = c("DI" = 
"DistrictID", "CO" = "CountyID")) 

# Function to update crashes by adding new values 
update_crashes <- function(existing_data, new_data) { 
  tryCatch({ 
    # Ensure both datasets are data.tables 
    existing_data <- as.data.table(existing_data) 
    new_data <- as.data.table(new_data) 

    print(head(new_data)) 

    # Required columns for crash data 
    required_columns <- c("GID", "FRM_DFO", "TO_DFO", "C_SEC", "FI", 
"PDO") 

    # Check for required columns 
    if (!all(required_columns %in% names(new_data))) { 
      stop("New data is missing required columns.") 
    } 

    # Replace NA values with 0 for new crash data 
    new_data[, `:=`( 
      FI = fifelse(is.na(FI), 0, FI), 
      PDO = fifelse(is.na(PDO), 0, PDO) 
    )] 

    print("This Worked.") 

    # Merge with existing data, ensuring FI maps to EB_fi and PDO maps 
to EB_pdo 
    updated_data <- merge(existing_data, new_data, by = c("GID", 
"FRM_DFO", "TO_DFO", "C_SEC"), all.x = TRUE, suffixes = c("", ".new")) 

    # Update EB_fi and EB_pdo 
    updated_data[, `:=`( 
      EB_fi = as.integer(fifelse(is.na(FI), EB_fi, (EB_fi + FI) * 0.5 
+ pred_fi * 0.5)), 
      EB_pdo = as.integer(fifelse(is.na(PDO), EB_pdo, (EB_pdo + PDO) * 
0.5 + pred_pdo * 0.5)), 
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      EB_total = EB_fi + EB_pdo  # Ensure EB_total is recalculated 
properly 
    )] 

    # Remove unnecessary columns 
    updated_data[, c("FI", "PDO") := NULL] 

    return(updated_data) 
  }, error = function(e) { 
    print("Error updating crashes:") 
    print(e$message) 
    stop(e) 
  }) 
} 

update_demo_data_and_shapefile <- function(uploaded_file) { 
  if (!is.null(uploaded_file)) { 
    uploaded_data <- fread(uploaded_file$datapath) 

    # Ensure required columns exist 
    required_columns <- c("GID", "FRM_DFO", "TO_DFO", "C_SEC", "FI", 
"PDO") 
    if (!all(required_columns %in% names(uploaded_data))) { 
      showNotification("Uploaded data is missing required columns.", 
type = "error") 
      return() 
    } 

    # Create a copy of the original data before modifying 
    modified_demo_data <- demo_data 

    # Update the copied data instead of overwriting the original 
    modified_demo_data <- update_crashes(modified_demo_data, 
uploaded_data) 

    # Merge updated demo_data back into the shapefile 
    modified_TX_shp <- shapefile %>% 
      left_join(as.data.frame(modified_demo_data), by = "un_d_nw") %>% 
      left_join(StateCountyData, by = c("DI" = "DistrictID", "CO" = 
"CountyID")) 

    # Assign modified data 
    demo_data <<- modified_demo_data 
    TX_shp <<- modified_TX_shp 

    return(TX_shp) 
  } 
} 

# Read District SHP file 
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TXDistricts_shp = 
st_transform(st_read("ShapeFiles/Texas_Districts/District_Poly.shp"), 
4326) 

TXDistricts_shp = 
st_as_sf(select(as.data.frame(TXDistricts_shp),c('DIST_NBR','geometry'
))) 

# Read Counties SHP file 
TXcounties_shp = 
st_transform(st_read("ShapeFiles/Texas_Counties/County.shp"), 4326) 

TXcounties_shp = 
st_as_sf(select(as.data.frame(TXcounties_shp),c('CNTY_NBR','DIST_NBR',
'geometry'))) 

