

GEORGIA DOT RESEARCH PROJECT 23-03

Final Report

**DEVELOPING SIGHT DISTANCE
GUIDELINES FOR U-TURN MANEUVERS**

Office of Performance-Based Management and Research

600 West Peachtree Street NW | Atlanta, Ga 30308

January 2026

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. FHWA-GA-26-2303	2. Government Accession No.: N/A	3. Recipient's catalog No.: N/A	
4. Title and Subtitle: Developing Sight Distance Guidelines For U-Turn Maneuvers		5. Report Date: January 2026	
		6. Performing Organization Code: N/A	
7. Author(s): Yichang (James) Tsai (PI), Ph.D., P.E. Atharv Agnihotri (Graduate Research Assistant) Zhijing Huang (Graduate Research Assistant) Scott R O'Brien (Graduate Research Assistant) Venkateshwarlu Balla (Graduate Research Assistant) Zhongyu Yang, Ph.D.		8. Performing Organization Report No.: 23-03	
9. Performing Organization Name and Address: Georgia Institute of Technology 790 Atlantic Drive, Atlanta, GA 30332-0355		10. Work Unit No.: N/A	
		11. Contract or Grant No.: PI# 0019905	
12. Sponsoring Agency Name and Address: Georgia Department of Transportation (SPR) Office of Performance-based Management and Research 600 West Peachtree St. NW Atlanta, GA 30308		13. Type of Report and Period Covered: Final Report (January 2024 – January 2026)	
		14. Sponsoring Agency Code: N/A	
15. Supplementary Notes: Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration.			
16. Abstract: This project, conducted by the Georgia Tech research team in collaboration with the Georgia Department of Transportation (GDOT), aims to develop safe and practical U-turn sight distance (UTSD) guidelines for Reduced Conflict U-turn (RCUT) intersections. The research analyzed video footage from GDOT to quantify U-turn maneuver times under varying median widths and incorporated these observations into sight distance modeling. Results showed that vehicles at wider median noses, where they have storage in the median to position themselves perpendicular to traffic and make a 90 degree turn, completed U-turns in approximately 4.25 seconds; while for narrower median noses, where vehicles can't position themselves perpendicular to traffic and take a 180 degree turn, the u-turning time increased to about 5.8 seconds. These empirical values were integrated with acceleration distance needed to reach 70% of the design speed to derive UTSD using the basic intersection sight distance equation. The resulting UTSD tables provide design guidance across different median widths and design speeds, ensuring adequate time and space for safe U-turn maneuvers. An accompanying Excel tool was also developed to facilitate practical application of the model. Comparisons against models from Florida DOT, Louisiana DOTD (AASHTO case F) and other AASHTO cases demonstrated that the proposed model achieves a balanced level of conservatism and feasibility. Furthermore, crash data analysis from selected RCUT sites confirmed the model's capability to identify locations with insufficient sight distance, supporting its potential to enhance intersection safety and operational performance.			
17. Key Words: AASHTO, Reduced Conflict U-Turn (RCUT), U-Turn Sight Distance, Intersection Design, Median Width, Vehicle Maneuver		18. Distribution Statement: No Restriction	
19. Security Classification (of this report): Unclassified	20. Security Classification (of this page): Unclassified	21. No. of Pages: 71	22. Price: Free

GDOT Research Project No. 23-03

Final Report

DEVELOPING SIGHT DISTANCE GUIDELINES FOR U-TURN MANEUVERS

By

Yichang (James) Tsai, Ph.D., P.E.
Professor of Civil and Environmental Engineering

Atharv Agnihotri
Graduate Research Assistant

Zhijing Huang
Graduate Research Assistant

Scott R O'Brien
Graduate Research Assistant

Venkateshwarlu Balla
Graduate Research Assistant

Zhongyu Yang, Ph.D.
Research Engineer

Georgia Tech Research

Corporation Contract with
Georgia Department of Transportation

January 2026

The contents of this report reflect the views of the author(s) who is (are) responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Georgia Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

SI* (MODERN METRIC) CONVERSION FACTORS				
APPROXIMATE CONVERSIONS TO SI UNITS				
Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH		
in	inches	25.4	millimeters	mm
ft	feet	0.305	meters	m
yd	yards	0.914	meters	m
mi	miles	1.61	kilometers	km
		AREA		
in ²	square inches	645.2	square millimeters	mm ²
ft ²	square feet	0.093	square meters	m ²
yd ²	square yard	0.836	square meters	m ²
ac	acres	0.405	hectares	ha
mi ²	square miles	2.59	square kilometers	km ²
		VOLUME		
fl oz	fluid ounces	29.57	milliliters	mL
gal	gallons	3.785	liters	L
ft ³	cubic feet	0.028	cubic meters	m ³
yd ³	cubic yards	0.765	cubic meters	m ³
NOTE: volumes greater than 1000 L shall be shown in m ³				
		MASS		
oz	ounces	28.35	grams	g
lb	pounds	0.454	kilograms	kg
T	short tons (2000 lb)	0.907	megagrams (or "metric ton")	Mg (or "t")
		TEMPERATURE (exact degrees)		
°F	Fahrenheit	5 (F-32)/9 or (F-32)/1.8	Celsius	°C
		ILLUMINATION		
fc	foot-candles	10.76	lux	lx
fl	foot-Lamberts	3.426	candela/m ²	cd/m ²
		FORCE and PRESSURE or STRESS		
lbf	poundforce	4.45	newtons	N
lbf/in ²	poundforce per square inch	6.89	kilopascals	kPa
APPROXIMATE CONVERSIONS FROM SI UNITS				
Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH		
mm	millimeters	0.039	inches	in
m	meters	3.28	feet	ft
m	meters	1.09	yards	yd
km	kilometers	0.621	miles	mi
		AREA		
mm ²	square millimeters	0.0016	square inches	in ²
m ²	square meters	10.764	square feet	ft ²
m ²	square meters	1.195	square yards	yd ²
ha	hectares	2.47	acres	ac
km ²	square kilometers	0.386	square miles	mi ²
		VOLUME		
mL	milliliters	0.034	fluid ounces	fl oz
L	liters	0.264	gallons	gal
m ³	cubic meters	35.314	cubic feet	ft ³
m ³	cubic meters	1.307	cubic yards	yd ³
		MASS		
g	grams	0.035	ounces	oz
kg	kilograms	2.202	pounds	lb
Mg (or "t")	megagrams (or "metric ton")	1.103	short tons (2000 lb)	T
		TEMPERATURE (exact degrees)		
°C	Celsius	1.8C+32	Fahrenheit	°F
		ILLUMINATION		
lx	lux	0.0929	foot-candles	fc
cd/m ²	candela/m ²	0.2919	foot-Lamberts	fl
		FORCE and PRESSURE or STRESS		
N	newtons	0.225	poundforce	lbf
kPa	kilopascals	0.145	poundforce per square inch	lbf/in ²

* SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380. (Revised March 2003)

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION	3
RESEARCH OBJECTIVES AND TASKS.....	4
REPORT ORGANIZATION.....	5
CHAPTER 2. EXISTING U-TURN SIGHT DISTANCE GUIDLINES	6
UNDERSTANDING SIGHT DISTANCE	6
IMPORTANCE OF SIGHT DISTANCE	8
REVIEW OF CURRENT PRACTICES.....	11
Nationwide Practices.....	11
State Practices.....	15
Example.....	16
SUMMARY	19
Overall Findings.....	19
Gaps in Existing Research.....	20
CHAPTER 3. METHODOLOGY FOR DEVELOPING, VALIDATING AND REFINING U-TURN SIGHT DISTANCE MODEL	24
BASE RATIONALE	24
Developing the base.....	24
Measuring total U-turn maneuver tut	27
Correction factor for trucks	31
MODEL COMPARISON.....	32
Comparison of the UTSD model with State DOT Models.....	32
Alignment with AASHTO Gap Time Guidelines for Intersections	33
CHAPTER 4. DATA COLLECTION AND CRASH ANALYSIS	35
COMPREHENSIVE OVERVIEW OF THE DATA ACQUISITION.....	36
Crash Analysis Using Numetric by AASHTOWare	37
Gap Time Measurement Using GDOT Camera Footage	38
CRASH ANALYSIS FOR U-TURNS AT THE PROVIDED RCUT LOCATIONS.....	39
Preliminary Analysis.....	40
Detailed Analysis	40
CHAPTER 5. RESULTS AND OUTCOMES	44
U-TURNING TIME AND ACCELERATING.....	44
UTSD FOR 90-DEGREE LIKE U-TURNS.....	45
UTSD FOR 180-DEGREE LIKE U-TURNS.....	47
GEOMETRIC DESIGN	48
MODEL COMPARISON.....	54
Comparison of our UTSD model with other State DOT Models	54
Alignment with AASHTO Gap Time Guidelines for Intersections	55
Analysis of U-Turn Sites with Crash	55
CHAPTER 6. FINDINGS AND RECOMMENDATIONS	56
RESEARCH FINDINGS	56
RECOMMENDATIONS FOR FUTURE STUDY	58

APPENDIX A - EXAMPLE CALCULATIONS FOR UTSD.....	60
APPENDIX B - HOW DOES OUR METHOD IMPROVES UPON EXISTING PRACTICES?.....	61
REFERENCE	63

LIST OF FIGURES

Figure 1. Graph. FHWA R-CUT Diagram. (FHWA, 2010).....	4
Figure 2. Screenshot. ISD Values from David and Norman's Study.	10
Figure 3. Equation. ISD	12
Figure . Screenshot. Intersection Sight Distance (ISD) Calculation Tables (AASHTO, 2018)	13
Figure . Screenshot. Timing and Adjustments for Case F. (AASHTO, 2018)	14
Figure . Screenshot. Louisiana's U-Turn Sight Distance Tables	17
Figure . Graph. Offset Distances. (AASHTO, 2018).....	23
Figure . Graph. Sample Illustration of Median Nose.....	26
Figure 9. Equation. UTSD	26
Figure 10. Graph. Two Components of Total U-turn Maneuver Time.....	27
Figure 11. Graph. Depiction of a Car Performing a U-Turn Maneuver from Point A to Point B.	29
Figure . Chart. Reference Table for Standard Accelerations Over Varying Distances and Starting Speeds of Passenger Cars. (AASHTO, 2011).....	30
Figure 13. Equation. UTSD Calculation.....	30
Figure . Screenshot. Snippet of RCUT Intersection Crash Study and Its Severity Using Numetric	38
Figure . Screenshot. Sample Camera Footage Used for Gap Time Analysis.....	39
Figure . Screenshot. Elevation Profile of Road.....	42
Figure . Graph. Different Types of Offset: (a) Negative offset, (b) No Offset, (c) Positive Offset. (AASHTO, 2018).....	50
Figure . Graph. Sight line Obstruction Depicted for A Negative Offset.....	51
Figure . Table. Minimum Width of Median. (AASHTO, 2018).....	51
Figure . Graph. Loon (expanded paved area) on A U-turn. (Potts, 2004)	53
Figure . Table. Adjustment Factors for U-turn Sight Distance Based on Approach Grade.	54
Figure . Illustration. Comparison of Accelerating Distances between Proposed Model and FDOTs Model	61

LIST OF TABLES

Table 1. Common Ratio Derived from AASHTO Case-B1 for Different Vehicle Types.....	32
Table 2. Eight RCUT Locations and Their Respective Co-ordinates, AADT and Posted Speed.....	36
Table 3. Summary of RCUT Crash Analysis.....	43
Table 4. Measured U-turning Time for Passenger Cars from a Complete Stop.	44
Table 5. Accelerating Distances for Different Roadway Speeds, Extracted from AASHTO Acceleration Charts.....	45
Table 6. UTSD Chart for 90-degree U-turns	46
Table 7. Correction Factor for Trucks	47
Table 8. UTSD Chart for 180-degree U-turns	48
Table 9. Correction Factor for Trucks	48
Table 10. Comparison of Sight Distance Values of Common Roadway Speeds Between FDOT, La DOTD, Proposed Sight Distance Model and AASHTO Case B1	54

LIST OF ABBREVIATIONS

AASHTO	American Association of State Highway and Transportation Officials
AADT	Annual Average Daily Traffic
DOT	Department of Transportation
EPDO	Equivalent Property Damage Only
FDOT	Florida Department of Transportation
FHWA	Federal Highway Administration
GDOT	Georgia Department of Transportation
ISD	Intersection Sight Distance
La DOTD	Louisiana Department of Transportation and Development
NCSA	National Center for Statistics and Analysis
NHTSA	National Highway Traffic Safety Administration
RCUT	Reduced Conflict U-turns
SSD	Stopping Sight Distance
USDOT	United States Department of Transportation
UTSD	U-turn Sight Distance

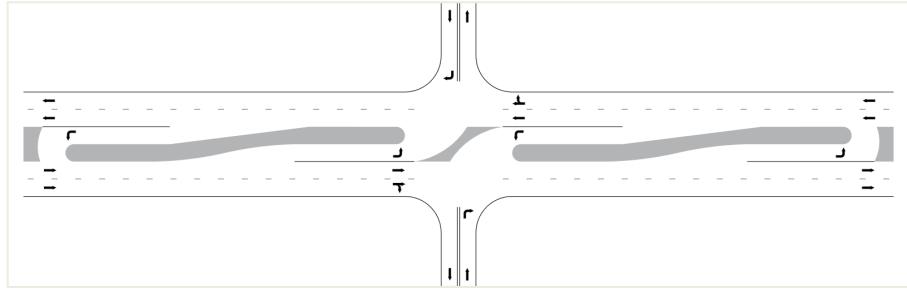
EXECUTIVE SUMMARY

This report presents the findings from a detailed study conducted by the Georgia Tech research team in collaboration with the Georgia Department of Transportation to develop safe and practical U-turn sight distance guidelines for Reduced Conflict U-Turn intersections. The primary objective was to establish design recommendations that enhance U-turn safety based on different vehicle maneuverability and reduce crash risks associated with U-turn movements.

