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PREFACE

The Kansas Department of Transportation’s (KDOT) Kansas Transportation Research and New-
Developments (K-TRAN) Research Program funded this research project. It is an ongoing,
cooperative and comprehensive research program addressing transportation needs of the state of
Kansas utilizing academic and research resources from KDOT, Kansas State University and the
University of Kansas. Transportation professionals in KDOT and the universities jointly develop
the projects included in the research program.

NOTICE

The authors and the state of Kansas do not endorse products or manufacturers. Trade and
manufacturers names appear herein solely because they are considered essential to the object of
this report.

This information is available in alternative accessible formats. To obtain an alternative format,
contact the Office of Public Affairs, Kansas Department of Transportation, 700 SW Harrison, 2"
Floor — West Wing, Topeka, Kansas 66603-3745 or phone (785) 296-3585 (Voice) (TDD).

DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the facts and
accuracy of the data presented herein. The contents do not necessarily reflect the views or the
policies of the state of Kansas. This report does not constitute a standard, specification or
regulation.
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Abstract

This study developed a new approach to establish baseline load ratings for bridges in
Kansas without plans using data from the National Bridge Inventory (NBI). The approach is
comprised of linear regression models to estimate load ratings for bridges with a condition rating
of 8 or higher and adjustment factors to lower the estimated load rating to account for bridge
condition ratings of 7 or lower. This approach beneficially establishes baseline load rating
estimates for structures without prior ratings and secondary load ratings for bridges with prior load
ratings to identify outliers and potential errors. The adjustment factors can be used to adjust load
ratings obtained by any method to account for bridge condition if the condition was not specifically
integrated into the analyses. Both the linear regression models and condition adjustment factors
are designed to reflect trends among Kansas bridges within the NBI, not engineering judgment.
This approach answers the following question for a given bridge: Knowing nothing more about
the structure than what is available within the NBI, what is the expected rating based on similar
bridges in similar condition within Kansas?

The proposed linear regression models include bridge age, modeled design load, structure
kind (construction material), structure type (truss, girder, etc.) and deck width because, among
variables reported in the NBI, these were most closely correlated with load rating. The adjustment
factors were developed based on the median reported load rating for bridges with various condition
ratings, and uncertainty was estimated using a bootstrapping simulation. The proposed models
demonstrated satisfactory performance, capturing approximately half the variance observed in the
data for the Inventory (R? = 0.50) and Operating (R?> = 0.49) Ratings. Further validation and
refinement, inclusion of additional predictors, and exploration of alternative methods are suggested

to improve accuracy and applicability.
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Chapter 1: Introduction

The Kansas Department of Transportation (KDOT) is in the process of assigning load
ratings to approximately 25,000 bridges within the state inventory, nearly 8,000 of which are
concrete bridges with no record of design plans. However, assigning a reasonable load rating to a
bridge can be challenging and costly when no reinforcement details are available, and the task is
further complicated by the need to account for bridge condition, represented by a 0-9 rating scale

based on inspectors’ observations.

1.1 Problem Statement

A simple tool is needed to produce baseline load rating values for bridges in good or better
condition. This tool should help establish expected load rating values for unrated bridges and
identify erroneous load rating values that warrant further review. A method to simply account for

bridge condition ratings is also needed.

1.2 Objectives

The primary objective of this study was to develop and evaluate a statistical model using
the National Bridge Inventory (NBI) database to establish baseline load ratings for bridges in
Kansas. A linear regression model was used to identify key variables, such as age and bridge
condition, that correlate with recorded inventory and operating load ratings. This method can
produce an expected load rating for most concrete bridges in Kansas, establish baseline load ratings
for structures without prior ratings, designate adjustment factors to adjust load ratings to account
for bridge condition degradation, and validate model predictions for recorded load ratings. This
approach answers the following question for a given bridge: Knowing nothing more about the
structure than what is available within the NBI, what is the expected rating based on similar bridges

in similar condition within Kansas?