# UI Code 
body <- dashboardBody( 
  useShinyjs(), 
  add_busy_spinner("fulfilling-bouncing-circle"), 
  tabsetPanel( 
    tabPanel(HTML(paste(tags$span(style="font-size: 18px", 
"Introduction"))), 
             tags$br(), 
             tags$h2(tags$b("Texas Interactive Decision Support Tool 
to Improve Safety for Urban Roads with Speed Data")), 
             h2(), 
             div(style = "font-size: 18px;", HTML("This project aims 
to provide an interactive tool to identify crash hotspots on Texas 
urban state-maintained roadways. Six different roadway facility types 
(Urban Two-lane, Urban Two-lane with a TWLTL, Urban Interstate, Urban 
Multilane Divided, Urban Multilane Undivided, Urban Multilane with a 
TWLTL) are included in this tool. The tool can provide 5 years 
observed number of crashes and 5 years expected number of crashes for 
each roadway segment. Moreover, geometric and speed distribution 
information are also available in this tool to help support safety 
decisions.")), 
             h2(), 
             div(style = "font-size: 18px;", HTML("The current tool 
has one tab. Users need to follow some steps to make the tool 
interactive:", "<br>")), 
             tags$span(style = "font-size: 18px", tags$ul( 
               tags$li("Select District"), 
               tags$li("Select County"), 
               tags$li("Select Facility Type"), 
               tags$li("Select AADT Range"), 
               tags$li("Select Crash Severity Level"), 
               tags$li("Click 'Refresh Map' (will take some time to 
load the map)"), 
               tags$li("Detailed Data can be downloaded by clicking 
the download button"), 
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               tags$li("Detailed definitions of the variable names can 
be downloaded after refreshing the map") 
             )), 
             tags$h3(tags$b("Acknowledgments")), 
             h2(), 
             div(style = "font-size: 18px;", HTML("The project was 
funded by Texas Department of Transportation (TXDOT).")), 
             h2(), 
             div(style = "font-size: 18px;", HTML("The project was 
conducted by Texas State University (TXST) and Texas A&M 
Transportation Institute (TTI). The interactive online tool was 
developed by the TXST project team members Dr. Subasish Das and Mr. 
David Mills. Questions about the tool can be sent to the Principal 
Investigator, Dr. Subasish Das at <a 
href='mailto:subasish@txstate.edu'>subasish@txstate.edu</a>")), 
             hr(), 
             tags$img(src='txdot_Logo.png', height=120), HTML("&nbsp 
&nbsp"), 
             tags$img(src='txstLogo.png', height=80), 
             tags$img(src='TTI_Logo.png', height=80), 
             hr(), 
             div(style = "font-size: 18px;", HTML("Last updated: 
January 28, 2025.")) 
    ), 
    tabPanel(HTML(paste(tags$span(style="font-size: 18px", "0-7144 
Tool"))), id="UrbanSpeedTool", 
             tags$h1(tags$b("Texas Interactive Decision Support Tool 
to Improve Safety for Urban Roads with Speed Data (0-7144 Tool)")), 
             fluidRow( 
               column(width = 8, 
                      box(width = NULL, solidHeader = TRUE, 
                          div( 
                            id = "noDataNotice", 
                            style = "position: absolute; top: 50%; 
left: 50%; transform: translate(-50%, -50%); 
                                     text-align: center; background-
color: rgba(255, 255, 255, 0.8); 
                                     padding: 20px; border: 2px solid 
#d9534f; border-radius: 8px; 
                                     font-size: 18px; color: #d9534f; 
z-index: 1000; display: none;", 
                                    "No applicable state maintained 
roadways." 
                          ), 
                          leafletOutput("MapOut", height = 500), 
                          h2()                                         
) 
               ), 
               column(width = 3, 
                      box(width = NULL, status = "warning", 
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selectInput("DistrictInput","District",choices = c("All 
Districts",sort(DistrictList)),selected = "All Districts"), 
                          selectInput("CountyInput","County",choices = 
c("All Counties",sort(CountyList)),selected = "All Counties"), 
                           
                          # Conditional file input except when All 
Districts is selected. 
                          conditionalPanel( 
                            condition = "input.DistrictInput !== 'All 
Districts' && (input.CountyInput === 'All Counties' || 
input.CountyInput !== 'All Counties')", 
                            fileInput("user_file", "Upload Your CSV", 
accept = ".csv") 
                          ), 
                           
                          selectInput("FacilityInput", "Facility",  
                                      choices = c("All Facilities",  
                                                  "Urban Two-lane",  
                                                  "Urban Two-lane with 
a TWLTL",  
                                                  "Urban Interstate 
Highway",  
                                                  "Urban Multilane 
Divided",  
                                                  "Urban Multilane 
Undivided",  
                                                  "Urban Multilane 
with a TWLTL"),  
                                      selected = "All Facilities"), 
                          selectInput("AADTInput", "AADT Ranges", 
choices = c("All Levels", "Less than 2000", "2001 to 10000", "Greater 
than 10000"), selected = "All"), 
                          radioButtons("Severity", label = "Crash 
Severity", choices = list("Total", "Fatal and Injury","No Injury"), 
inline=TRUE), 
                          actionButton("resetData", "Reset to Original 
Data", class = "butt"), 
                          actionButton(inputId = "RefreshMap", label = 
"Refresh Map", class = "butt"), 
                          tags$head(tags$style(".butt{background-
color:#0000FF;} .butt{color: white;}")), # background color and font 
color 
                          downloadButton("downloadData",label 
="Download Data"), 
                          hr(), 
                          HTML("Note:"), 
                          h2(), 
                          HTML("1. Detailed definitions of the 
variable names can be downloaded"), 
                          downloadLink("downloadDefination",label 
="here"), 



213 
 

                          HTML(". (Please refresh map first before 
downloading)"), 
                          h2(), 
                          HTML("2. Please use the arrows beside column 
names to rank top sites") 
                      ) 
               ) 
             ), 
             DT::DTOutput('outputDT'), 
             h2(),tags$br(), 
             h2(),tags$br() 
    ) 
  ) 
) 
 
# Put them together into a dashboardPage 
ui <- dashboardPage( 
  #header, 
  dashboardHeader(disable = TRUE), 
  dashboardSidebar(disable = TRUE), 
  body 
) 

server <- function(input, output, session) { 
  # Store original copies of data 
  original_demo_data <<- demo_data 
  original_TX_shp <<- TX_shp 

  # Watch for file upload event and call update function 
  observeEvent(input$user_file, { 
    tryCatch({ 
      uploaded_data <- read.csv(input$user_file$datapath) 

      required_columns <- c("di", "co", "frm_dfo", "to_dfo", "c_sec") 

      colnames(uploaded_data) <- tolower(colnames(uploaded_data)) 
      colnames(demo_data) <- tolower(colnames(demo_data)) 

      missing_columns <- setdiff(required_columns, 
colnames(uploaded_data)) 
      if (length(missing_columns) > 0) { 
        showNotification(paste("Missing columns:", 
paste(missing_columns, collapse = ", ")), type = "error") 
        return() 
      } 

      if (input$CountyInput == "All Counties") { 
        # When 'All Counties' is selected, filter by District 
        district_id <- unique(filter(StateCountyData, District == 
input$DistrictInput)$DistrictID)[1] 
        uploaded_data <- uploaded_data %>% filter(di == district_id) 
      } 