Analysis of near-miss camera video footage from GDOT revealed that the time required for vehicles to complete U-turns varies with median width. The study found that median noses wider than or equal to approximately 14 ft provide sufficient storage for vehicles to reposition perpendicular to traffic and complete a 90-degree turning maneuver. Median noses narrower than 14 ft do not allow this repositioning and instead require drivers to perform a full 180-degree maneuver, which increases the U-turning time. Results indicated that vehicles executing U-turns at wider median nose required an average of 4.25 seconds, whereas vehicles at narrower ones required approximately 5.8 seconds. These times, combined with acceleration distances needed to reach 70% of the design speed (AASHTO, 2018), formed the basis for the U-turn sight distance calculations.

Using the basic intersection sight distance equation(AASHTO, 2018), adjusted for U-turn maneuvering time and acceleration, the team developed U-turn sight distance tables tailored for different median widths and design speeds. These tables provide a comprehensive framework to ensure drivers have adequate space and time to safely complete U-turns without conflicting with oncoming traffic. A spreadsheet tool

developed for easy application is also provided as a deliverable. The report also highlights important geometric considerations, such as avoiding negative offsets in turn lane alignment, increasing median opening widths, and incorporating loops to better accommodate trucks and improve overall operational efficiency.


The proposed U-turn sight distance model was compared with existing models from the Florida Departments of Transportation (FDOT) and Louisiana Departments of Transportation and Development (La DOTD), as well as alignment with AASHTO cases. The findings indicate that the model offers a balanced approach with more conservative values than Louisiana's but more realistic and achievable than Florida DOT's model, thus providing practical and safety-conscious design values. Additionally, crash data analysis at select RCUT locations supported the model's effectiveness in identifying areas needing improved sight distances to enhance safety.

CHAPTER 1. INTRODUCTION

Reduced Conflict U-turns (RCUT) have emerged as a favored traffic management strategy aimed at mitigating the high number of conflict points typically encountered at traditional intersections. This traffic engineering approach minimizes the likelihood of severe collisions while facilitating smoother traffic flow.

Despite their growing popularity, particularly in unsignalized and rural locations, there remains a critical need for well-defined sight distance guidelines tailored specifically for U-turns. The absence of formal AASHTO guidelines (specifically A Policy on Geometric Design of Highways and Streets, commonly known as the Green Book) presents a significant gap in ensuring optimal safety performance at these sites. Insufficient sight distance at these locations may contribute to these crashes (David & Norman, 1975; USDOT). While various states have initiated the development of their own U-turn sight distance criteria, these efforts have yet to converge into a national standard.

Georgia in particular stands to benefit from the establishment of specific unsignalized U-turn sight distance design guidelines. The state has increasingly implemented U-turn into design, such as standard median openings as well as Reduced Conflict U-Turns (RCUTs). A standard RCUT configuration is shown below in **Figure 1**. By creating a standardized framework, the state can ensure that U-turns are implemented consistently and safely across diverse road environments. Such guidelines will not only enhance safety for all road users but also contribute to the overall efficiency and reliability of the state's transportation network.

Figure 1. Graph. FHWA R-CUT Diagram. (FHWA, 2010).

A structured framework composed of well-reasoned guidelines is required to assist in providing the appropriate details for engineers and planners to make decisions about provisioning an RCUT or unsignalized U-turn design. Therefore, there is an essential need to develop a comprehensive set of sight distance guidelines for the Georgia Department of Transportation (GDOT) to implement to promote and improve roadway safety.

RESEARCH OBJECTIVES AND TASKS

The objective of this research is to develop a structured set of guidelines and specifications for appropriate sight distances for U-turn maneuvers. To accomplish the goals and the objectives of this research project, the following tasks were performed, sequentially:

- 1) **Work Task 1:** Conduct a literature review of existing sight distance requirements for U-turn maneuvers.
- 2) **Work Task 2:** Collect roadway field image data along with GPS data on the selected cases for a sight distance study and perform data analysis.
- 3) **Work Task 3:** Propose guidelines for sight distance for U-turn movements.

- 4) **Work Task 4:** Prepare the draft final report by summarizing the research outcomes and completing a final report.

The final deliverable of the research includes U-Turn Sight Distance (UTSD) guideline charts, excel based sight distance calculator tool and recommendations on various U-turn geometric features.

REPORT ORGANIZATION

This research project report is structured as follows:

- Chapter 1: Introduction - Covers background, research objectives, and tasks.
- Chapter 2: Existing UTSD guidelines - Reviews existing DOT practices and identifies their challenges and shortcomings.
- Chapter 3: Methodology for UTSD guidelines - Presents an enhanced, safer and feasible method developed for recommended UTSD.
- Chapter 4: Data collection and crash analysis - Discusses the means and methods used to collect data and the crash analysis for selected RCUTs using Numetric.
- Chapter 5: Results and Outcomes - Provides descriptive sight distance charts, design recommendations and comparison results.
- Chapter 6: Findings and Recommendations - Summarizes findings and makes future work suggestions.

CHAPTER 2. EXISTING U-TURN SIGHT DISTANCE GUIDELINES

This chapter introduces sight distance and its importance, reviews the current practices at the national and state levels, and presents the summarized practices and identified gaps.

UNDERSTANDING SIGHT DISTANCE

Sight distance is a key concept in roadway design and safety, defined as the length of roadway visible to a driver within their line of sight. It's the distance a driver can see ahead along the road, allowing them to detect potential hazards, obstacles, or changes in road conditions. This is especially important in scenarios where drivers need to make decisions in which they may conflict with other vehicles, such as intersections, passing lanes, and median openings. There are three main categories of sight distance values considered in roadway design, as explained below.

Stopping Sight Distance (SSD) is the distance needed for a driver to come to a complete stop after recognizing a hazard on the roadway, such as an obstacle, pedestrian, or another vehicle. It includes the distance traveled during the driver's reaction time (perception-reaction time) and the distance required for the vehicle to decelerate to a stop under prevailing roadway conditions, such as surface friction and grade. Ensuring sufficient stopping sight distance helps prevent rear-end collisions and allows drivers to stop safely in emergency situations (AASHTO, 2018). This is generally provided continuously along all roadways where possible and is the minimum preferred sight distance; the following two types of sight distance add additional time to this minimum to account for specific circumstances.

Intersection Sight Distance (ISD) refers to the distance a driver can see at an intersection before an obstruction blocks their view, focusing on their ability to see crossing roads as well as the road ahead. While stopping sight distance is an acceptable minimum for ISD, larger sight distances are desirable to accommodate certain roadway maneuvers. ISD is calculated from a “decision point” where a vehicle will decide on when to execute its movement. This is generally expressed as a “triangle” of sight beginning at the decision point before the intersection. For departure sight distance which should be provided in each quadrant of each intersection approach controlled by stop or yield signs, the position of the vertex is preferably 14.5 to 18 feet from the edge of the intersecting roadway. However, driver behavior studies indicate that drivers tend to stop 6.5 feet or less from the edge of the intersecting roadway. As such, increasing the vertex position to be closer to 18 feet is preferable (AASHTO, 2018). The preferred sight distance from this triangle is determined based on the expected maneuver and the roadway design speed; relevant maneuvers and their values are discussed later in the report. Having adequate intersection sight distance is crucial for safe maneuvering, as it allows drivers to anticipate potential conflicts and adjust their speed accordingly to safely navigate through the intersection (AASHTO, 2018).

Decision Sight Distance (DSD) is the length of roadway required for a driver to identify an unexpected or challenging information source or condition in a potentially visually cluttered environment. This distance allows the driver to recognize the situation or threat, choose an appropriate speed and path, and execute necessary complex maneuvers. Unlike stopping sight distance, DSD provides drivers with an additional margin for error, enabling them to maneuver their vehicles safely at the same or a reduced speed, rather

than merely coming to a stop. This is also recommended to be provisioned as a measure against senior driver-related crashes, providing additional reaction time for these drivers. Consequently, the values for decision sight distance are significantly greater than those for stopping sight distance (AASHTO, 2018).

The Green book required sufficient sight distance at the U-turn crossover both for U-turning drivers and for drivers of other vehicles approaching the crossover, though the details of how this should be determined and calculated are left unclear (AASHTO, 2018). This leaves a variety of questions to be answered, especially considering the unique conditions and movements associated with U-turns - what amount of distance is sufficient? Where should the point of the sight triangle be set? How does the size of the median impact visibility of the opposite lane? How can traffic flow, safety, and driver comfort considerations in visibility be balanced? These questions are explored in the remainder of this report.

IMPORTANCE OF SIGHT DISTANCE

This section summarizes the most relevant documents reviewed in a literature search. Each provides some amount of context or research findings as they relate to the importance of sight distance and the factors that impact it.

Mitchell (1972) conducted a before-and-after analysis of intersections where various improvements were implemented over a one-year period on each end. The study revealed a 67 percent reduction in crashes (from 39 to 13) after obstructions inhibiting sight distance were removed. This improvement was found to be the most effective among the implemented changes.

Hanna et al. (1976) summarized data collected on comprehensive studies of small city and town intersections. It drew conclusions regarding urban and rural accident patterns and roadway conditions, and how they affect traffic engineering decision-making. The analysis revealed that intersections with poor driver sight distance on one or more traffic approaches tend to have a higher-than-normal accident rate in rural areas.

David and Norman (1975) quantified the relationship between available sight distance and the expected reduction in crashes at intersections. Their study showed that intersections with shorter sight distances generally have higher crash rates. Predicted crash reduction frequencies related to Intersection Sight Distance (ISD) were derived based on their findings.

Figure 2 that contains Table 13 from David and Norman's study, provides the expected reduction in the number of crashes per intersection per year based on Average Annual Daily Traffic (AADT) and Intersection Sight Distance (ISD). The table shows that as AADT and ISD increase, the expected reduction in crashes also increases, indicating the importance of adequate sight distance in reducing intersection crashes.

Table 13. Expected Reduction in Number of Crashes per Intersection Per Year (David and Norman, 1979).

AADT* (1000s)	Intersection Sight Distance (ft)		
	20-49	50-99	> 100
< 5	0.18	0.20	0.30
5 – 10	1.00	1.30	1.40
10 – 15	0.87	2.26	3.46
> 15	5.25	7.41	11.26

* Annual average daily traffic entering the intersection

Figure 2. Screenshot. ISD Values from David and Norman's Study.

The study conducted by Quan et al. (2022) conducted on a three-mile roadway segment of U.S. 280 in Alabama revealed concerning findings regarding U-turn-related crashes at unsignalized intersections. Analysis of crash data from 2009 to 2014 identified a total of 70 crashes along the selected segment, with a significant portion occurring within a one-mile stretch. Specifically, approximately 30% of the crashes in this segment were U-turn related, resulting in various levels of injuries and property damage. Field observations and measurements indicated a strong correlation between insufficient sight distance (SD) for U-turns and terrain characteristics such as elevation, grade change, and curvature.