1.3 Methodology

To establish an expected load rating for bridges without design plans, this study constructed

a workflow to describe the applied modeling approach (Figure 1.1), starting with a critical



examination of NBI data by filtering out all non-applicable structures, such as culverts, and all
non-concrete structures and identifying potential outliers and errors in the data to establish a well-
constrained dataset. The remaining, applicable concrete structures included all slab, beam,
reinforced-concrete, and post-tensioned concrete structures not classified as culverts.
Multivariable linear regression was then used to establish a baseline load rating for pristine bridges
with condition ratings of 8 or 9 (i.e., very good condition) by identifying key variables that
correlated with reported inventory and operating load ratings. Adjustment factors were then
developed as a function of superstructure condition rating to reduce the estimated load rating and
account for bridge deterioration and distress. Finally, the multivariable linear regression model
and adjustment factors were combined to produce an expected load rating for applicable concrete
structures based on key variables (e.g., age, span length, structure type) and estimates of condition

rating.



Task One: Create Robust Dataset
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Rating/Design
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Filter Out

Raw 2022 NBI Non-Concrete
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Figure 1.1: Workflow Framework to Develop Reduction Factors and a Linear Regression
Model for Concrete Bridges with No Prior Plans



Chapter 2: Design Equations

Load rating is the process of determining the live load carrying capacity of a bridge (Gao,
2013; Ruiz, 2020). The bridge superstructure controls the live load carrying capacity, and the
dominant load carrying members are the beams and slabs. Live load rating is computed at the
inventory, operating, legal, and permitting levels. This analysis focuses on the two most prominent
ratings:
e Inventory rating — the live load that a bridge can withstand for an
indefinite amount of time without reducing the structural integrity of the
bridge.
e Operating rating — the absolute maximum permissible live load that a
bridge can be subjected to for a limited number of occurrences.
Load rating methodology has changed to reflect shifts in design over time. The allowable
stress, load factor rating (LFR), and load and resistance factor rating (LRFR) approaches each

utilize unique methodology.

2.1 Allowable Stress

The allowable stress method is based on allowable stress design (ASD), which was
introduced in the 1930s to ensure that the stress applied load does not exceed the allowable stress
of the design material that is assigned a safety factor. Allowable stress results rating factors are

presented as:
Fa - fd

RF =
far+n

Equation 2.1
Where:

F.= allowable stress of the material,
fq = stress associated with the bridge weight (dead load), and

fiL + ) = stress caused by live load and dynamic impact.

When determining inventory and operating load ratings, operating stress is 33% higher

than inventory allowable stress (AASHTO, 2018; Ruiz, 2020).



2.2 Load Factor Rating Method

The LFR method, introduced in the 1970s, is based on load factor design (LFD). This
method utilizes load and resistance factors calibrated by principles of reliability to obtain a more
consistent probability of failure than determined by the ASD method. The load rating is reported

in rating factor or tonnage (AASHTO, 2018) as:

R, — DL
RF = PRy — VYpL
Y (LL +1)

Equation 2.2
Where:

Rn» = nominal strength (or structural capacity),

DL = load effect from the dead load on the bridge structure,
(LL + 1) = lad effect from live load and dynamic impact,

@ = resistance factor,

yp. = dead load factor, and

y.. = live load factor.

When determining inventory and operating ratings, a live load factor of 2.17 is used for the

inventory rating and a live load factor of 1.3 is used for the operating rating.

2.3 Load and Resistance Factor Rating

Introduced in the 1990s, the LRFR method, the current method for modern load rating, is
based on load and resistance factor design (LRFD). Because LRFR is a relatively recent addition
to load rating, fewer LRFR bridges lack design plans compared to bridges rated by other methods.
LRFR utilizes load and resistance factors that are calibrated using the structural reliability theory
to achieve reliability for strength limit. The LRFR method is presented as a rating factor and is the

general equation applied for reinforced concrete bridges.



_ PcPsPRn — ¥pcDC — yowDW

RF
YL (LL + IM)

Equation 2.3
Where:

R» = nominal strength,

DC = load effect from the dead load of structural components,

DW = load affect from wearing surfaces on the bridge surface,

LL + IM = live load effect caused by live load and dynamic impact,

¢. = condition factor that accounts for uncertainty with bridge condition,
@ = resistance factor,

¥pc = dead load factor for structural components,

yow = dead load factor for wearing surface, and

y.. = live load factor.

The LRFR inventory and operating ratings are calculated using a y;; of 1.75 for inventory

rating and 1.35 for operating rating (AASHTO, 2018; Ruiz, 2020).