214 
 

      TX_shp <<- update_demo_data_and_shapefile(input$user_file) 

      showNotification("Data successfully uploaded and processed.", 
type = "message") 

    }, error = function(e) { 
      showNotification("Error processing the uploaded file.", type = 
"error") 
    }) 
  }) 

  observeEvent(input$resetData, { 
    # Restore original data 
    demo_data <<- original_demo_data 
    TX_shp <<- original_TX_shp 

    # Clear the file input field using JavaScript 
    runjs("document.getElementById('user_file').value = '';") 

    # Refresh the map automatically 
    shinyjs::click("RefreshMap") 
     
    showNotification("Data reset to original state. Map refreshed.", 
type = "message") 
  }) 

  observeEvent(input$DistrictInput,{ 
    if(input$DistrictInput != "All Districts"){ 
      updateSelectInput(session, "CountyInput","County",choices = 
c("All Counties",subset(StateCountyData$County, 
StateCountyData$District == input$DistrictInput))) 
    } 
    else{ 
      updateSelectInput(session, "CountyInput","County",choices = 
c("All Counties")) 
    } 
  } 

  ) 

  output$MapOut <- renderLeaflet({ 
    leaflet() %>% 
      addTiles(urlTemplate = "//cartodb-basemaps-
{s}.global.ssl.fastly.net/dark_all/{z}/{x}/{y}{r}.png", layerId = 
'Carto DB Dark Matter') %>% 
      setView(lng = -95.7129, lat = 37.0902, zoom = 4) 
  }) 

  observeEvent(input$RefreshMap, { 
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    # Get District Code based on District name input 
    Districtin <- input$DistrictInput 
    if (Districtin != "All Districts") { 
      # Retrieve the District ID corresponding to the selected 
District name 
      Districtin_Code <- unique(filter(StateCountyData, District == 
Districtin)$DistrictID)[1] 
    } else { 
      Districtin_Code <- 0 
    } 

    # Get County Code based on County name input 
    COUNTYin <- input$CountyInput 
    if (COUNTYin != "All Counties") { 
      # Retrieve the County ID corresponding to the selected County 
name and District ID 
      Countyin_Code <- filter(StateCountyData, DistrictID == 
Districtin_Code, County == COUNTYin)$CountyID[1] 
    } else { 
      Countyin_Code <- 0 
    } 

    # Map input Facility selection to the updated facility codes 
    Facilityin_Code <- switch(input$FacilityInput, 
                              "All Facilities" = 0, 
                              "Urban Two-lane" = "2U", 
                              "Urban Two-lane with a TWLTL" = "2T", 
                              "Urban Interstate Highway" = "IH", 
                              "Urban Multilane Divided" = "MD", 
                              "Urban Multilane Undivided" = "MU", 
                              "Urban Multilane with a TWLTL" = "MT" 
    ) 

    AADTin_Code <- switch(input$AADTInput, 
                          "All Levels" = 0, 
                          "Less than 2000" = 1, 
                          "2001 to 10000" = 2, 
                          "Greater than 10000" = 3 
    ) 

    MapOutputData <- TX_shp 

    # Filter MapOutputData based on Districtin_Code using `di` column 
in MapOutputData 
    if (Districtin_Code == 0) { 
      MapOutputDataTempDistrict <- MapOutputData 
      TXdistricts_shp_selected <- 
st_as_sf(as.data.frame(TXDistricts_shp)) 
    } else { 
      # Filter for the selected district code in both MapOutputData 
and TXDistricts_shp 
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      MapOutputDataTempDistrict <- 
st_as_sf(filter(as.data.frame(MapOutputData), DI == Districtin_Code)) 
      TXdistricts_shp_selected <- 
st_as_sf(filter(as.data.frame(TXDistricts_shp), DIST_NBR == 
Districtin_Code)) 
    } 

    # Filter MapOutputDataTempDistrict based on Countyin_Code using 
`co` column in MapOutputData 
    if (Countyin_Code == 0) { 
      MapOutputDataTempCounty <- MapOutputDataTempDistrict 

      # Further filter TXcounties_shp based on Districtin_Code if 
District is specified 
      if (Districtin_Code != 0) { 
        TXcounties_shp_selected <- 
st_as_sf(filter(as.data.frame(TXcounties_shp), DIST_NBR == 
Districtin_Code)) 
        corr <- 
as.data.frame(st_coordinates(st_centroid(TXdistricts_shp_selected))) 

        LATzoom <- corr$Y 
        LONzoom <- corr$X 
        zoomLevel <- 8 
      } else { 
        TXcounties_shp_selected <- 
st_as_sf(filter(as.data.frame(TXcounties_shp), DIST_NBR == 0)) 
        LATzoom <- 31.9686 
        LONzoom <- -99.9018 
        zoomLevel <- 6 
      } 

    } else { 
      # Filter MapOutputDataTempDistrict for the selected county code 
in `co` column 
      MapOutputDataTempCounty <- 
st_as_sf(filter(as.data.frame(MapOutputDataTempDistrict), CO == 
Countyin_Code)) 
      TXcounties_shp_selected <- 
st_as_sf(filter(as.data.frame(TXcounties_shp), CNTY_NBR == 
Countyin_Code)) 