The research team's review highlighted the critical role of adequate sight distance in mitigating U-turn-related crashes at median openings on high-speed multilane highways. Limited sight distance was identified as a potential contributing factor to the elevated crash rates observed in the study area. This underscores the importance of ensuring sufficient sight distance for U-turn movements, particularly at unsignalized intersections where median openings are common. The study aimed to develop a cost-efficient and

safe method to estimate sight distance for U-turns, providing engineers with valuable tools to identify and address potential safety concerns on roadway segments prone to U-turn-related crashes.

Strate's analysis in Federal Highway Administration examined 34 types of improvements made in Federal Highway Safety Program projects (Strate, 2024). The results indicated that sight distance improvements were the most cost-effective, with a benefit-cost ratio of 5.33:1. This indicates a substantial return on investment in improving sight distance at intersections, emphasizing the significant impact such enhancements can have on enhancing roadway safety. By ensuring adequate sight distance, transportation agencies can effectively reduce the occurrence of severe crashes, thereby save lives and minimize injuries on roadways.

REVIEW OF CURRENT PRACTICES

This section covers the elements of nation and state level guidance on U-turn sight distance requirements in order to provide a basis of work on which to develop standards for Georgia. Nationwide practices provide an adaptable formula for calculation and key sight distance considerations at all intersections; state practices tend to expand this formula U-turn specific, with additional details such as roadway geometry and design vehicles.

Nationwide Practices

The Green Book highlighted Perception-Reaction Time (PRT) as a critical factor in Intersection Sight Distance (ISD) determination, with variations in PRT assumptions

across different scenarios, typically ranging from 2.0 to 2.5 seconds. The Gap Acceptance model proposes a critical gap approach for ISD calculation, potentially offering a better fit for aging drivers by considering their gap acceptance behavior (AASHTO, 2018).

Research by Yan et al. (2007) suggests that older drivers tend to accept larger gaps than younger drivers, particularly at lower speeds, and rely more on perceived sight distance at higher speeds. This indicates a potential need for adjustments in ISD requirements based on driver age and prevailing traffic conditions. Existing AASHTO guidelines recommend calculating ISD using the following formula (AASHTO, 2018):

$$ISD = 1.47 \times V \times t_g$$

Figure 3. Equation. ISD.

Where V represents the design speed of the major road and t_g denotes the time gap for a minor road vehicle to enter a major road. Notably, the time gap value varies for different vehicle types, including passenger vehicles, single-unit trucks, and combination trucks, with larger vehicles having a larger time gap. Time gaps for varying situations have been developed by AASHTO-supported studies based on a combination of research of driver behavior and applied physics, using expected acceleration and deceleration values to determine safe times to complete a movement. Driver behavior values generally utilize the 95th percentile of observed driver behavior, multiplied by a safety factor of 50%, applied to the worst expected roadway conditions (i.e. worn tires on a wet roadway) to determine safe values.

Example values for these time gaps, as well as a summary of calculations for various

design speeds, are listed in **Figure 4** below. “Case B1” refers to the sight distance vehicles required for making a left turn from the minor roads (stop controlled). Notably, case B1 is for turns onto a 2-lane highway with no median, indicating that a time gap for a U-turn on a wider, divided road may need to be longer.

Table 9-6. Time Gap for Case B1, Left Turn from Stop			
Design Vehicle	Time Gap (t_g) (s) at Design Speed of Major Road		
Passenger car	7.5		
Single-unit truck	9.5		
Combination truck	11.5		

U.S. Customary			
Design Speed (mph)	Stopping Sight Distance (ft)	Intersection Sight Distance for Passenger Cars	
		Calculated (ft)	Design (ft)
15	80	165.4	170
20	115	220.5	225
25	155	275.6	280
30	200	330.8	335
35	250	385.9	390
40	305	441.0	445
45	360	496.1	500
50	425	551.3	555
55	495	606.4	610
60	570	661.5	665
65	645	716.6	720
70	730	771.8	775
75	820	826.9	830
80	910	882.0	885

Figure 4. Screenshot. Intersection Sight Distance (ISD) Calculation Tables (AASHTO, 2018)

Another case applicable to unsignalized median openings, Case F, refers to the time required to make left turns from the major road at the median opening or the intersection. The suggested time gap is 2 seconds shorter for a passenger car than suggested in case B, a gap of 5.5 seconds. However, Case F also includes adjustments for number of lanes and the width of the median, in a simplified form; AASHTO suggests adding 0.5 seconds for

every lane crossed past the first and to roughly convert the width of the median into an equivalent number of lanes; for example, an 18 foot wide median would convert to about one and a half lanes, adding 0.75 seconds. Case F is described in **Figure 5**, shown below.

Table 9-16—Time Gap for Case F, Left Turns from the Major Road

Design Vehicle	Time Gap (t_g)(s) at Design Speed of Major Road
Passenger car	5.5
Single-unit truck	6.5
Combination truck	7.5

Note: Time gaps are for a stopped vehicle turning left from a two-lane highway with no median

For multilane and/or divided roadways—For left turns on two-way roadways across more than one opposing lane, including turn lanes, add 0.5 s for passenger cars or 0.7 s for trucks for each additional lane to be crossed in the left-turn maneuver in excess of one lane. Where the left-turning vehicle must pass through a median, the median width should be converted to an equivalent number of lanes; for example, an 18-ft [5.5-m] median would be equivalent to one and a half lanes and crossing through the median would require an additional 0.75 s for a passenger car and 1.05 s for a truck. The table also contains appropriate adjustment factors for the number of major-road lanes to be crossed by the turning vehicle. The unadjusted time gap in Table 9-16 for passenger cars was used to develop the sight distances in Table 9-17.

Figure 5. Screenshot. Timing and Adjustments for Case F. (AASHTO, 2018)

While these cases are well-documented and supported by research, they are not directly comparable to U-turn movements, and as such may not be an ideal basis for guideline development. However, the principles of their design and resulting sight distance values are a valuable reference point for the development of more applicable guidelines. Basing SD guidelines on a combination of driver behavior, applied physics, and relevant roadway geometry factors is an acceptable baseline for the guidelines.

AASHTO also emphasized the importance of median width in U-turn design and safe driver behavior. Undesirable driving behaviors, such as side-by-side queuing, angle stopping, and encroachment into through lanes, are commonly observed when vehicles compete for limited space within narrow medians.

The frequency of these undesirable behaviors and associated crashes has been shown to

decrease as median width increases, indicating that wider medians are generally safer. Medians that are too narrow, particularly those between 4 to 8 feet, are insufficient for accommodating left-turning vehicles and often lead to encroachment into adjacent lanes by other motorists trying to avoid partially stopped vehicles. Therefore, median widths of 12 to 30 feet are recommended as they provide adequate protected storage space for left- and U-turning vehicles at intersections (AASHTO, 2018). The median width and the number of opposing lanes influence the distance traveled in the execution of a U-turn maneuver, making these design considerations highly relevant for this report.

State Practices

Specific guidelines for U-turn sight distance requirements are rare at the state level. A review of publicly available guidelines revealed only two states with such guidelines, Florida and Louisiana. The lack of clear, widely applicable guidelines at both the state and federal levels highlight the need for additional research in this area.

The guidelines developed by the Florida DOT model the acceleration time of the design vehicle to come to the design speed of the roadway, accounting for the length of the U-turn, standard perception-reaction time, dimensions of the design vehicle and potential opposing vehicles, acceleration of the U-turning car, and the distance that would be traveled by the traversing vehicle and opposing vehicles during the maneuver and acceleration. The method is conservative in its assumptions on acceleration, using a speed of 0 mph from the point after a vehicle completes its turning portion of the maneuver. The calculated sight distance is also reduced by the distance traveled by the turning vehicle as it comes to speed, a large and significant reduction that may not be perfectly applicable.

Calculations are shown below, alongside the AASHTO-produced figures they reference for acceleration (FDOT, 2019).

Example

Design Speed (V) = 45 mph

Perception-Reaction Time (PRT) = 2.5 seconds

Distance to accelerate from 0 to 45 mph = 580 ft (refer to the distance-acceleration relationships shown in AASHTO Green Book)

Design vehicle length = 19 ft, a passenger vehicle

Turn radius = 15 ft

Clearance = 50 ft

We assume that the vehicle accelerates from 0 mph after completing turning portion of movement.

Calculation of total travel time and corresponding sight distance:

Distance traveled along circular part of U-turn = $\pi * \text{turn radius} = 47.1 \text{ ft}$

Total distance traveled = $47.1 + 580 + 19 = 646.1 \text{ ft}$ (including passenger vehicle tailing length)

Time to travel $\sim 645 \text{ ft}$ at an acceleration rate of $3.77 \text{ ft/sec}^2 = (645*2/3.77) = 18.5 \text{ seconds.}$

Total time = PRT + travel time = $2.5 + 18.5 = 21 \text{ seconds.}$

Intersection Sight Distance = $1.47 * V * \text{Total time} = 1.47*45*21 = 1,390 \text{ ft}$

Adding clearance distance = $1,390 + 50 = 1440 \text{ ft}$

Sight distance = total distance – distance traveled while accelerating = $1440 - 580 = 860 \text{ ft}$

The Louisiana Department of Transportation and Development (La DOTD) utilizes a

similar, simplified method for U-turn sight distance determination, based on AASHTO left-turn sight distance guidelines (LaDOTD, 2020). The required sight distance is based on a combination of the design vehicle, number of lanes the maneuver is expected to involve crossing, and the design speed of the roadway. Their exact equation is not stated but can be assumed to be based on speed of travel of opposing traffic and acceleration speed of the design vehicle. If sight distance is measured to be less than the design value suggested in the table below, a signal is required for protected U-turn and left-turn movements. Notably, these guidelines are listed in their Traffic Signal Manual, implying they may not be acceptable in unsignalized applications (LaDOTD, 2020). One unsignalized U-turn design document used in Louisiana referenced the table developed by the Florida DOT as described above (LaDOTD, 2013). The values used by La DOTD in this sight distance methodology are shown in **Figure 6**.

DESIGN SPEED (MPH)	LEFT TURN SIGHT DISTANCE (FT) FOR PASSENGER CARS BASED ON NUMBER OF OPPOND LANES		
	1 - LANE	2 - LANE	3 - LANE
	15	125	135
20	165	180	195
25	205	225	240
30	245	265	290
35	285	310	335
40	325	355	385
45	365	400	430
50	405	445	480
55	445	490	530
60	490	530	575

This information is for Center Left Turn Lanes with no median.
The above figure should be adjusted for wide medians or offset turn lanes.
(See AASHTO Green Book - Case F - p.9-56)

Design vehicle	Time gap (tg) (seconds) at speed of major road
Passenger car	5.5
Single-unit truck	6.5
Combination truck	7.5

Figure 6. Screenshot. Louisiana's U-Turn Sight Distance Tables.

Although La DOTD provides similar design vehicle categories of time gaps, their time gaps in La DOTD are different from the ones in Florida. There is no detailed description of the factors impacting these time gaps, though they appear to be using the less conservative AASHTO-defined ISD Case F, “Left Turns from the Major Road”, as opposed to Case B1, “Left Turn from Stop”. The differences in these values range from 2 seconds of time gap (more than 25% difference) at the passenger car level to 4 at the combination truck level. Neither state clearly justifies this choice, despite its potential implications on safety. Further work is needed to determine the appropriate time gap for Georgia. The Florida Department of Transportation (FDOT) has developed detailed calculations for U-turn sight distances. However, these calculations are based on assumptions and parameters that may not be applicable to other states, such as Georgia, due to differences in driving behaviors, road geometries, and traffic patterns. La DOTD has a similar set of guidelines but has based them on a less conservative set of initial parameters, again leaving Georgia with a wide range of potential values to use in their own guidelines.

Georgia’s GDOT Design Policy Manual adopts the AASHTO Green Book criteria as the standard for Intersection Sight Distance. Variations from minimum sight distance requirements set by AASHTO for ISD or any other type of sight distance requires a comprehensive study and “Design Variance” to be approved by the Chief Engineer. Because of this adherence to AASHTO’s sight distance methodologies, there are no specific provisions for sight distance as it relates to U-turn design. However, the manual does outline several related design considerations. For example, it allows the spacing between the minimum median opening can be closer than 1000 ft in urban areas and 1320

ft in rural areas. It also advises median openings on six-lane roadways needs specifically to be studied to assign a proper control mechanism, such as an RCUT, two-way stop, or signal control (GDOT, 2024). The manual also points to an NCHRP report on U-turn safety as a reference for design. This report points to opposing turn lane obstructions as a potential safety concern, suggests that ISD may be affected by the grade of the area and the geometry of the median opening, and references the final sight distance values calculated for U-turns by FDOT (Potts, 2004).