Chapter 3: Statistical Methods
3.1 Task One: Create Robust Dataset

3.1.1 Filtering Criteria

The 2022 Kansas NBI database contains 24,925 bridges, but because the primary area of
interest for this analysis was concrete bridge structures, all non-concrete bridge structures were
removed from the sample dataset, reducing the sample size from 24,925 bridges to 16,564 bridges.
In addition, all the 8,088 culverts within the Kansas bridge inventory of the NBI dataset were
removed because they were outside the scope of this project, thereby reducing the sample size
from 16,564 bridges to 8,476. Load rating methods were then used to determine inventory and
operating load ratings (Tables 3.1 and 3.2). Load rating method 0 indicated field evaluation and
documented engineering judgment, rating method 1 showed load factor, method 2 highlighted
allowable stress, method 3 showed load and resistant factor, method 4 specified load testing, and
method 5 indicated that no rating analysis or evaluation was performed. Load rating method 6
indicated load factor using MS18 loading, while method 7 showed allowable stress using MS18
loading, and method 8 showed load and resistance factor ratings using HL-93 loadings (FHWA,
1995; FHWA, 2011; AASHTO, 2018).

Although rating method D is not listed in the NBI Guide, load rating method C indicates
that another load rating method was used to determine the load rating (FHWA, 2011). Therefore,
bridges encoded as C or D in the dataset were removed from the sample size since they are not
representative of the overall dataset. Pedestrian bridges and railroad bridges were also excluded
from the sample dataset, and bridges that had no superstructure condition rating (denoted as N or
0, Table 3.3) were omitted from the training dataset because the adjustment factor is based on
superstructure condition rating. Additional omissions further reduced the sample dataset from

8,476 bridges to 7,914 bridges.



Table 3.1: Common Rating Methods to Determine Inventory and Operating Ratings
Load Rating Method (Item 63) 1 2 3 4 5

- 6,461 982 125 168 243

Table 3.2: Updated Load Rating Methods to Determine Inventory and Operating Ratings
Load Rating Method (Item 64) C D 0 6 7 8

- 2 1 15 5 0 465

3.1.2 Superstructure Condition Rating Statistics

Figures 3.1, 3.2, and 3.3 depict the superstructure condition ratings (item 59 in NBI) for
load factor, allowable stress, and load and resistance factor, respectively. As shown in the
condition ratings and descriptions of overall structural integrity in Table 3.3, allowable stress is
the load rating method that includes bridges with the lowest mean condition rating, with an average
of 6.43 £ 0.96. Comparatively, the LFR method has an average condition rating of 6.96 + 0.51. As
shown in the table, the LRFR method has the highest condition rating, with an average condition
rating of 7.76 + 0.51. No bridges in Kansas have condition ratings of 9 or 1, and most have
condition ratings of 7 or 8, indicating that most bridges in Kansas demonstrate satisfactory to very

good condition.

3000 -

2500 1

2000 -

1500 1

Count

1000 -

500 o

3 4 5 B 7 g
Condition Rating

Figure 3.1: LFR Method Condition Rating Distribution
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300 -
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100 -

3 4 5 6 7 8
Condition Rating

Figure 3.2: Allowable Stress Load Rating Method Condition Rating Distribution

100 A

80 4

B0 -

Count

40

20 A

0 T T T
3 4 3 & 7 8

Condition Rating
Figure 3.3: LRFR Method Condition Distribution



Table 3.3: Superstructure Condition and Structural Condition Ratings
Superstructure Condition

Condition Rating
Rating (item 59)

N Not Applicable

9 Excellent Condition

8 Very Good Condition — no problems

7 Good Condition — some minor issues

6 Satisfactory Condition — some deterioration

Fair Condition — all primary structural elements are

> sound but may have structural issues

4 Poor Condition — advanced section loss

3 Serious Condition — loss of section, structural integrity
is compromised

) Critical Condition — advanced structural integrity of
primary structure

1 Imminent Failure — major deterioration

0 Failed Condition — bridge is out of service

3.1.3 Inventory and Operating Rating Dataset Statistics

The reported inventory and operating load ratings are depicted in Figures 3.4 and Figure
3.5. As shown, the inventory load rating has a median of 30.1 metric tons, while the operating
rating has a median of 47.3 metric tons. Although both load rating distributions are approximately
normal, Figure 3.6 shows that the inventory load rating has outliers above 62.3 metric tons.