      # Get coordinates for centering map based on the selected county 
      corr <- 
as.data.frame(st_coordinates(st_centroid(TXcounties_shp_selected))) 
      LATzoom <- corr$Y 
      LONzoom <- corr$X 
      zoomLevel <- 9 
    }   

    # Filter MapOutputDataTempCounty based on Facilityin_Code using 
the `facility` column 
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    if (Facilityin_Code == 0) { 
      MapOutputDataTempFacility <- MapOutputDataTempCounty 
    } else { 
      # Filter for the selected facility code in `facility` column 
      MapOutputDataTempFacility <- 
st_as_sf(filter(as.data.frame(MapOutputDataTempCounty), facility == 
Facilityin_Code)) 
    } 

    # Filter MapOutputDataTempFacility based on AADTin_Code using the 
`ADT_CUR` column 
    if (AADTin_Code == 0) { 
      MapOutputDataTempAADT <- MapOutputDataTempFacility 
    } else if (AADTin_Code == 1) { 
      # Filter for AADT <= 2000 
      MapOutputDataTempAADT <- 
st_as_sf(filter(as.data.frame(MapOutputDataTempFacility), ADT_CUR <= 
2000)) 
    } else if (AADTin_Code == 2) { 
      # Filter for 2000 < AADT <= 10000 
      MapOutputDataTempAADT <- 
st_as_sf(filter(as.data.frame(MapOutputDataTempFacility), ADT_CUR > 
2000 & ADT_CUR <= 10000)) 
    } else { 
      # Filter for AADT > 10000 
      MapOutputDataTempAADT <- 
st_as_sf(filter(as.data.frame(MapOutputDataTempFacility), ADT_CUR > 
10000)) 
    } 

    # Final assignment for MapOutputDataFinal after all filtering 
steps 
    MapOutputDataFinal <- MapOutputDataTempAADT 

    # Convert MapOutputDataFinal to a data frame 
    displaydata <- as.data.frame(MapOutputDataFinal) 

    # Observe the displaydata row count and toggle the noDataNotice 
div visibility 
    observe({ 
      if (nrow(displaydata) == 0) { 
        shinyjs::show("noDataNotice")  # Show the notification if no 
data 
      } else { 
        shinyjs::hide("noDataNotice")  # Hide the notification if data 
is available 
      } 
    }) 

    # Map facility codes to descriptive names in the `facility` column 
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    displaydata <- within(displaydata, facility[facility == '2U'] <- 
'Urban Two-lane') 
    displaydata <- within(displaydata, facility[facility == '2T'] <- 
'Urban Two-lane with a TWLTL') 
    displaydata <- within(displaydata, facility[facility == 'IH'] <- 
'Urban Interstate Highway') 
    displaydata <- within(displaydata, facility[facility == 'MD'] <- 
'Urban Multilane Divided') 
    displaydata <- within(displaydata, facility[facility == 'MU'] <- 
'Urban Multilane Undivided') 
    displaydata <- within(displaydata, facility[facility == 'MT'] <- 
'Urban Multilane with a TWLTL') 

    # Set a minimum value of 0.01 for EB_total, EB_pdo, and EB_fi if 
they are less than 0.01 
    displaydata <- within(displaydata, EB_total[EB_total < 0.01] <- 
0.01) 
    displaydata <- within(displaydata, EB_pdo[EB_pdo < 0.01] <- 0.01) 
    displaydata <- within(displaydata, EB_fi[EB_fi < 0.01] <- 0.01) 

    #print(head(displaydata)) 
    displaydata$EB_total <- as.integer(displaydata$EB_fi + 
displaydata$EB_pdo) 

    # Ensure column names in displaydata are clear and consistent 
    displaydata <- displaydata %>% 
      rename( 
        District_Code = DI,    # District code from `di` 
        County_Code = CO,      # County code from `co` 
        District = District,   # Descriptive district name 
        County = County        # Descriptive county name 
      ) 

    # Select the appropriate column in MapOutputDataFinal based on the 
selected severity 
    DataForPal <- switch(input$Severity, 
                         "Total" = MapOutputDataFinal$EB_total, 
                         "Fatal and Injury" = 
MapOutputDataFinal$EB_fi, 
                         "No Injury" = MapOutputDataFinal$EB_pdo 
    ) 

    pal_Total <- colorNumeric("YlOrRd", DataForPal) 

    # Define a named vector mapping each column to its display name 
    column_names <- c( 
      "un_d_nw" = "Segment ID", 
      "HWY" = "Highway Number", 
      "District" = "District", 
      "County" = "County", 
      "MED_WID" = "Median Width", 
      "NUM_LAN" = "Number of Lanes", 
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      "SUR_W" = "Surface Width", 
      "DHV" = "Daily Hourly Volume", 
      "LEN_SEC" = "Segment Length", 
      "MnrCmmr" = "Minor Commercial Driveway", 
      "MjrCmmr" = "Major Commercial Driveway", 
      "MnrInds" = "Minor Industrial Driveway", 
      "MnrRsdn" = "Minor Residential Driveway", 
      "MjrInds" = "Major Industrial Driveway", 
      "MjrRsdn" = "Major Residential Driveway", 
      "Other" = "Other Driveway", 
      "facility" = "Facility Type", 
      "equi_dwy" = "Equivalent Driveway", 
      "EB_fi" = "Expected FI Crashes", 
      "EB_pdo" = "Expected PDO Crashes", 
      "EB_total" = "Expected Total Crashes" 
    ) 