In conclusion, the review of current practices highlights the absence of specific specifications for U-turn sight distances from FHWA, indicating a need for further guidance in this area. While AASHTO provides general specifications for ISD, they do not specifically address U-turns. Although the Gap Acceptance model proposed by AASHTO offers a potential solution by considering driver behavior, it still lacks specific guidelines for U-turn sight distance determination. State level guidelines have increased specificity, but do not appear to consider the range of variables and contextual factors that may be necessary to ensure safety. There are no detailed descriptions of the factors used in deciding these time gaps, which may include factors such as U-turn geometry, intersection configurations, and driver behavior.

SUMMARY

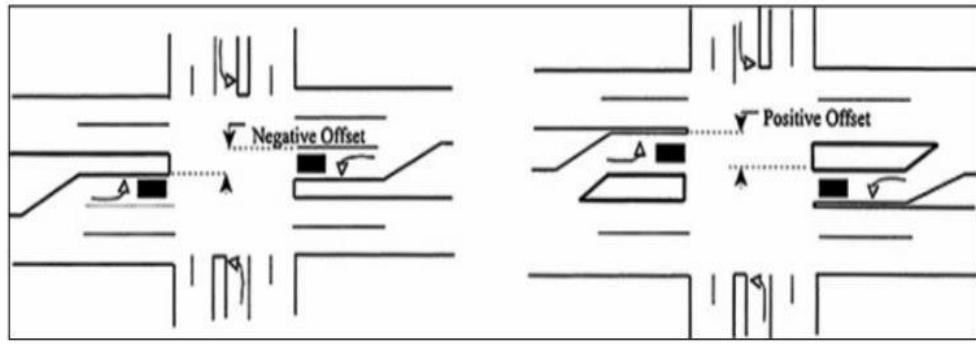
Overall Findings

Sight distance stands as a critical determinant of safety and comfort, particularly in turning maneuvers along roadways. The ability of drivers to accurately perceive potential hazards and react in a timely manner significantly hinges on their line of sight.

Inadequate sight distance not only jeopardizes the safety of drivers but also compromises the overall comfort and ease of navigating through intersections, especially during turns where visibility is crucial for assessing oncoming traffic and making informed decisions. Improvements to sight distance tend to be cost effective measures for enhancing safety. Ensuring sufficient sight distance is, therefore, a key factor in mitigating the risk of collisions and enhancing the overall driving experience.

At the state level, standardized guidelines regarding sight-distance requirements are not available or not developed in most states. Using Florida and Louisiana's implemented and tested standards as a reference point, transportation authorities and engineers can establish their own sight distance criteria that align with the unique characteristics and needs of their respective regions, thereby promoting consistency and safety in roadway design and management.

Existing sight distance standards typically consider a limited number of factors that are deemed essential for ensuring safe turning maneuvers and overall roadway safety. Among these factors, design vehicle factors, roadway design speed, and expected route of traversal (such as number of lanes to be crossed in maneuver) are deemed most important.


Gaps in Existing Research

The research landscape concerning U-turn sight distances reveals several notable gaps and limitations:

- 1) Absence of Specific Guidelines: Existing literature and guidelines lack specificity when determining sight distances tailored for U-turn maneuvers. Most guidelines primarily focus on conventional U-turn designs, overlooking the unique requirements of alternative designs.
- 2) Neglect of Alternative Designs: The predominant attention given to conventional U-turn designs sidelines alternative configurations, such as Reduced Conflict Intersection Crossing U-turns (RCUTs) or directional U-turns. Consequently, there's a dearth of guidance on sight distances tailored to these alternative designs.
- 3) Ignorance of Vehicle-Specific Turning Radii: The failure to consider the diverse turning radii of different vehicle types during sight distance calculations poses a safety risk. This oversight disregards the varying maneuvering capabilities of vehicles and may compromise safety at U-turn locations.
- 4) Limited Exploration of Driver Behavior Impact: The influence of U-turn sight distances on driver behavior and comfort, particularly regarding gap acceptance and maneuvering decisions, remains inadequately explored. Understanding these behavioral dynamics is crucial for devising effective safety measures. This also includes the impact of drivers' age and their physical ability in turn maneuver.
- 5) Assumptions of Standard Maneuvers: Many studies assume a standard 180-degree turn and constant acceleration throughout the U-turn maneuver. However, real-world scenarios often involve variations in turning radii and

acceleration rates among different vehicle types, necessitating a more nuanced approach.

- 6) Consideration of Different Viewing Angles: The angle and position of a vehicle relative to traffic greatly influences its effective sight distance. For example, a vehicle parallel to traffic will have different visibility compared to a vehicle that has pulled forward and is now nearly perpendicular to traffic. As suggested, a graphic will be added here to show this. We will likely have to make it ourselves, as I could not find a suitable existing graphic to demonstrate this concept.
- 7) Consideration of Offset Distances: The visibility of oncoming traffic during U-turn maneuvers through median openings is significantly influenced by median offset distances, as shown in **Figure 7** below. In this case, offset distances refer to the lateral distance median turn lanes are offset from the center. In the case of negative offsets, there is additional space placed between the turn lane and the opposing direction of traffic, causing vehicles in the opposing median turn lane to block views of oncoming traffic; positive offsets place the turn lane past opposing turn lanes, providing less obstructed views. Despite the impact this can have on sight distance, existing guidelines and research efforts often inadequately consider these factors, compromising the accuracy of visibility assessments.

Figure 7. Graph. Offset Distances. (AASHTO, 2018)

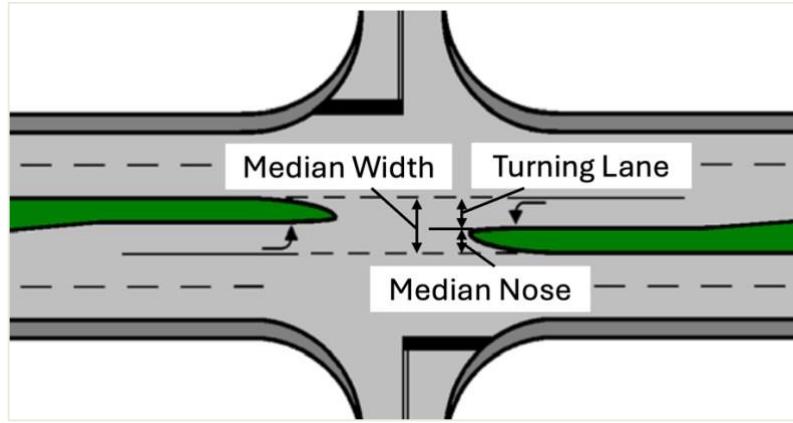
Addressing these gaps in the research is essential for developing comprehensive and effective guidelines for U-turn sight distances, thereby enhancing roadway safety and operational efficiency.

CHAPTER 3. METHODOLOGY FOR DEVELOPING, VALIDATING AND REFINING U-TURN SIGHT DISTANCE MODEL

The U-Turn Sight Distance (UTSD) model is developed based on a detailed study of RCUTs in Georgia, based on the following rationales:

BASE RATIONALE

The UTSD model is designed to determine the minimum distance a driver must observe oncoming traffic to safely execute a U-turn maneuver without conflict. This model is grounded in the following key considerations:


- Total U-turn Maneuver time (t_{ut}): The duration from the moment a vehicle initiates a U-turn from a complete stop to the point at which it aligns parallel with the major roadway lane and accelerates to match the roadway speed.
- Major Road Speed (V_d): The velocity of the oncoming vehicle on the major road, which influences the required stopping sight distance (SSD) to prevent potential collisions. This speed may be based on the design speed, posted speed limit, or any other appropriate speed metric as per state practices for the major road where the U-turn occurs.

Developing the base

A U-turn maneuver involves the interaction of two vehicles: one executing a U-turn and another traveling on the major road. The maneuver typically entails a 90-degree like left turns or 180-degree U-turns from the right lane into the left lane of the same roadway, depending on the vehicle's position at the decision point and the median width of the U-

turn. To model this scenario accurately, the following guidelines and parameters are utilized:

- 1) Left-Turn at an Intersection: The U-turn is modelled similarly to a left-turn maneuver at an intersection, as described in Cases B1 and F of the AASHTO Green Book. These cases provide insight into the geometric and operational characteristics of left-turn movements, which are analogous to U-turns in terms of maneuver complexity and required sight distance.
- 2) Stopping Sight Distance: The SSD for the major-road vehicle is determined following AASHTO guidelines. SSD represents the minimum distance needed for a vehicle to stop after perceiving an obstacle, accounting for perception-reaction time and braking distance.
- 3) Driver Behaviour Parameters: AASHTO parameter tables for acceleration, deceleration, perception-reaction time (PRT), and maneuver times are adapted to account for the specific dynamics of U-turns. These adjustments ensure that the model reflects the unique characteristics of U-turn maneuvers.
- 4) Median and Median Nose: A median is the area between opposing travel lane edges. A median nose refers to the pointed or rounded end of a raised median. The width of the median nose is defined as the distance between the inside edge of the turning lane and opposing travel way, including the inside shoulders as shown in **Figure 8**. The median end shape can directly alter the effective turning path the design vehicle can make. The shape of a median nose should be designed to accommodate the turning path of the design vehicle (TxDOT).

Figure 8. Graph. Sample Illustration of Median Nose.

5) Near-Miss Considerations: The model incorporates near-miss scenarios, as per Georgia Department of Transportation (GDOT) request, to account for situations where conflicts nearly occur without actual collisions.

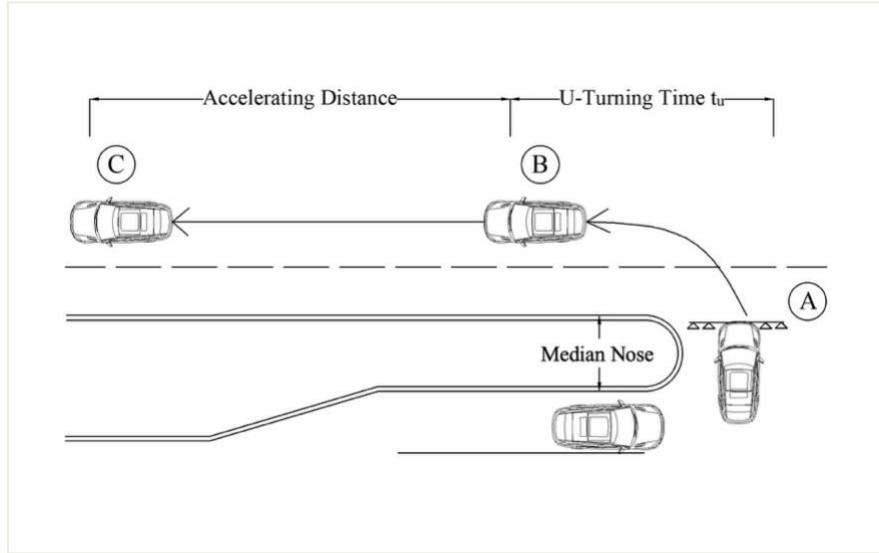
Building upon these considerations, the UTSD is calculated using the following formula:

$$USTD = 1.47 \times V_d \times t_{ut}$$

Figure 9. Equation. UTSD.

where:

V_d = the speed of the oncoming vehicles in miles per hour (mph),


t_{ut} = the Total U-turn maneuver time in seconds.

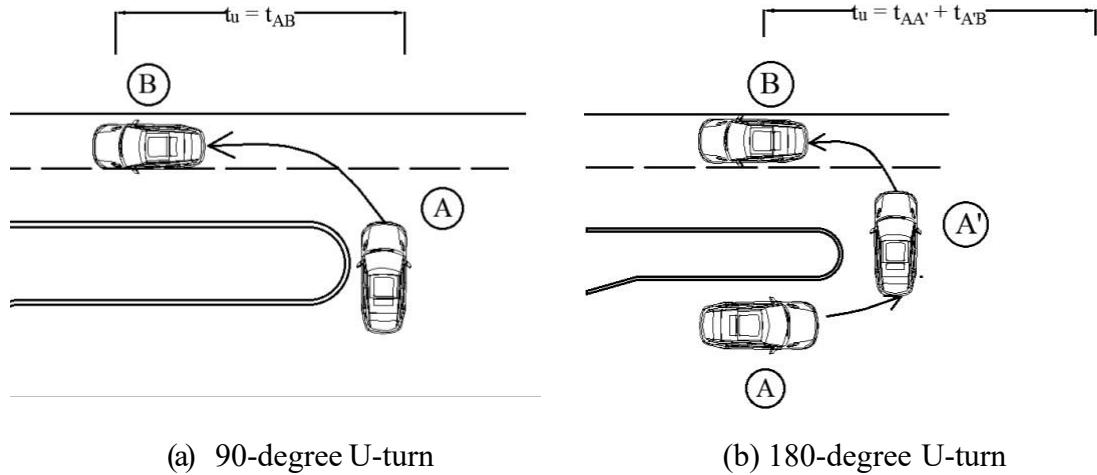
The values for the design speed (V_d) of the major road and the Total U-turn maneuver time (t_{ut}) were directly measured at U-turn locations, providing empirical data that

serves as the ground truth for these parameters. This approach enhances the reliability and redundancy of the model. Subsequently, UTSD is calculated using the selected formula.