Outliers may decrease model predictions as they are not representative of the overall dataset.
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3.1.4 Removal of Outliers and Erroneous Datapoints

Multiple regression models can be used to estimate the value of interest, such as inventory
rating, based on known variables. However, because multiple regression models are dependent on
the data used to develop them, they are sensitive to outliers and error. Therefore, this study
conducted a thorough evaluation to remove potential outliers outside the general range of the
dataset. Outliers are datapoints that deviate significantly from most datapoints within a dataset.
Their presence can lead to unreliable multiple regression models, potentially altering the estimated
mean and standard deviation of the sample dataset (Perez & Tah, 2020). Defining an outlier
requires arbitrary selection of a reasonable range of values based on a lower and upper limit. The
Interquartile Range (IQR) is often used to define reasonable bounds for the data. IQR is a measure
of variability in a dataset, found by dividing the data into an ordered set of elements, or the

difference between the 25" percentile and 75™ percentile (Perez & Tah, 2020):

IQR = Qg 75 - Qo.25
Equation 3.1

Where Qo.2s5 is the 25" percentile, and Qo.75 is the 751" percentile.
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In this work, a point was considered an outlier if it exceeded 1.5 times the IQR with the
upper limit and lower limit defined as

Lower Limit = Q55-1.5-IQR
Equation 3.2

Upper Limit = Q¢ ,5+1.5-IQR
Equation 3.3

The application of this method to the inventory and operating rating datasets led to the
omission of 26 outliers from the inventory dataset, but no outliers exceeded the upper or lower
limits for the operating dataset. After omitting the outliers, 7,888 bridges remained in the inventory
rating dataset and 7,915 bridges in the operating dataset. However, the inventory dataset was then
only applicable to bridges with a maximum inventory load rating of 70.2 metric tons, which applies
to 98.5% of bridges in Kansas.

Prior to the evaluation of independent predictors, certain values of the inventory and
operating load ratings had an unusually high frequency of occurrence. For example, bridge owners
commonly assign load ratings based on engineering judgment rather than by explicit calculation
(Ruiz, 2020). These values, listed from highest to lowest repeating frequency, are 19.8, 24.3, 23 .4,
32.4, and 32.7 metric tons for inventory ratings and 24.3, 32.4, 38.7, 40.5, and 90.6 metric tons for
operating load ratings. These common values don’t necessarily reflect an explicit calculation, but
rather an expert judgement thus they may not be predictable by our mathematical model.
Therefore, this study considered two cases for how to handle these high-frequency ratings. In the
first case, no high frequency loads were assumed to be correct, (i.e., load rating entries with an
unusually high frequency) were miscoded and have a different value than the one reported.
However, this approach disregarded the common practice of using these values for load rating
based on engineering judgment and accepted the inclusion of potentially incorrect cases. The
second case removed the ten most frequently repeated inventory and operating load ratings and
assumed that all the high frequency cases reported for the inventory and operating ratings were
miscoded, prompting the removal of possible incorrectly coded cases but potentially removing
cases with correct inventory or operating ratings. This study utilized the second case to remove all

high frequency load ratings and prevent the removal of miscoded cases to improve the training
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dataset for model development, resulting in 1,210 repeated values for the inventory rating dataset
and 951 repeated values for the operating rating dataset. Removal of all potentially miscoded high
frequency load ratings resulted in 6,692 cases for inventory ratings and 6,964 bridges for operating

ratings.

3.1.5 Final Training/Testing Dataset

The remaining 6,678 bridges and 6,964 bridges for the inventory and operating rating
sample datasets, respectively, were divided so that 80% were designated for the training dataset to
train the multivariable linear regression model and 20% were assigned to the testing dataset to
confirm model performance (R?) (van der Goot, 2021). The split resulted in 5,432 training bridges
and 1,336 testing bridges for inventory ratings and 5,571 training bridges and 1,393 testing bridges

for operating ratings.