    # Generate labelOut dynamically based on columns present in 
displaydata 
    labelOut <- lapply(names(column_names), function(col) { 
      if (col %in% names(displaydata)) { 
        paste0(column_names[col], ": ", displaydata[[col]], "<br>") 
      } else { 
        NULL 
      } 
    }) 

    # Combine all elements of labelOut into a single list with HTML 
    labelOut <- as.list(do.call(paste0, labelOut)) 

    # Create popup content with expected and observed crashes 
information 
    popupOut <- paste0( 
      "<div style='max-height: 300px; overflow-y: auto;'>",  # Start 
scrollable div 
      'Segment ID: ', displaydata$un_d_nw, "<br>", 
      'Highway Number: ', displaydata$HWY, "<br>", 
      'District: ', displaydata$District, "<br>", 
      'County: ', displaydata$County, "<br>", 
      'Median Width: ', displaydata$MED_WID, "<br>", 
      'Number of Lanes: ', displaydata$NUM_LAN, "<br>", 
      'Surface Width: ', displaydata$SUR_W, "<br>", 
      'Daily Hourly Volume: ', displaydata$DHV, "<br>", 
      'Segment Length: ', format(round(displaydata$LEN_SEC, 3), nsmall 
= 3), "<br>", 
      'Minor Commercial Driveway: ', displaydata$MnrCmmr, "<br>", 
      'Major Commercial Driveway: ', displaydata$MjrCmmr, "<br>", 
      'Minor Industrial Driveway: ', displaydata$MnrInds, "<br>", 
      'Minor Residential Driveway: ', displaydata$MnrRsdn, "<br>", 
      'Major Industrial Driveway: ', displaydata$MjrInds, "<br>", 
      'Major Residential Driveway: ', displaydata$MjrRsdn, "<br>", 
      'Other Driveway: ', displaydata$Other, "<br>", 
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      'Facility Type: ', displaydata$facility, "<br>", 
      'Equivalent Driveway: ', displaydata$equi_dwy, "<br>", 
      'Expected FI Crashes: ', format(round(displaydata$EB_fi, 2), 
nsmall = 2), "<br>", 
      'Expected PDO Crashes: ', format(round(displaydata$EB_pdo, 2), 
nsmall = 2), "<br>", 
      'Expected Total Crashes: ', format(round(displaydata$EB_total, 
2), nsmall = 2), "<br>", 
      "</div>"  # End scrollable div 
    ) 

    leafletProxy("MapOut") %>%  
      clearPopups() %>%  
      clearGroup("Total/Fata/Injury") %>%  
      clearGroup("CountiesSHP") %>%  
      clearGroup("DistrictsSHP") %>%  
      clearControls() %>% 
      setView(lng = LONzoom, lat = LATzoom, zoom = zoomLevel) %>%  

      # Add polylines for MapOutputDataFinal with updated columns for 
crash data 
      addPolylines( 
        data = MapOutputDataFinal, 
        color = ~pal_Total( 
          switch(input$Severity, 
                 "Total" = MapOutputDataFinal$EB_total, 
                 "Fatal and Injury" = MapOutputDataFinal$EB_fi, 
                 "No Injury" = MapOutputDataFinal$EB_pdo) 
        ),  
        group = "Total/Fata/Injury", 
        popup = popupOut, 
        label = lapply(labelOut, HTML) 
      ) %>% 

      # Add county boundaries 
      addPolylines( 
        data = TXcounties_shp_selected,  
        color = '#81A88D',  
        group = "CountiesSHP",  
        weight = 1 
      ) %>% 

      # Add district boundaries 
      addPolylines( 
        data = TXdistricts_shp_selected, 
        color = '#C93312', 
        group = "DistrictsSHP", 
        weight = 2.5 
      ) %>% 

      # Add legend for crash severity based on updated columns 
      addLegend( 
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        "bottomright",  
        pal = pal_Total,  
        values = switch(input$Severity, 
                        "Total" = MapOutputDataFinal$EB_total, 
                        "Fatal and Injury" = MapOutputDataFinal$EB_fi, 
                        "No Injury" = MapOutputDataFinal$EB_pdo),  
        title = paste0(input$Severity, " Crashes") 
      ) 

    if (nrow(displaydata) > 0) { 
      MapOutputDataFinalDTtemp <- cbind( 
        select(displaydata,  
               c( 
                 'un_d_nw',          # Segment ID 
                 'District',         # District 
                 'County',           # County 
                 'HWY',              # Highway Number 
                 'facility',         # Facility Type 
                 'LEN_SEC',          # Segment Length 
                 'ADT_CUR',          # AADT 
                 'Spd18',            # Average Operating Speed 
                 'SS18',             # Standard Deviation of Operating 
Speed 
                 'PSL18',            # PSL Equivalent from INRIX 
                 'pre_avg',          # Average Precipitation 
                 'pred_fi',          # Predicted FI Crashes 
                 'pred_pdo',         # Predicted PDO Crashes 
                 'EB_total',         # Expected Total Crashes 
                 'EB_pdo',           # Expected PDO Crashes 
                 'EB_fi',            # Expected FI Crashes 
                 'total'             # Observed Total Crashes 
                 # 'Crash_18_22_pdo',  # Observed PDO Crashes 
                 # 'Crash_18_22_fi'    # Observed FI Crashes 
               ) 
        ) 
      ) 