Measuring total U-turn maneuver t_{ut}

The development of the U-Turn Sight Distance model is grounded in established guidelines and empirical research to ensure that drivers can execute U-turn maneuvers safely and efficiently. To derive t_{ut} from the collected U-turning vehicle data, the GT team has developed a comprehensive methodology comprising two integral components based on the two stages of U-turning process: U-turning time which can be directly extracted from the near-miss camera footage and accelerating distance (or time) (AASHTO, 2018), as shown in **Figure 10**.

Figure 10. Graph. Two Components of Total U-turn Maneuver Time.


- 1) **U-Turning Time (t_u):** A pivotal component of this model is the determination of U-turning time, denoted as t_u , which represents the time interval required for

a vehicle to complete a U-turn, starting from a complete stop until it becomes parallel with the major road lane. When the median provides sufficient width to shield a stopped vehicle within the opening, drivers can reposition the vehicle prior to initiating the maneuver, resulting in a shorter U-turning time on the opposing roadway.

Median nose width plays a critical role in determining how vehicles execute U-turns. Based on different median nose's width, we defined two types of U-turning time (90-degree turn and 180-degree turn), as shown in **Figure 11 (a)** and **(b)**.

Although no formal design guidance specifies a required median nose width for U-turn operations, a width of approximately 14 ft was observed to represent a practical minimum for allowing most passenger cars to reposition within the median opening under common practice. Accordingly, the study adopted 14 ft as the threshold for distinguishing between 90-degree and 180-degree U-turn scenarios. This threshold applies to passenger cars only and should be interpreted as a minimum suggested value; vehicles may partially occupy the adjacent turning lane to stop and complete a two-stage U-turn maneuver.

This approach provides a clear and methodical way to calculate gap time with minimal room for error. It is particularly effective when utilizing available camera footage, as it aligns with the field of vision and ensures consistency in measurements.

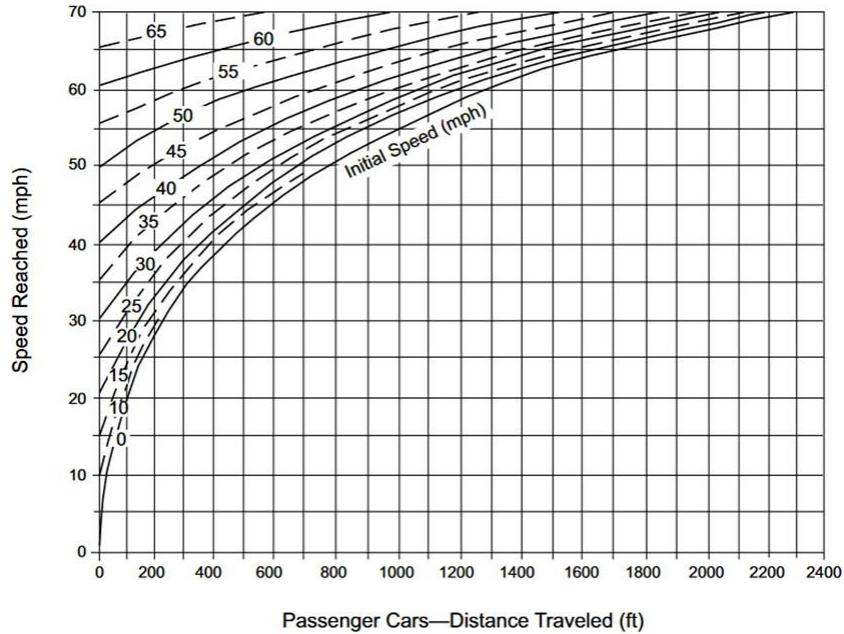


Figure 11. Graph. Depiction of a Car Performing a U-Turn Maneuver from Point A to Point B.

2) Accelerating Distance: This factor incorporates the distance over which the U-turning vehicle accelerates, ensuring compatibility with the Green Book.

According to the Green Book Chapter 9, page 9-43, Section 9.5.3.2.1, AASHTO recommends that most vehicles on the major road should not reduce their speed to less than 70% of their initial speed (AASHTO, 2018). This stipulation serves as a supplementary factor to the U-turn maneuver time. Specifically, 70% of the major road vehicle's speed is utilized to determine the corresponding value from

Figure 12.

Figure 12. Chart. Reference Table for Standard Accelerations Over Varying Distances and Starting Speeds of Passenger Cars. (AASHTO, 2011)

Note: The distance derived from the AASHTO acceleration chart, as illustrated in Figure 10, is added to the UTSD calculated using the U-turn maneuver time, rather than the time required for acceleration. This approach simplifies calculations, as the AASHTO charts directly provide the distance, which would be computed regardless. The cumulative gap time and accelerating time can subsequently be back calculated from the UTSD and vehicle speed, as detailed in [Appendix B](#) of the report.

Thus, the calculation equation for the UTSD should be:

$$USTD = 1.47 \times V_d \times t_u + D_{acceleration} = 1.47 \times V_d \times t_{ut}$$

Figure 13. Equation. UTSD Calculation.

Then we can come back to calculate the total U-turn maneuver time t_{ut} after determining

the two components of UTSD. This methodology offers advantages such as streamlined calculation process, minimized potential measurement errors, aligned with the field of vision when using camera footage provided by GDOT, and adherence to the established AASHTO standards. Furthermore, the approach facilitates the establishment of clear boundary conditions, thereby enabling the potential automation of the gap time extraction process through artificial intelligence technologies.

Correction factor for trucks

To simplify the presentation of sight distance requirements for trucks, this study proposes the use of a correction factor rather than developing a separate sight distance chart. This approach is intended to streamline the design process while still accounting for the operational differences between trucks and passenger cars. From the available video footage, only one RCUT location was identified where trucks regularly performed U-turns. This limited data availability significantly restricts the generalizability and statistical robustness of the analysis. Moreover, no dedicated acceleration charts currently exist for trucks, further complicating the direct computation of sight distance based on vehicle dynamics.

To address this limitation, the gap times table provided in the Green Book for comparable maneuvers was adopted as reference(AASHTO, 2018). Specifically, Case B1 - Left Turn from a Stop was used as a reference scenario, as it closely resembles the maneuver performed during a U-turn at an RCUT. By comparing the gap time values for trucks and passenger cars under this case, we derived a consistent correction factor based on the ratio of their respective values. This correction factor can be applied to the standard U-turn sight distance calculations for passenger vehicles to estimate the

corresponding values for trucks. **Table 1** presents the derived correction factors, which are recommended for use in RCUT designs that accommodate commercial vehicle movements.

Table 1. Common Ratio Derived from AASHTO Case-B1 for Different Vehicle Types.

S.no	Vehicle Type	Gap times for AASHTO Case - B1	Common Ratio (Correction Factor)
1	Passenger Car	7.5	1
2	Single-Unit Truck	9.5	1.27
3	Combination Truck	11.5	1.53

MODEL COMPARISON

This section outlines the methodology employed to validate and enhance the accuracy of the UTSD model. The process involved a comprehensive comparison of measured gap times, alignment with established AASHTO guidelines, and analysis of real-world crash data, thereby ensuring the model's reliability and applicability in practical scenarios.

Comparison of the UTSD model with State DOT Models.

The initial step entailed a comparative analysis of sight distances derived from the model against those adopted by other state DOTs. This comparative study aimed to evaluate the consistency and alignment of the model's sight distances with those established by other state DOTs, assess whether the model provides adequate safety margins by analyzing near-miss scenarios captured on camera, and refine model parameters by identifying discrepancies between the model and observed data to enhance predictive accuracy. This comparative approach facilitated the identification of areas for improvement, leading to a more robust and reliable UTSD model. Ideally, the

proposed UTSD model will provide an appropriate sight distance, with the La DOTD and FDOT methodologies serving as benchmarks to help contextualize the model's outputs.

Alignment with AASHTO Gap Time Guidelines for Intersections.

The second comparison component involved comparing the model's gap times with the time gap guidelines provided by the American Association of State Highway and Transportation Officials (AASHTO) and the Manual on Uniform Traffic Control Devices (MUTCD). Specifically, we referenced:

- AASHTO Intersection Case B1: Left turn from the minor road at stop-controlled intersections, which recommends a time gap of 7.5 seconds for passenger cars, 9.5 seconds for single-unit trucks, and 11.5 seconds for combination trucks.
- AASHTO Intersection Case C2: Left or Right turn from the minor road at yield-controlled intersections, which recommends a time gap of 8 seconds for passenger cars, 10 seconds for single-unit trucks, and 12 seconds for combination trucks.

By aligning the model's gap times with these established guidelines, we ensured that the UTSD model adheres to recognized safety standards, thereby enhancing its credibility and applicability. Ideally, the model should have greater sight distance values as U-turn maneuvers require longer gap times.

Analysis of Crashes at U-Turn Locations

The final comparison step involved analysing U-turn sites with recorded crashes and near misses to assess the effectiveness of the model in real-world conditions. Utilizing historical crash data and analytical tools, we:

- 1) Identify Problematic Sites: Pinpointed U-turn sites with a history of crashes potentially related to sight distances.
- 2) Compare Model Predictions: Compared the sight distances predicted by the model with those observed at these problematic sites.
- 3) Investigate Contributing Factors: Examined site characteristics, including road geometry and traffic conditions, to identify factors contributing to crashes.

This analysis provided valuable insights into the practical performance of the model, highlighting areas for further refinement and ensuring its relevance in preventing real-world traffic incidents. Ideally, the model should suggest a value greater than the sight distance identified at the problematic intersection.

CHAPTER 4. DATA COLLECTION AND CRASH ANALYSIS

This section outlines the data acquisition strategy and its critical role in understanding the operational and safety dynamics of RCUT intersections. Gathering reliable data was essential for assessing traffic behavior, flow efficiency, and potential safety concerns at these locations. For newly implemented RCUT intersections, a structured, multi-step approach was followed to collect and prepare the data:

Step 1: Coordination with DOT Officials.

The process was initiated by engaging with officials from the GDOT to align the project goals with their expectations. This collaboration helped refine the data acquisition strategy. During the meeting, GDOT shared data from eight RCUT sites, listed in **Table 2**, which was used for a detailed crash record analysis.

Step 2: Crash Data Analysis Using Numetric.

Numetric, a data visualization platform partnered with AASHTOWare, was utilized to examine historical crash data for the selected intersections. Key metrics such as Equivalent Property Damage Only (EPDO) scores, crash frequency, rates, contributing factors, and locations were analysed. This preliminary analysis helped identify crash-prone RCUT locations and explore potential causes.

Step 3: Video-Based Observation at U-Turns.

Near-miss camera videos have been collected by GDOT at these RCUT intersections to record vehicle movements, focusing particularly on U-turn sections. The footage offered

valuable insights into driver behaviour and vehicle gap acceptance, which are crucial for identifying near-miss situations. Although no collisions were directly observed, the videos revealed conditions that may contribute to future accidents.

Table 2. Eight RCUT Locations and Their Respective Co-ordinates, AADT and Posted Speed.