3.1.6 Central Tendency and Variability Between Testing/Training Datasets

The development of a linear regression model to estimate a baseline load rating for bridges
without design plans first required verification that the training and testing datasets exhibited the
same decreasing central tendencies in load ratings with decreasing condition rating factor. As
shown in Figures 3.7 and 3.8, both datasets demonstrated decreasing reported load ratings with
decreasing condition factor. Therefore, the preliminary linear regression model was developed to

establish baseline load ratings for bridges in very good condition.
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3.2 Task Two: Develop Multivariable Linear Regression

To establish a baseline load rating for bridges without design plans, this study initially
developed a multiple linear regression model for bridges with a superstructure condition rating of
8, meaning no detectable or notable structural deficiencies are present and the bridge is in excellent
to superb condition. Consequently, a linear regression model for bridges in pristine condition
established a baseline load rating for bridges with no deterioration in structural capacity/condition.
This study used 1,453 bridges and 1,442 bridges to train the baseline load rating for inventory and
operating ratings, respectively. After applying the 80%/20% training split previously described,
356 testing bridges and 360 bridges were reserved for the inventory and operating baselines,

respectively, to evaluate load rating model performance.
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3.2.1 Multiple Regression Model

This study also developed a multiple linear regression model to estimate the load rating of
concrete bridges. A multiple linear regression model can estimate relationships between one
dependent variable and one or more independent variables to create an equation to predict
dependent variables based on observed data (Khainge et al., 2019). Development of a linear
regression model requires an understanding of the assumptions and uncertainty associated with the
model. To apply the multiple linear regression model, the ordinary least squared method was
performed, including estimating the coefficients by minimizing the squared errors between the
observations and the model. The least squared errors provide an estimation of the expected value
of the dependent variable (i.e., inventory or operating rating). However, this predicted value differs
from actual observation, a difference known as the residual or error. The resultant residuals can be
positive or negative, and errors from well-fit multiple linear regression models are normally

distributed, with a constant variance and a mean of zero (Uyanik & Giiler, 2013).

3.2.2 Preliminary Predictor Selection

A usable multiple linear regression model must include input data that is readily available.
Table 3.4 summarizes the NBI items considered for baseline load rating model development. The
definitions of the NBI items are in the Recording and Coding Guide for the Structure Inventory
and Appraisal of the Nation’s Bridges (FHWA, 1995).
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Table 3.4: NBI Items Considered as Potential Predictors

NBI Item Number Qualification
Inventory rating (66) Dependent variable
Operating rating (64) Dependent variable
Year built (27) Material properties, standard design practices
Design load (31) Live load used for model
Structure kind (43A) Construction material
Structure type (43B) Structure type (i.e. truss, girder)
Deck width (52) Design, load effects

_ Design, load effects from number of lanes on
Traffic lanes (28A)

structure
Max span length (48) Design, load effects
Main unit spans (45) Design, load effects
Approach spans (46) Design, load effects

Minimum lateral under
Design, load effects
clearance (55B)

Average daily truck traffic _
Design, load effects

(109)

Total horizontal clearance
47) Design, load effects
Left curb width (50A) Design, load effects
Right curb width (50B) Design, load effects
Approach width (32) Design, load effects
Structure length (49) Design, load effects
Traffic lanes under (42B) Design, load effects
Degrees skew (34) Design, load effects
Traffic direction (102) Design, load effects
Average daily traffic (29) Design, load effects
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3.2.3 Backward Selection Analysis of Variance to Select Significant Predictors

The backwards selection technique of analysis of variance (ANOVA) can be used in
multiple linear regression to select significant predictors. The ANOVA test, which is primarily
used to find differences between group means, uses a student’s t-test to determine whether a
predictor is significantly different than the dependent variable (Kim, 2017). The general form of

multiple linear regression is

Y =Bo+ Bixytfaxst...Brxi + &
Equation 3.4
Where:

¥y = dependent variable (inventory or operating rating),

x; = independent variable,

k = number of independent variables,

B, = dependent variable sample mean, and

By = difference in the means between the independent variable and dependent
variable k (Kim, 2017; Rouder et al., 2021; Yu et al., 2022).

When running the test, the ANOVA tests compares if there is a significant difference the
dependent variable mean and predictor k, if the random errors, ¢; are independent of each other,
normally distributed, and have equal variances. Thereafter, the F test can be used to assess the null
hypothesis (Ho : 1 = p2 = p3) that there is no significant difference between the dependent variable
sample mean, and predictor £ sample mean at a 95% confidence interval (Kim, 2017). In the
alternative hypothesis (Ha), if the p-value from the student’s t-test is less than 0.05, then there is
sufficient evidence to reject the null hypothesis and prove there is a significant difference between
the predictor £ and the dependent variable; therefore, the predictor £ can be used to develop the
multiple linear regression model (Kim, 2017; Yu et al., 2022). This study applied ANOVA by
iteratively conducting the test with all the predictors and evaluating the p-value for each predictor
k with the highest p-value, assuming it to be the least significant predictor. The test was repeated

until only one predictor remained.
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3.2.4 Number of Selected Predictors Used in Linear Regression Equation