      # Remove duplicates based on the Segment ID (un_d_nw) and keep 
all other columns 
      MapOutputDataFinalDTtemp <- distinct(MapOutputDataFinalDTtemp, 
un_d_nw, .keep_all = TRUE) 

      # Format specific columns to ensure consistent numeric 
formatting 
      MapOutputDataFinalDTtemp$spd18 <- 
format(round(MapOutputDataFinalDTtemp$Spd18, 2), nsmall = 2)  # 
Average Operating Speed 
      MapOutputDataFinalDTtemp$ss18 <- 
format(round(MapOutputDataFinalDTtemp$SS18, 2), nsmall = 2)    # 
Standard Deviation of Operating Speed 
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      MapOutputDataFinalDTtemp$pre_avg <- 
format(round(MapOutputDataFinalDTtemp$pre_avg, 2), nsmall = 2)  # 
Average Precipitation 
      MapOutputDataFinalDTtemp$EB_total <- 
format(round(MapOutputDataFinalDTtemp$EB_total, 2), nsmall = 2) # 
Expected Total Crashes 
      MapOutputDataFinalDTtemp$EB_pdo <- 
format(round(MapOutputDataFinalDTtemp$EB_pdo, 2), nsmall = 2)     # 
Expected PDO Crashes 
      MapOutputDataFinalDTtemp$EB_fi <- 
format(round(MapOutputDataFinalDTtemp$EB_fi, 2), nsmall = 2)       # 
Expected FI Crashes 
      MapOutputDataFinalDTtemp$total <- 
format(round(MapOutputDataFinalDTtemp$total, 2), nsmall = 2)       # 
Observed Total Crashes 
      # MapOutputDataFinalDTtemp$Crash_18_22_pdo <- 
format(round(MapOutputDataFinalDTtemp$Crash_18_22_pdo, 2), nsmall = 2)  
# Observed PDO Crashes 
      # MapOutputDataFinalDTtemp$Crash_18_22_fi <- 
format(round(MapOutputDataFinalDTtemp$Crash_18_22_fi, 2), nsmall = 2)    
# Observed FI Crashes 
      MapOutputDataFinalDTtemp$len_sec <- 
format(round(MapOutputDataFinalDTtemp$LEN_SEC, 3), nsmall = 3)  # 
Segment Length 

    } else { 
      # Define the column names expected in MapOutputDataFinalDTtemp 
      column_names <- c( 
        'un_d_nw',          # Segment ID 
        'District',         # District 
        'County',           # County 
        'HWY',              # Highway Number 
        'facility',         # Facility Type 
        'LEN_SEC',          # Segment Length 
        'ADT_CUR',          # AADT 
        'Spd18',            # Average Operating Speed 
        'SS18',             # Standard Deviation of Operating Speed 
        'PSL18',            # PSL Equivalent from INRIX 
        'pre_avg',          # Average Precipitation 
        'pred_fi',          # Predicted FI Crashes 
        'pred_pdo',         # Predicted PDO Crashes 
        'EB_total',         # Expected Total Crashes 
        'EB_pdo',           # Expected PDO Crashes 
        'EB_fi',            # Expected FI Crashes 
        'total'             # Observed Total Crashes 
        # 'Crash_18_22_pdo',  # Observed PDO Crashes 
        # 'Crash_18_22_fi'    # Observed FI Crashes 
      ) 

      # Create an empty data frame with "None" for each column 
      MapOutputDataFinalDTtemp <- data.frame(matrix("None", nrow = 1, 
ncol = length(column_names))) 
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      names(MapOutputDataFinalDTtemp) <- column_names 

    } 

    MapOutputDataFinalDT <- datatable(MapOutputDataFinalDTtemp, 
                                      class = 'cell-border 
stripe',rownames = FALSE 
    )  

    # Render the data table with the expected and observed crashes 
columns and enable single-row selection 
    output$outputDT <- DT::renderDT({ 
      displaydata_selected <- displaydata %>% 
        select( 
          un_d_nw,           # Segment ID 
          District,          # District 
          County,            # County 
          FRM_DFO,           # From DFO 
          TO_DFO,            # To DFO 
          C_SEC,             # Control Section 
          total,             # Observed Total Crashes 
          EB_fi,             # Expected FI Crashes 
          EB_pdo,            # Expected PDO Crashes 
          EB_total           # Expected Total Crashes 
        ) %>% 
        rename( 
          Segment_ID = un_d_nw, 
          From_DFO = FRM_DFO, 
          To_DFO = TO_DFO, 
          Control_Section = C_SEC, 
          Observed_Total_Crashes = total, 
          Expected_FI_Crashes = EB_fi, 
          Expected_PDO_Crashes = EB_pdo, 
          Expected_Total_Crashes = EB_total 
        ) 

      datatable( 
        displaydata_selected,  
        class = 'cell-border stripe',  
        rownames = FALSE, 
        options = list(lengthChange = FALSE), 
        selection = 'single'  # Enable single-row selection 
      ) 
    }) 

    # Observe the selected row in the data table and show the popup 
    observeEvent(input$outputDT_rows_selected, { 
      selected_row <- input$outputDT_rows_selected 

      if (length(selected_row) > 0) { 
        # Get the Segment ID of the selected row 
        selected_id <- displaydata[selected_row, "un_d_nw"] 
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        # Filter TX_shp to get the corresponding feature 
        selected_feature <- TX_shp %>% filter(un_d_nw == selected_id) 