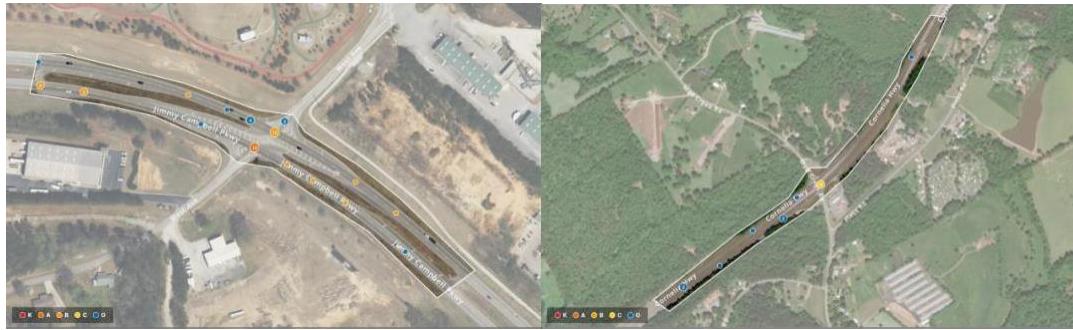
Site	RCUT location	Installation date	Latitude and Longitude	AADT	Posted Speed
1	Jimmy Campbell Pkwy (US-278) @ S Main St/West Ave in Dallas, Georgia (GDOT District 6)	Not provided	33°54'54.1"N 84°50'43.6"W	12900	55
2	US301 & Singleton Ave/ Buttermilk Rd in Sylvania, GA 30467 (GDOT District 5)	Not provided	32°45'44.5"N 81°38'50.3"W	2030	55
3	US 129/SR 11 @ Old Swimming Pool Rd in Jackson (city of Jefferson) County, GA 30549 (GDOT District 1)	12/01/2021	34°06'45.8"N 83°35'54.6"W	12250	45
4	SR 365 & Mud Creek Rd in Hall County, GA 30510 (GDOT District 1)	06/10/2024	34°26'09.7"N 83°37'54.7"W	12650	45
5	SR 296 & Fenns Bridge Rd (SR 540) in Jefferson County, GA 30832 (GDOT District 2)	Not provided	33°09'26.8"N 82°27'22.6"W	2425	55
6	SR 125 & Huntley Dr in Valdosta, GA, 31605 (GDOT District 4)	Not provided	30°54'26.4"N 83°15'51.2"W	14700	45
7	SR 365 & Yonah Post Rd in Alto, GA, 30510 (GDOT District 1)	8/31/2024	34°26'46.8"N 83°37'22.0"W	12200	45
8	Hwy 411 & Macedonia Rd in Bartow County, GA, 30145 (GDOT District 6)	Not provided	34°12'29.9"N 84°58'51.3"W	8700	65

COMPREHENSIVE OVERVIEW OF THE DATA ACQUISITION

The project commenced with collaborative discussions with officials from the GDOT,

who provided a list of eight RCUT sites, detailed in **Table 2**. We initiated the analysis with a preliminary crash assessment, followed by an in-depth review focusing on RCUTs with significant crash histories. GDOT also provided the near-miss camera footage for certain RCUT sites, offering a substantial dataset that enabled us to analyze vehicle gap times. Below is an overview of the data acquisition methodology and its objectives:

Crash Analysis Using Numetric by AASHTOware


Numetric is a robust, cloud-based traffic safety analytics platform developed by AASHTOware. It provides access to crash data derived from police reports, facilitating comprehensive analysis of crash histories at various intersections. For this study, we utilized Numetric to examine the crash data of all eight RCUT sites, with a particular emphasis on incidents occurring at U-turns. However, the platform does not specifically identify crashes related to sight distance issues at U-turns. Consequently, we manually reviewed crash narratives for each incident near the U-turns to identify potential sight distance concerns.

While Numetric offered valuable crash data, including metrics such as crash rates, EPDO scores, and severity classifications, it presented certain limitations:

- 1) Lack of RCUT-Specific Data: Numetric specialized database primarily focuses on conventional intersections and does not include tools or databases tailored for RCUT intersections.

- 2) Absence of U-Turn and Sight Distance Filters: The platform lacks specific filters to distinguish crashes related to U-turn maneuvers or those caused by sight distance issues.

Despite these limitations, Numetric comprehensive crash data provided a solid foundation for the analysis, as shown in **Figure 14**.

Figure 14. Screenshot. Snippet of RCUT Intersection Crash Study and Its Severity Using Numetric.

Gap Time Measurement Using GDOT Camera Footage

The near-miss camera footage cover various RCUT intersections, each spanning approximately 12-hour periods, as shown in **Figure 15**. These recordings captured vehicle movements at U-turn and left-turn intersections, allowing us to measure gap times. Gap time was measured by recording the duration from when a stopped vehicle began to move until it completed the U-turn. We excluded data from vehicles that did not stop before performing the U-turn, as their maneuver did not align with the proposed methodology.

Figure 15. Screenshot. Sample Camera Footage Used for Gap Time Analysis.

The camera footage offered a substantial amount of data, reflecting varying traffic conditions throughout the day. This enabled the model to account for diverse traffic scenarios. However, the footage had limited clarity (resolution) of major road traffic. The camera's resolution hindered the ability to assess the behaviour of vehicles on the major road, as their U-turning movements were unclear. To address these limitations, the Georgia Tech team collected drone footage at selected sites. The drone recordings, each lasting about 20 minutes, were captured at different locations and times of day to provide diverse perspectives. This supplementary data offered clearer insights into major road traffic behaviour and enhanced the understanding of interactions between major road vehicles and those performing U-turns.

CRASH ANALYSIS FOR U-TURNS AT THE PROVIDED RCUT LOCATIONS

This section provides a detailed crash analysis of RCUT sites, focusing on crashes at their U-turns. We conducted a historical crash data analysis using Numetric to identify crashes at existing GDOT RCUT U-turn locations and study their characteristics. The outcomes of this analysis helped improve the sight distance model and validate the UTSD model. We examined the causes of U-turn crashes and explore potential improvements to

enhance safety at RCUT intersections. To support our study, we also used Google Earth PRO for street views and elevation profiles.

Preliminary Analysis

In the first step of the study, we conducted a preliminary analysis of the crash data for eight RCUTs using the crash overview data. Referring to the Nomenclature in Table 1, RCUT 1 had two crashes at the U-Turn, one of which indicated of a potential sight distance issue. RCUT 3 recorded three U-turn crashes, two due to driver judgement error, and one potentially linked to sight distance. RCUT 4, which had video footage, revealed one crash potentially related to sight distance and another caused by driver judgement error (mentioned in renarrative). RCUT 2, RCUT 5, RCUT 6, RCUT 7, and RCUT 8 reported no U-turn crashes.

Detailed Analysis

From the preliminary analysis, we identified potential sight distance issues at RCUTs located at sites one, three and four. Our further study focused on investigating the causes of crashes at these three intersections.

I) RCUT Site 1 - Jimmy Campbell Parkway (US-278) @ S Main St/West Ave, Dallas, Georgia (GDOT District 6)

Located at coordinates 33°54'54.1"N, 84°50'43.6"W, the RCUT was likely installed by 2018 (based on historical data from Google Earth) and has an Annual Average Daily Traffic (AADT) of 12,900 vehicles. The intersection showed a significant reduction in crash fatalities overall. A key crash narrative (from Numetric) indicated that the driver

claimed, "*he was traveling in the right-hand lane of S.R. 6 East Bound when Vehicle #1 came out of nowhere in front of him.*" This suggests several potential causes:

Potential Cause 1 - Lack of Stopping Sight Distance.

While the crash narrative suggests a vehicle appeared suddenly, the U-turn location is at the start of a horizontal curve. The sight distance measured above 800 ft, which meets the minimum design SSD per AASHTO Table 3-1, ruling out a lack of sight distance.

Potential Cause 2 - Driver Error.

As no underlying causes proved to be due to design issues, the most probable cause is driver error, likely due to poor judgment.

Therefore, after a thorough analysis, the most likely cause of the crashes appears to be driver error.

2) RCUT Site 3 - US 129/SR 11 @ Old Swimming Pool Rd, Jackson (Jefferson County),

GA 30549 (GDOT District 1)

Located at coordinates 34°06'45.8"N, 83°35'54.6"W, this RCUT was installed in December of 2021 and has an Annual Average Daily Traffic (AADT) of 12,650 vehicles. A key statement from the crash narrative (from Numetric) was: "...*he was coming over the crest of the hill, saw Unit 1 in the roadway, and was unable to steer around it.*" This suggests two potential causes:

Potential Cause 1 - Lack of Stopping Sight Distance.

The mainline driver was unable to see the U-turning vehicle due to a crest in the road.

The street view of the location also suggests a limited stopping sight distance.

Furthermore, a cursory view of the road's crest was conducted using Google Earth to examine the terrain. As shown in the **Figure 16**, the elevation profile shows the elevation profile of the road, with the red arrow on the map corresponding to the maximum elevation point (displayed by red line on plot). The RCUT is situated at the end of a vertical crest, and the analysis reveals a sight distance less than 500 feet with an elevation of 16 feet at the crest, which does not seem to be sufficient for this crash case.

Figure 16. Screenshot. Elevation Profile of Road.

Potential Cause 2 - Driver Error

Driver error remains a possibility, as no similar crashes have been reported at this location.

Therefore, the most likely cause of the crash appears due to the lack of sight distance due to vertical crest, but driver error cannot be ruled out.

3) RCUT Site 4 - SR 365 & Mud Creek Rd, Hall County, GA 30510 (GDOT District 1)

Situated at coordinates 34°26'09.7"N, 83°37'54.7"W, this RCUT was installed on June 6,

2024, with an Annual Average Daily Traffic (AADT) of 12,650 vehicles. The crash narrative (from Numetric) revealed that the driver did not see oncoming traffic when making the U-turn and continued into the path of another vehicle. This suggests two potential causes:

Potential Cause 1 - Lack of U-turn Sight Distance.

The driver failed to see approaching traffic, which could be due to a curve near the U-turn. However, the RCUT is situated at the end of a straight road, and the sight distance exceeds 800 feet, ruling out this possibility.

Potential Cause 2 - Driver Error.

The most likely cause appears to be driver error, as there seems to be no apparent sight distance issues at this location.

Therefore, after a thorough analysis, the most likely cause of the crashes appears to be driver error.

Table 3 summarizes the outcome of the crash analysis study. For better interpretability, street view snippets related to the studied RCUTs are attached in Appendix B. RCUT 3 can be used for comparison of our UTSD model.

Table 3. Summary of RCUT Crash Analysis.

RCUT Location	Potential Site Distance Issue	Likely Cause of Crashes
RCUT 1	No	Driver Error
RCUT 3	Yes	Limited Stopping Sight Distance
RCUT 4	No	Driver error

CHAPTER 5. RESULTS AND OUTCOMES

This section presents the conclusive findings of our research and outlines the proposed UTSD values, as recommended by the Georgia Tech research team, to facilitate safer road designs.

U-TURNING TIME AND ACCELERATING

Table 4 presents the average U-turning times derived from video footage provided by GDOT. These measured times represent the duration required for a vehicle to make the U-turn maneuver, starting from a complete stop to the point where the vehicle is parallel to the major road lane.

Table 4. Measured U-turning Time for Passenger Cars from a Complete Stop.

Maneuver Type	U-turning Time (t_u)
90-degree like U-turn	4.25 sec
180-degree like U-turn	5.8 sec

Table 5 presents the accelerating distances extracted from **Figure 12**.

Table 5. Accelerating Distances for Different Roadway Speeds, Extracted from AASHTO Acceleration Charts.

Design Speed (mph)	70% Speed (mph)	Accelerating Distance (ft)
15	10.5	40
20	14	50
25	17.5	60
30	21	100
35	24.5	150
40	28	200
45	31.5	255
50	35	310
55	38.5	400
60	42	460
65	45.5	600
70	49	780
75	52.5	820
80	56	1000

Accordingly, all UTSD tables have been constructed using these U-turning times and accelerating distances as a baseline to ensure consistency design applications. An illustrative example demonstrating the application of these benchmark values in a real-world context is provided in Appendix B below

UTSD FOR 90-DEGREE LIKE U-TURNS

Our analysis indicates that at RCUT intersections with broader median nose (separator), closely resembles a 90-degree left turn (typically median nose widths greater or equal than 14 feet). Observations revealed that vehicles executing U-turns at these locations required less time to complete the maneuver and were able to accept shorter gaps in traffic.

From the camera footage analysed, the average of U-turning time was found to be 4.25

seconds. Utilizing the intersection sight distance equation, we can compute the U-turning Sight Distance for various design speeds. For instance, at a design speed of 45 mph:

$$\text{U-turning Sight Distance} = 1.47 \times 45 \times 4.25 \approx 281 \text{ (ft)}$$

However, this value alone can't meet the requirements of stopping sight distance of 45 mph (360 ft). In addition to the previously discussed U-turn maneuvering distances, the accelerating distance corresponding to the respective design speeds has been derived from **Figure 12**. The methodology for calculating accelerating distance is detailed in [Appendix A](#). By aggregating the U-turn maneuvering distance and accelerating distance, **Table 6** presents a comprehensive summary of the total design sight distance for common design speeds utilized in roadway design.

Table 6. UTSD Chart for 90-degree U-turns.