Forward selection was used for the chosen number of predictors for the finalized linear
regression. Forward selection is a stepwise procedure that includes predictors in the developed
model if they improve model predictions for inventory or operating ratings. This procedure
continues until no additional predictors improve model performance (Schneider et al., 2010). This
study initiated forward selection with one predictor, followed by the coefficient of determination
(R?) and the mean squared error (MSE) (Equations 3.5 and 3.7) to assess model improvements.
This process was iterated until the MSE was minimized for the testing dataset since the addition
of variables always improves the R? for the training dataset. However, as the coefficient of
determination improves, the MSE changes based on predictor combinations. The number of
selected predictors for the developed model is complete when the MSE is minimized within the

testing pristine bridge dataset.

MSE = SS—E
n—(k+1)
Equation 3.5
Where:
SSE = the sum of squared error (Equation 3.6),
n = sample size, and
k + 1= the number of predictors and the intercept.
n
SSE = Z(ei — &)
- Equation 3.6

Where:

e; = residual errors, which is the difference between the linear regression and the
observations (e = y, — y;),

SSE = the measure of error, and

e=0.

The coefficient of determination (R?) is

SSE
R2=1-——

Equation 3.7
Where SSE is the sum of squared error defined above, and SST is the sum of

squares total.
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The coefficient of determination is the proportion of variation within the dependent variable that

is estimated by the developed multiple linear regression model.

n
SST = ) (v = 7)?
i=1
Equation 3.8
Where y; is the observation, and ¥ is the average of the dependent variable. The
sum of squares total is the summation of the squared deviation between the

dependent variable and the average of the dependent variable. The SST is a

measure of variance within the dependent variable (Wilks, 2020).

3.3 Task Three: Establish Adjustment Factor and Final Developed Model

3.3.1 Development of Adjustment Factors

Lequesne and Collins (2019) describe several methods for assigning load ratings to
concrete bridges without design plans: rating based on historic design loads, rating based on bridge
age and traffic loads, rating based on similar bridges with known load ratings, calculations with
assumed measurements/properties, and load testing. Superstructure condition ratings describe the
condition of a bridge and classify structural deficiencies, ranging from excellent condition to a
threat of imminent failure (Table 3.5). Several state departments of transportation (DOTs) assign
inventory and operating rating factors using engineering judgment typically only for structures
with a condition rating of 5 or higher due to the limited guidance for load ratings with conditions
less than 5.

Several DOTs (States F, L, and O) apply a sliding scale factor in which the load rating
factors diminish based on condition ratings (Lequesne & Collins, 2019). This approach may be
robust and cost effective for bridges without design plans due to the correlation between condition
rating and reported strength load rating, but the factors differ among states. Therefore, robust
adjustment factors must be systematically developed for bridge condition.

This study applied a systematic approach of sliding scale adjustment factor based on the
median reported inventory and operating ratings. The applied adjustment factor (¢) to account for

deterioration was calculated by relating the decrease in load rating relative to a pristine bridge as:
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@;=Li/Lg
Equation 3.9
Where:

@; = sliding scale adjustment factor (from 0 to 1),
L = median operating or inventory load rating for a given condition rating, and

i = index for condition rating (ranging from 2 to 8).

Table 3.5: Superstructure Condition Rating and Bridge Condition
Super Structure Condition Rating
Condition

Imminent Failure
Critical Condition
Serious Condition
Poor Condition
Fair Condition
Satisfactory Condition
Good Condition
Very Good Condition
Excellent

O©CoOoO~NOOOP,WN -~

3.3.2 Bootstrapping Uncertainty Analysis for Adjustment Factors

This study employed a bootstrapping simulation without replacement to investigate the
relationship between reported load ratings and sliding scale adjustment factors. This simulation is
often used to model and analyze complex systems by incorporating random sampling and repeated
iterations (Awang et al., 2015). The primary objective of the bootstrapping simulation was to verify
the downward trend in reported load ratings while accounting for uncertainty associated with
various adjustment factors from pristine condition to poor condition ratings. This approach
captured the variability and distribution of load rating reductions for bridges in a variety of
conditions. The uncertainty analysis applied the following procedure:

1. Subset sampling: Various condition rating subsets based on different
condition factors were created from the training datasets for inventory
and operating ratings to represent the range of reported bridge condition

ratings.
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2. Random sampling without replacement: Within each adjustment factor
subset, load ratings were randomly sampled from the pristine condition
bridges and the low-rated condition bridges. This random sampling
process ensured that the simulated load ratings captured the inherent
variability within each adjustment factor subset.