        # Get the coordinates for centering the map 
        selected_coords <- st_centroid(st_geometry(selected_feature)) 
%>% st_coordinates() 
        lng <- selected_coords[1] 
        lat <- selected_coords[2] 

        # Create popup content with expected and observed crashes 
information 
        popupOut <- paste0( 
          "<div style='max-height: 300px; overflow-y: auto;'>",  # 
Start scrollable div 
          'Segment ID: ', displaydata$un_d_nw, "<br>", 
          'Highway Number: ', displaydata$HWY, "<br>", 
          'District: ', displaydata$District, "<br>", 
          'County: ', displaydata$County, "<br>", 
          'Median Width: ', displaydata$MED_WID, "<br>", 
          'Number of Lanes: ', displaydata$NUM_LAN, "<br>", 
          'Surface Width: ', displaydata$SUR_W, "<br>", 
          'AADT: ', displaydata$ADT_CUR, "<br>", 
          'K-Factor: ', displaydata$K_FAC, "<br>", 
          'D-Factor: ', displaydata$D_FAC, "<br>", 
          'Daily Hourly Volume: ', displaydata$DHV, "<br>", 
          'Segment Length: ', format(round(displaydata$LEN_SEC, 3), 
nsmall = 3), "<br>", 
          'Average Operating Speed: ', format(round(displaydata$Spd18, 
2), nsmall = 2), "<br>", 
          'Standard Deviation of Operating Speed: ', 
format(round(displaydata$SS18, 2), nsmall = 2), "<br>", 
          'PSL Equivalent from INRIX: ', 
format(round(displaydata$PSL18, 2), nsmall = 2), "<br>", 
          'Free Flow Operating Speed: ', 
format(round(displaydata$SFF18, 2), nsmall = 2), "<br>", 
          'Major Commercial Driveway: ', displaydata$MnrCmmr, "<br>", 
          'Minor Commercial Driveway: ', displaydata$MjrCmmr, "<br>", 
          'Minor Industrial Driveway: ', displaydata$MnrInds, "<br>", 
          'Minor Residential Driveway: ', displaydata$MnrRsdn, "<br>", 
          'Major Industrial Driveway: ', displaydata$MjrInds, "<br>", 
          'Other Driveway: ', displaydata$Other, "<br>", 
          'Major Residential Driveway: ', displaydata$MjrRsdn, "<br>", 
          'Facility Type: ', displaydata$facility, "<br>", 
          # 'FI Crashes: ', displaydata$Crash_18_22_fi, "<br>", 
          # 'PDO Crashes: ', displaydata$Crash_18_22_pdo, "<br>", 
          'Total Crashes: ', displaydata$total, "<br>", 
          'Equivalent Driveway: ', displaydata$equi_dwy, "<br>", 
          'Average Precipitation: ', displaydata$pre_avg, "<br>", 
          'Predicted FI Crashes: ', format(round(displaydata$pred_fi, 
2), nsmall = 2), "<br>", 
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          'Expected FI Crashes: ', format(round(displaydata$EB_fi, 2), 
nsmall = 2), "<br>", 
          'Predicted PDO Crashes: ', 
format(round(displaydata$pred_pdo, 2), nsmall = 2), "<br>", 
          'Expected PDO Crashes: ', format(round(displaydata$EB_pdo, 
2), nsmall = 2), "<br>", 
          'Expected Total Crashes: ', 
format(round(displaydata$EB_total, 2), nsmall = 2), "<br>", 
          "</div>"  # End scrollable div 
        ) 

        # Update the map: clear previous popups and add a new one 
        leafletProxy("MapOut") %>% 
          clearPopups() %>% 
          setView(lng = lng, lat = lat, zoom = 12) %>% 
          addPopups(lng, lat, popupOut, options = 
popupOptions(closeButton = TRUE)) 
      } 
    }) 

    if (nrow(displaydata) > 0) { 
      # Remove the geometry column and ensure distinct rows based on 
`un_d_nw` 
      outputDTdownload <- displaydata %>% 
        select(-geometry) %>% 
        distinct(un_d_nw, .keep_all = TRUE) %>% 

        # Relocate District and County names (assuming names are 
`District_Name` and `County_Name`) 
        relocate(District, .after = District_Code) %>% 
        relocate(County, .after = County_Code) 

    } else { 
      # Create a single-row data frame with "None" for each column if 
there is no data 
      outputDTdownload <- data.frame(matrix("None", nrow = 1, ncol = 
ncol(displaydata) - 1)) 
      colnames(outputDTdownload) <- setdiff(names(displaydata), 
"geometry") 
    } 