Design Speed (mph)	Safe Stopping Distance (ft)	U-Turn Sight Distance (ft)			
		U-turning Sight Distance	Accelerating Distance	Total Sight Distance	Design Sight Distance (ft)
15	80	93.71	40	133.71	135
20	115	124.95	50	174.95	175
25	155	156.19	60	216.19	220
30	200	187.43	100	287.43	290
35	250	218.66	150	368.66	370
40	305	249.90	200	449.90	450
45	360	281.14	255	536.14	540
50	425	312.38	310	622.38	625
55	495	343.61	400	743.61	745
60	570	374.85	460	834.85	835
65	645	406.09	600	1006.09	1010
70	730	437.33	780	1217.33	1220

Note: For trucks use a correction factor from the table below multiplying with the total sight distance listed on the above table.

Table 7. Correction Factor for Trucks.

Vehicle Type	Correction Factor
Passenger Car	1
Single-Unit Truck	1.27
Combination Truck	1.53

UTSD FOR 180-DEGREE LIKE U-TURNS

Our study indicates that at RCUT intersections with narrower median noses, vehicles initiating U-turns often begin the maneuver in a parallel orientation to the major roadway. This configuration necessitates a more gradual steering input and a longer U-turn maneuver distance, mimicking a 180-degree turn (typically median nose widths less than 14 feet), thereby increasing the time required to complete the U-turn maneuver. Consequently, vehicles cannot accept shorter gaps in opposing traffic.

This behavior is particularly evident in urban settings where median nose widths are constrained. Analysis of camera footage revealed that the average U-turning time for these maneuvers was approximately 5.8 seconds. The U-turn maneuver time and the accelerating distance calculation procedure are similar to the steps listed in section 5.2.

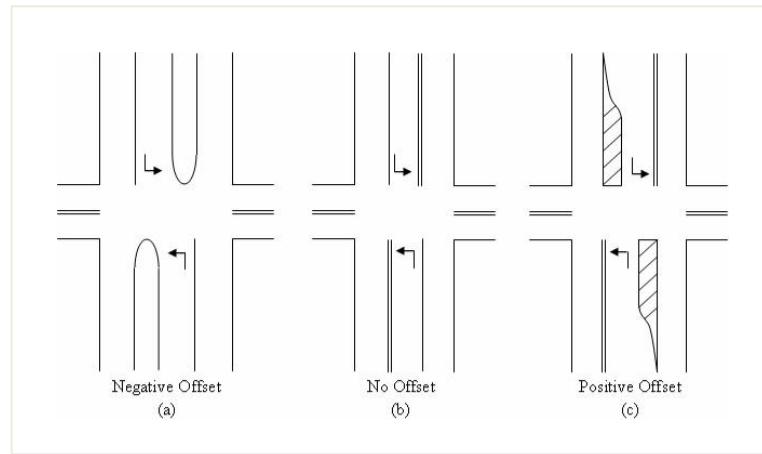
Table 8 summarizes the UTSD for U-turns with narrower median noses.

Table 8. UTSD Chart for 180-degree U-turns.

Design Speed (mph)	Safe Stopping Distance (ft)	U-Turn Sight Distance (ft)			
		U-turning Sight Distance	Accelerating Distance	Total Sight Distance	Design Sight Distance (ft)
15	80	127.9	40	167.9	170
20	115	170.5	50	220.5	225
25	155	213.2	60	273.2	275
30	200	255.8	100	355.8	360
35	250	298.4	150	448.4	450
40	305	341	200	541	545
45	360	383.7	255	638.7	640
50	425	426.3	310	736.3	740
55	495	468.9	400	868.9	870
60	570	511.6	460	971.6	975
65	645	554.2	600	1154	1155
70	730	596.8	780	1377	1380

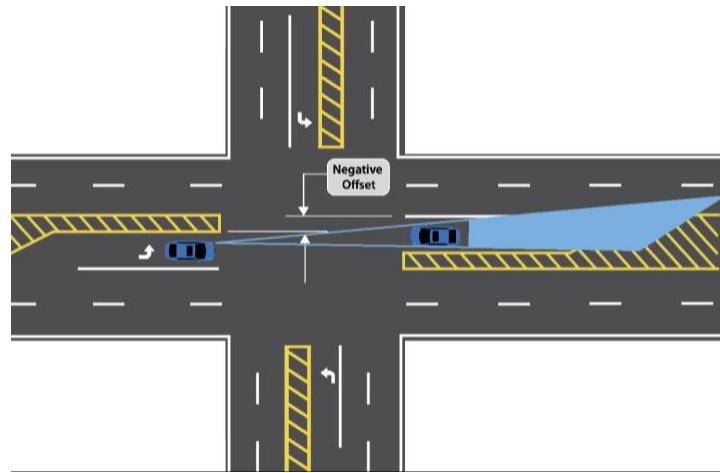
Note: For trucks use a correction factor from the table below multiplying with the total sight distance listed on the above table.

Table 9. Correction Factor for Trucks.


Vehicle Type	Correction Factor
Passenger Car	1
Single-Unit Truck	1.27
Combination Truck	1.53

GEOMETRIC DESIGN

This subsection outlines key geometric design elements relevant to RCUT intersection U-turns, based on observational data and supplementary literature review. The recommended UTSD values are contingent upon specific intersection configurations. It is imperative to consider these factors when applying the UTSD equation to ensure optimal

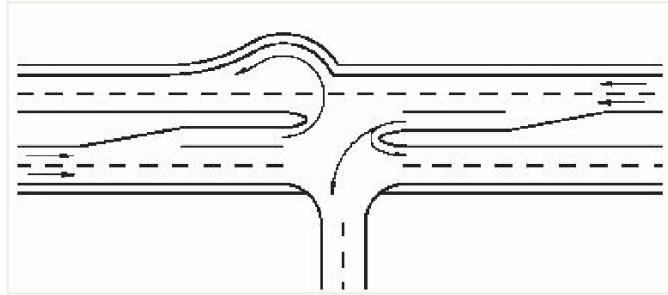

safety outcomes. For U-turns located at intersections with on-coming vehicles, we suggest configurations including offset design, median width and opening, provision of loops, and the effect of grade on vehicle performance.

- 1) **Offset Design:** Offset design refers to the lateral positioning of opposing left-turn lanes at median crossovers and can be classified into negative, zero, or positive offsets. A negative offset occurs when opposing turn lanes are shifted away from one another, while a positive offset brings them closer together. A zero offset implies direct alignment of the opposing lanes. The RCUT sites evaluated in this study don't have opposing median turn lane, so no significant cases of positive or negative offsets were encountered; therefore, a literature review was conducted to inform design recommendations. A key study by Hutton et al. (2015), using data from the Strategic Highway Research Program 2 (SHRP 2) Naturalistic Driving Study (NDS), examined the relationship between left-turn lane offset and driver gap acceptance behavior. The research employed a linear regression model to assess gap length as a function of offset under both blocked and unblocked sight conditions, with offset values ranging from -29 feet to +6 feet.

Figure 17. Graph. Different Types of Offset: (a) Negative offset, (b) No Offset, (c) Positive Offset. (AASHTO, 2018)

The study concluded that negative offsets were associated with the longest gap acceptance lengths, indicating that sight distances were more restricted. Drivers were notably less inclined to accept a gap when the view of oncoming traffic was blocked by an opposing left-turning vehicle. The study found that the riskiest left-turn maneuvers occurred at negative-offset configurations, due to the obstruction of oncoming traffic. Based on these findings, the study recommends avoiding negative offsets and suggests that zero or positive offsets are preferable as they enhance sight distance and improve safety.

Figure 18. Graph. Sight line Obstruction Depicted for A Negative Offset.


2) **Median Width Design:** The Green Book includes design guidance for U-turn maneuvers, which provided minimum median widths required to accommodate U-turns for different design vehicles. This table as shown in **Figure 19** offered valuable insight into the relationship between median width, vehicle type, and turning feasibility.

U.S. Customary							
Type of Maneuver	M—Minimum Width of Median (m) for Design Vehicle						
	P	WB-40	SU-30	BUS	SU-40	WB-62	WB-67
	Length of Design Vehicle (ft)						
	19	50	30	40	40	63	68
Inner Lane to Inner Lane		30	61	63	63	76	69
Inner Lane to Outer Lane		18	49	51	51	64	57
Inner Lane to Shoulder		8	39	41	41	54	47

Figure 19. Table. Minimum Width of Median. (AASHTO, 2018)

Given the increasing use of U-turn and RCUT designs in practice, future research can focus on identifying the most practical and economical median width requirements for different vehicle classes, including passenger cars and various truck configurations. Further investigation is also needed to quantify how median width influences two-stage U-turn maneuvering behavior and the associated U-turning time required under real-world operating conditions.

- 3) **Median Opening Design:** It is the median allowing vehicles to make crossing or turning maneuvers. Visual assessments of RCUT locations demonstrated that wider median openings facilitated easier maneuver for larger vehicles, allowing them to comfortably position their vehicles for U-turns without encroaching on adjacent lanes. From the footage analysis, it is recommended that sufficient width should be maintained in median openings to ensure maneuverability especially for locations that facilitate trucks.
- 4) **Loon:** Aloon is an expanded paved area opposite a median crossover (depicted in **Figure 20**). The purpose of a loon is to provide additional space for vehicles to complete their turning maneuvers when the median separator itself is too narrow. Field observations revealed that loons helped in accommodating the wider turning paths of such vehicles. The provision of loons is therefore highly recommended in locations where the median is too narrow and locations where a higher frequency of commercial vehicle traffic is anticipated.

Figure 20. Graph. Loon (expanded paved area) on A U-turn. (Potts, 2004)

5) **Effect of grade:** Grade refers to the longitudinal slope of the road, expressed as a percentage. It represents the degree of incline or decline along the direction of travel. A positive grade indicates an uphill slope, while a negative grade denotes a downhill slope. The RCUT locations included in the study generally featured grades within $\pm 2\%$, and thus no substantial grade-related impacts were recorded. However, grade remains a relevant design factor, particularly due to its influence on vehicle acceleration and deceleration, which directly affects sight distance requirements. The AASHTO Green Book provides grade adjustment factors in Table 9-5 (depicted in **Figure 21**), which should be applied to correct sight distance requirements under uncontrolled or yield-controlled conditions. This correction factor is applicable to RCUT U-turn movements as it matches the grade correction criteria from AASHTO Greenbook and should be incorporated during the design phase to ensure safe maneuvering across varied terrain conditions.

U.S. Customary														
Approach Grade (%)	Design Speed (mph)													
	15	20	25	30	35	40	45	50	55	60	65	70	75	80
-6	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.2	1.2	1.2	1.2	1.2	1.2	1.2
-5	1.0	1.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.2	1.2	1.2	1.2
-4	1.0	1.0	1.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
-3 to +3	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
+4	1.0	1.0	1.0	1.0	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
+5	1.0	1.0	1.0	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
+6	1.0	1.0	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9

Figure 21. Table. Adjustment Factors for U-turn Sight Distance Based on Approach Grade.

MODEL COMPARISON

To ensure the reliability and applicability of the proposed UTSD model, a multi-step comparison process was undertaken. This included comparisons with existing models used by state DOTs, an assessment of alignment with AASHTO guidelines for similar maneuver, and a review of crash data from real-world RCUT locations.

Table 10. Comparison of Sight Distance Values of Common Roadway Speeds Between FDOT, La DOTD, Proposed Sight Distance Model and AASHTO Case B1.

Speed	FDOT Model	La DOTD Model (AASHTO Case F)	Proposed Model (90 degree)	Proposed Model (180 degree)	AASHTO Case B1
45 mph	830 ft	365 ft	540 ft	640 ft	500 ft
55 mph	1040 ft	445 ft	745 ft	870 ft	610 ft

Comparison of our UTSD model with other State DOT Models

The UTSD values generated by our model were compared with those from the FDOT and

the La DOTD. As presented in **Table 10**, our model produced sight distance values that are more conservative than those recommended by La DOTD, yet significantly more realistic and achievable than the considerably higher values proposed by FDOT. This comparison demonstrates that our model strikes a balance between safety and practical design feasibility.

Alignment with AASHTO Gap Time Guidelines for Intersections

To further assess the validity of our model, we compared its recommended gap times with those outlined in the AASHTO Green Book for similar intersection maneuvers. Specifically, Case B1 (left turn from a stop) was used as benchmarks. As shown in **Table 10**, our model consistently yielded longer sight distance values, which is expected, given that U-turns generally require more time and space to complete than traditional left turns. The alignment with these established gap time scenarios reinforces the logic and conservativeness of our methodology.