3. Iterative simulation: The bootstrapping simulation was performed by
conducting 10,000 iterations of the random sampling process to
generate an uncertainty distribution of load ratings adjustments for each
adjustment factor subset.

4. Analysis and visualization: After completing the bootstrapping
simulation, the adjustment factor uncertainty distributions were
analyzed and the uncertainty range IQR associated with adjustment

factor (¢;) was assessed.

3.4 Task Four: Model Application and Validation

The general form the applied adjustment factors equation is defined as:

y =9y
Equation 3.10
Where:

y = predicted (deteriorated) load rating,
¢ = sliding scale adjustment factor (Equation 3.10), and

¥ = pristine bridge rating (Equation 3.4).

Generalization of the final model (Equation 3.4) for inventory and operating was compared
to the testing dataset. The testing/validation dataset consisted of 20% of the total data for the
inventory and operating ratings. The 95% prediction interval for inventory and operating ratings

for each set was calculated as:
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Posss = ¥+ 1.96 * SE

Equation 3.11
Where:

Vo5, = inventory or operating estimate from Equation 3.4,

SE = standard error (metric tons) from the inventory or operating rating model
(Equation 3.11), and

1.96 = z-score that corresponds to the two-tailed central limits of the central 95%
probability of a normal distribution (p-values of 2.5% and 97.5%) (Aityan, 2022).

Equation 3.11 is an estimate of the observed trend of observation variation the model
captures. The prediction interval was compared to the validation dataset once the 95% confidence

intervals were calculated.
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Chapter 4: Results

4.1 Preliminary Model Development

4.1.1 Selection of Significant Predictors for the Linear Regression Model

This study applied a backward selection approach to ANOVA on pristine bridges to
determine which predictors can be used to estimate inventory or operating rating (Equation 3.4).
The automated process iteratively eliminated the least significant predictor or the predictor with
the highest p-value until only one significant predictor remained. As shown in Table 4.1 and Table
4.2, the test results showed nine significant predictors for inventory rating and 12 significant
predictors with a p-value less than 0.05 for operating rating.

Some significant variables from the ANOVA test have the potential to improve the model
more than others. For example, there are trade-offs with model improvement and complexity, so
this study utilized forward selection on the significant predictors from the backward selection
ANOVA test to minimize model complexity and error and determine which combination and
number of predictors would minimize the mean squared error when Equation 3.4 was applied to
the entire training dataset without the applied reduction factor (excluding pristine bridges). Results
showed that four predictors were required to minimize the MSE for both inventory and operating
ratings in the test dataset, as shown in Figures 4.1 and 4.2, respectively. Forward selection results
also showed that five predictors were required to minimize the MSE for the inventory rating:
YEAR BUILT 027, DESIGN _LOAD 031, STRUCTURE_KIND 043A,
DECK WIDTH MT 052, and STRUCTURE TYPE 043B for an MSE of 62.95 and 66.61 for
the testing and training datasets, respectively. Forward selection on the operating rating showed
that four predictors were required to minimize the MSE for the testing dataset:
YEAR BUILT 027, DESIGN _LOAD 031, STRUCTURE_KIND 043A, and
DECK WIDTH MT 052. The training operating rating MSE was 182.07, while the testing
dataset MSE for operating rating was 182.27. Both models met the assumption of zero sum of
model residuals, as shown in Figures 4.1 and 4.2. Combinations of predictors that improved model

performance were then used without increasing model complexity for both models.
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Table 4.1: Backward Selection ANOVA Test Results for Pristine Inventory Rating Bridges