    # Define download handler for output data with updated facility 
codes 
    output$downloadData <- downloadHandler( 
      filename = function() { 
        paste0( 
          gsub(" ", "", paste( 
            input$DistrictInput, "_", 
            input$CountyInput, "_", 
            switch(input$FacilityInput, 
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                   "All Facilities" = "All", 
                   "Urban Two-lane" = "2U", 
                   "Urban Two-lane with a TWLTL" = "2T", 
                   "Urban Interstate Highway" = "IH", 
                   "Urban Multilane Divided" = "MD", 
                   "Urban Multilane Undivided" = "MU", 
                   "Urban Multilane with a TWLTL" = "MT" 
            ), 
            input$YearInput 
          )), 
          ".csv" 
        ) 
      }, 
      content = function(file) { 
        required_columns <- c( 
          "un_d_nw", "GID", "FRM_DFO", "TO_DFO", "C_SEC", "HWY", 
"STE_NAM", "District_Code", 
          "District", "County_Code", "County", "CITY", "RU", 
"F_SYSTE", "RU_F_SY", "SPD_MAX", 
          "MED_TYP", "MED_WID", "NUM_LAN", "HOV_LAN", "HOV_TYP", 
"RB_WID", "SUR_W", "S_TYPE_I", 
          "S_WID_I", "S_USE_I", "S_TYPE_O", "S_WID_O", "S_USE_O", 
"CURB_L", "SRF_TYP", 
          "ADT_YEA", "ADT_CUR", "ADT_ADJ", "K_FAC", "D_FAC", 
"TRK_AAD", "HY_1", "HY_2", "HY_3", 
          "HY_4", "HY_5", "HY_6", "HY_7", "HY_8", "HY_9", "DESGN_Y", 
"LEN_SEC", "LN_MILE", 
          "DVMT", "Fclty_C", "Spd18", "SS18", "Spd19", "SS19", 
"Spd20", "SS20", "Spd21", "SS21", 
          "Spd22", "SS22", "X2019pS", "X2019pA", "X2020pS", "X2020pA", 
"X2021pS", "X2021pA", 
          "X2022pS", "X2022pA", "X2018_A", "X2018_B", "X2018_C", 
"X2018_K", "X2018_O", "X2018_U", 
          "X2019_A", "X2019_B", "X2019_C", "X2019_K", "X2019_O", 
"X2019_U", "X2020_A", "X2020_B", 

"X2020_C", "X2020_K", "X2020_O", "X2020_U", "X2021_A", 
"X2021_B", "X2021_C", "X2021_K", 
          "X2021_O", "X2021_U", "X2022_A", "X2022_B", "X2022_C", 
"X2022_K", "X2022_O", "X2022_U", 
          "MnrCmmr", "MjrCmmr", "MnrInds", "MnrRsdn", "MjrInds", 
"Other", "MjrRsdn", "fclty_c1", 

"facility", "Crash_18_2", "Crash_18_1", "total", 
"pav_s_wid_", "sw", 
          "equi_dwy", "equi_dwy_m", "spd", "pre_avg", "Site_no", 
"pred_fi", "EB_fi", "pred_pdo", 
          "EB_pdo", "EB_total" 
        ) 

        # Corresponding new column names 
        new_column_names <- c( 
          "UnqID", "GID", "Frm_Dfo", "To_Dfo", "C_Sec", "Hwy", 
"Ste_Nam", "District_Code", 
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          "District", "County_Code", "County", "City", "Ru", 
"F_Syste", "Ru_F_Sy", "Spd_Max", 
          "Med_Typ", "Med_Wid", "Num_Lan", "Hov_Lan", "Hov_Typ", 
"Rb_Wid", "Sur_W", "S_Type_I", 
          "S_Wid_I", "S_Use_I", "S_Type_O", "S_Wid_O", "S_Use_O", 
"Curb_L", "Srf_Typ", 
          "Adt_Yea", "Adt_Cur", "Adt_Adj", "K_Fac", "D_Fac", 
"Trk_Aad", "Hy_1", "Hy_2", "Hy_3", 
          "Hy_4", "Hy_5", "Hy_6", "Hy_7", "Hy_8", "Hy_9", "Desgn_Y", 
"Len_Sec", "Ln_Mile", 
          "Dvmt", "Fclty_C", "Spd18", "Ss18", "Spd19", "Ss19", 
"Spd20", "Ss20", "Spd21", "Ss21", 
          "Spd22", "Ss22", "PrcSum19", "PrcAvg19", "PrcSum20", 
"PrcAvg20", "PrcSum21", 
          "PrcAvg21", "PrcSum22", "PrcAvg22", "A_18", "B_18", "C_18", 
"K_18", "O_18", "U_18", 
          "A_19", "B_19", "C_19", "K_19", "O_19", "U_19", "A_20", 
"B_20", "C_20", "K_20", 
          "O_20", "U_20", "A_21", "B_21", "C_21", "K_21", "O_21", 
"U_21", "A_22", "B_22", 
          "C_22", "K_22", "O_22", "U_22", "MnrCmmr", "MjrCmmr", 
"MnrInds", "MnrRsdn", "MjrInds",  
          "Other", "MjrRsdn", "Fclty_C1", "Facility", "Cr18_22_FI", 
"Cr18_22_PDO", "TotalCrash",  
          "Pav_S_Wid", "Sw", "Equi_Dwy", "Equi_Dwy_M", "Spd", 
"Prc_Avg", "Site_No", "Predicted_FI",  
          "Estimated_FI", "Predicted_PDO", "Estimated_PDO", 
"Estimated_Total" 
        ) 

        # Subset and rename the columns 
        outputDTdownload <- outputDTdownload[, required_columns, drop 
= FALSE] 
        colnames(outputDTdownload) <- new_column_names 

        write.csv(outputDTdownload, file, row.names = FALSE) 
      } 
    ) 

    # Define download handler for variable definitions 
    output$downloadDefination <- downloadHandler( 
      filename = function() { 
        paste0("VariableCodes_7144.xlsx") 
      }, 
      content = function(file) { 
        file.copy("ShapeFiles/VariableCodes_7144.xlsx", file) 
      } 
    ) 
  }) 
} 

shinyApp(ui, server) 
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