Analysis of U-Turn Sites with Crash

A crash analysis was conducted at one RCUT location with a history of incidents potentially attributable to limited sight distance. Observational and video data suggested that a sight distance exceeding 500 feet would have been appropriate at this site. Our model, when applied to this location, recommended a sight distance of 540 feet, which aligns with the observed need and indicates the model's ability to reflect real-world safety considerations. This case reinforces the practical validity of the model, especially in identifying locations that may benefit from enhanced sight distance for safety performance.

CHAPTER 6. FINDINGS AND RECOMMENDATIONS

This chapter summarizes the key findings of the study and provides recommendations for future research based on observed limitations and emerging questions identified during the analysis.

RESEARCH FINDINGS

- 1) The study concluded that the basic intersection sight distance equation, expressed as $ISD = 1.47 \times t_{ut} \times V$, is applicable for calculating U-turn Sight Distance. This rationale is grounded in the concept that the time required for a turning vehicle to complete its maneuver should allow it to safely clear the intersection before an approaching vehicle on the major road reaches the same point. The same principle holds true for U-turn movements.
- 2) It was determined, given the data constraints, the most appropriate method for estimating the total maneuver time includes both the actual U-turn maneuvering time and the distance required for the turning vehicle to accelerate to 70% of the major road's operating speed. This approach offers a more complete framework for gap time assessment by incorporating driver comfort, speed consistency, and major road performance into the design. In ideal conditions, this method ensures that major-road vehicles are not forced to decelerate below 70% of their initial speed (according to the Green Book Chapter 9, page 9-43, Section 9.5.3.2.1), thereby promoting smoother traffic operations.
- 3) Analysis of near-miss camera video footage indicated a clear relationship between

median nose width and U-turn performance. Specifically, vehicles at wider median noses, where they have storage in the median to position themselves perpendicular to traffic and make a 90 degree turn, completed U-turns in approximately 4.25 seconds; while for narrower median noses, where vehicles can not position themselves perpendicular to traffic and take a 180 degree turn, the u-turning time increased to about 5.8 seconds. .

- 4) Literature review was conducted concerning the influence of left-turn lane offset. Negative offsets were found to obstruct sightlines for turning vehicles and increase driver hesitation, resulting in longer wait times and higher risk during U-turn maneuvers. These findings support the recommendation to avoid negative offsets and favor zero or positive offset designs.
- 5) For locations where truck U-turns are anticipated, the study recommends using a correction factor derived from the ratio of maneuver times for trucks and passenger cars as presented in the AASHTO Green Book. Additionally, the provision of wider median openings and the inclusion of loops are strongly advised to accommodate the larger turning radius and longer maneuver time required by trucks.
- 6) Our model stands more conservative than the model designed by La DOTD but also provides significantly smaller and realistic values compared to the FDOT model. From comparison with case B1 type of intersection maneuvers from AASHTO Greenbook, we found that our sight distance values were greater than that of the listed maneuvers, and this is the expected values, as U-turns take longer than left turns. Lastly, our sight distance model showed to provide larger recommended sight

distance in locations identified with crashes due to potential sight distance issues, hence validating the robustness and the realistic values of our model.

- 7) A comparative evaluation of our proposed sight distance model against established standards revealed important insights into its performance. Specifically, our model was found to be more conservative than the model used by the Louisiana Department of Transportation, yet it yielded more realistic and practically achievable values than the model adopted by the Florida Department of Transportation. When benchmarked against *Case B1* (left turn from a stop) from the AASHTO Green Book, our model consistently produced greater sight distance values. This outcome aligns with expected behavior, as U-turn maneuvers generally require more time and space than left turns. Furthermore, our model recommended longer sight distances at locations where crash data suggested a history of visibility-related incidents, potentially due to shorter sight distance. This correlation supports the validity and robustness of our model and highlights its potential in enhancing safety outcomes through more accurate and context-sensitive sight distance estimation.

RECOMMENDATIONS FOR FUTURE STUDY

- 1) While the current study utilized acceleration values from standard AASHTO charts, it is recognized that these may no longer reflect actual vehicle performance due to improvements in vehicle design and engine efficiency. Although these charts offer a conservative basis for design, future studies should aim to develop updated acceleration curves based on empirical field data to better represent real-world

conditions.

- 2) Our study had limited data on commercial vehicle movement, and only one RCUT U-turn had truck access. This limited the generalizability and statistical strength of our findings related to commercial U-turn behavior. Furthermore, no established reliable acceleration charts currently exist for trucks. To address this gap, future research should undertake focused field studies to observe and quantify commercial vehicle U-turn dynamics, leading to more precise design standards and guidelines.
- 3) While beyond the primary scope of this project, preliminary drone footage collected by the GT research team revealed a potential safety concern at select RCUT sites. Specifically, vehicles from minor roads attempting to merge into the U-turn lane and execute a U-turn onto the major road were observed to face prolonged waiting times and, in some cases, performed unsafe maneuvers. These incidents were attributed to insufficient space for acceleration, merging, and deceleration. This issue highlights a design deficiency in median length and merging area provisions and points to the need for dedicated design criteria to address these challenges.

APPENDIX A - EXAMPLE CALCULATIONS FOR UTSD

For a U-turn with median nose width of 15 ft placed at a roadway with speed of 50 mph and a uphill grade of + 4%, the U-turn sight distance is:

Step 1: Check for median nose width

Referring to **Table 4**, the median nose width is greater than 14 ft. Hence the U-turning time will be 4.25 seconds.

Step 2: Sight distance Required for U-turning

Using the equation $UTSD = 1.47 \times t_u \times V$, we get

$$\begin{aligned} UTSD &= 1.47 \times 4.25 \times 50 \\ &= 312.38 \text{ ft} \end{aligned}$$

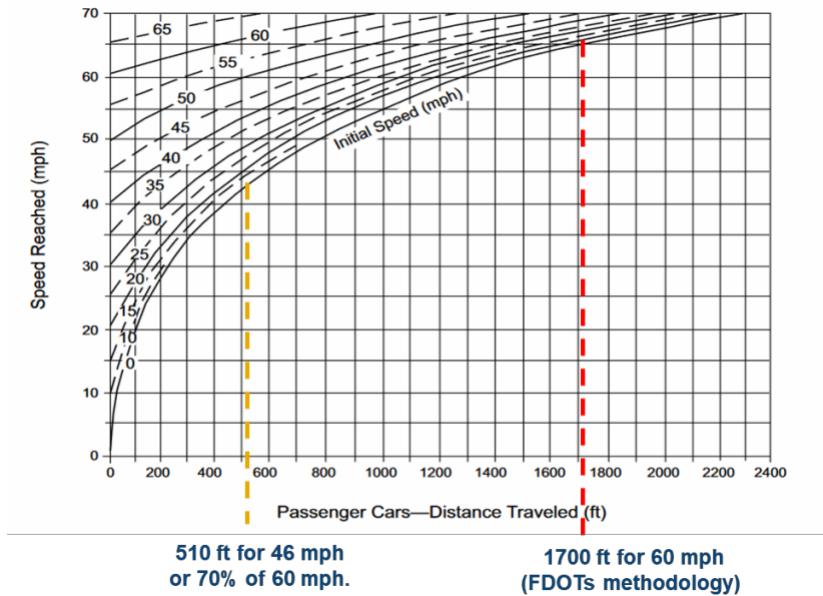
Step 3: Find the corresponding accelerating distance

From **Table 5**, the corresponding accelerating distance for 50 mph (or 70% of 50 mph, 35mph) is 310 ft.

Step 4: Add the U-turning distance and accelerating distance for total sight distance.

$$\begin{aligned} UTSD &= 312.38 \text{ ft} + 310 \text{ ft} \\ &= 622.38 \text{ ft} \end{aligned}$$

Step 5: Apply the required corrections.


Referring to **Figure 21**, for 4% uphill grade at a 50-mph road, Grade correction factor is 0.9

$$UTSD = 0.9 \times 622.38 \text{ ft}$$

Therefore, the corrected sight distance is 560.14 ft (or ≈ 565 ft)

(Optional: In case of design for single unit trucks, refer **Table 7**. Correction factor is 1.27. Hence $UTSD = 560.14 \times 1.27 = 711.38 \text{ ft} \approx 712 \text{ ft.}$)

APPENDIX B - HOW DOES OUR METHOD IMPROVES UPON EXISTING PRACTICES?

Figure 22. Illustration. Comparison of Accelerating Distances between Proposed Model and FDOTs Model.

The proposed UTSD methodology offers a significant improvement over existing practices, particularly when compared to the approach used by the Florida Department of Transportation (FDOT). FDOT's method relies on the full acceleration length required for a vehicle to reach highway speed, which often results in overly conservative and impractically long sight distance requirements. Such estimates can pose design and implementation challenges, especially in constrained urban or semi-urban environments. In contrast, our method adopts a more context-sensitive approach by using 70 percent of the major road's operating speed as the benchmark for acceleration. This adjustment yields more realistic and attainable sight distance values while still maintaining a high

standard of safety. Importantly, this approach is consistent with the guidance provided in the AASHTO Green Book, which states that “most major-road drivers should not need to reduce speed to less than 70 percent of their initial speed.” By aligning with this principle, our method balances operational efficiency with safety, and provides a practical, evidence-based framework for RCUT design.

REFERENCE

AASHTO. (2011). *A Policy on Geometric Design of Highways and Streets, 2011*. AASHTO.

AASHTO. (2018). *A Policy on Geometric Design of Highways and Streets (The Green Book)*. The American Association of State Highway and Transportation Officials, AASHTO Green Book, Washington DC.

David, N. A., & Norman, J. R. (1975). *Motor vehicle accidents in relation to geometric and traffic features of highway intersections: Final report (Vols. 1–3, DOT-FH-11-8096)*. Stanford Research Institute, National Highway Traffic Safety Administration. PB 281 207 – PB 281 209.

FDOT. (2019). *Access Management Guidebook*. https://fdotwww.blob.core.windows.net/sitefinity/docs/default-source/planning/systems/systems-management/document-repository/access-management/fdot-access-management-guidebook---nov-19.pdf?sfvrsn=c5aa6e5_4

FHWA. (2010). *Alternative Intersections/Interchanges: Informational Report (AIIR), Report Number FHWA-HRT-09-060*. https://www.fhwa.dot.gov/publications/research/safety/09060/004.cfm#sec4_1

GDOT. (2024). *Design Policy Manual, Revision 7.4*. <https://www.dot.ga.gov/partnersmart/designmanuals/designpolicy/gdot-dpm.pdf>

Hanna, J. T., Flynn, T. E., & Tyler, W. L. (1976). Characteristics of Intersection Accidents in Rural Municipalities (abridgment). *Transportation research record*.

Hutton, J. M., Bauer, K. M., Fees, C. A., & Smiley, A. (2015). Evaluation of left-turn lane offset using the naturalistic driving study data. *Journal of safety research*, 54, 5. e1–15.

LaDOTD. (2013). *Typical Directional U-Turns*. Louisiana State Government Publications. http://wwwsp.dotd.la.gov/Inside_LaDOTD/Divisions/Engineering/Traffic_Engineering/Design%20Development/Forms/AllItems.aspx

LaDOTD. (2020). *Traffic Signal Manual*. <https://dotd.la.gov/media/tdeph5ty/traffic-signal-manual.pdf>

Mitchell, R. (1972). Identifying and improving high accident locations. *Public Works*, 103(12).

Potts, I. B. (2004). *Safety of U-Turns at unsignalized median openings* (Vol. 524). Transportation Research Board.

Quan, L., Zhang, B., Zhou, H., & Liu, P. (2022). Developing a Google Earth-based method to measure sight distance for U-turns at unsignalized intersections on multilane divided highways. *Transportation research record*, 2676(1), 152–161.

Strate. (2024). *Intersection safety*. <https://www.ite.org/pub/E2381A89-2354-D714-51CF-FBB4775B4D21>

TxDOT. *TxDOT Roadway Design Manual*. <https://www.txdot.gov/manuals/des/rdw/chapter-4--basic-design-criteria/4-10-cross-sectional-elements/4-10-15-medians.html>

USDOT. U.S. Department of Transportation, National Highway Traffic Safety Administration, National Center for Statistics and Analysis, personal communication. <https://www.bts.gov/content/motor-vehicle-safety-data>

Yan, X., Radwan, E., & Guo, D. (2007). Effects of major-road vehicle speed and driver age and gender on left-turn gap acceptance. *Accident Analysis & Prevention*, 39(4), 843–852.