Predictor R? Name/NBI Code P-Value
Number
24 0.402 DECK_AREA 0.945
23 0.402 MEDIAN_CODE_033 0.719
22 0.402 TRAFFIC_DIRECTION_102 0.582
21 0.402 RIGHT CURB_MT_050B 0.573
20 0.402 TRAFFIC_LANES UND_028B 0.505
19 0.401 LEFT_CURB_MT_050A 0.427
18 0.401 LAT _UND_MT_055B 0.440
17 0.401 YEAR_ADT 030 0.368
16 0.401 ADT_029 0.367
15 0.400 STRUCTURE_LEN_MT 049 0.277
14 0.400 TRAFFIC_LANES_ON_028A 0.190
13 0.399 MAIN_UNIT_SPANS 045 0.212
12 0.398 DEGREES SKEW 034 0.160
11 0.398 APPR_SPANS 046 0.059
10 0.396 SERVICE_UND_042B 0.081
9 0.395 HORR_CLR_MT 047 0.032
8 0.393 PERCENT _ADT_TRUCK_109 0.001
7 0.389 APPR_WIDTH_MT 032 0.002
6 0.384 MAX_SPAN_LEN_MT_048 0.000
5 0.378 STRUCTURE_TYPE_043B 0.000
4 0.368 DECK_WIDTH_MT 052 0.000
3 0.354 STRUCTURE_KIND 043A 0.000
2 0.321 DESIGN_LOAD_031 0.000
1 0.245 YEAR BUILT 027 0.000
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Table 4.2: Backward Selection ANOVA Test Results for Pristine Operating Rating Bridges

Predictor R? Name/ NBI Code P-Value
Number
24 0.394 DEGREES SKEW 034 0.951
23 0.394 RIGHT CURB_MT_050B 0.762
22 0.394 TRAFFIC_LANES UND_028B 0.583
21 0.394 ADT _029 0.604
20 0.394 SERVICE_UND_042B 0.497
19 0.393 APPR_WIDTH_MT 032 0.511
18 0.393 MEDIAN_CODE_033 0.361
17 0.393 STRUCTURE_LEN_MT_049 0.330
16 0.393 YEAR_ADT 030 0.322
15 0.392 PERCENT_ADT_TRUCK 109 0.218
14 0.391 LEFT_CURB_MT_050A 0.141
13 0.391 TRAFFIC_DIRECTION_102 0.134
12 0.390 DECK_AREA 0.026
11 0.387 MAIN_UNIT_SPANS_045 0.027
10 0.385 HORR_CLR_MT 047 0.019
9 0.383 TRAFFIC_LANES ON_028A 0.004
8 0.379 APPR_SPANS_046 0.002
7 0.375 LAT UND_MT_055B 0.000
6 0.366 STRUCTURE_TYPE_043B 0.000
5 0.357 MAX_SPAN_LEN_MT 048 0.000
4 0.344 STRUCTURE_KIND_ 043A 0.000
3 0.334 DECK WIDTH_MT_ 052 0.000
2 0.323 DESIGN_LOAD_031 0.000
1 0.251 YEAR BUILT 027 0.000
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Figure 4.1: Forward Selection for Inventory Rating

The top left figure in Figure 4.1 plots the developed linear regression model for pristine
testing bridges, while the top right figure shows the best predictor selection for training pristine
bridges. The middle plot compares the MSE with additional predictors added via forward selection.
The red line in the middle plot is the MSE for the testing dataset, and the blue line is the MSE for
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the training pristine bridges dataset. The bottom error plot shows that the error in the residuals is

centered around 0 for the inventory rating preliminary model.
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Figure 4.2: Forward Selection for Operating Rating

The top left figure in Figure 4.2 plots the developed linear regression model for pristine

testing bridges, while the top right figure shows the best predictor selection for training pristine

29



bridges. The middle plot compares the MSE with predictors added via forward selection. The red
line in the middle plot is the MSE for the testing dataset, and the blue line is the MSE for the
training pristine bridges dataset. The bottom error plot shows that the error in the residuals is
centered around 0 for the operating rating preliminary model.

Figures 4.3 and 4.4 illustrate the correlation between the two most important predictor
variables (YEAR BUILT 027 and DESIGN LOAD 031), respectively, and bridge rating. As
shown, newer bridges and bridges designed for heavy truck loads have higher inventory and
operating ratings. YEAR BUILT 027 and DESIGN _LOAD 031 also correlate because newer
bridges tend to be designed for heavy truck loads. Nevertheless, the previous analyses suggested
that both predictors include relevant information. In other words, the model outputs improve if
both  YEAR BUILT 027 and DESIGN LOAD 031 are considered instead of just
YEAR BUILT 027. Results in the figures are shown as the mean plus-minus one standard

deviation for all bridges.
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Figure 4.3: Inventory and Operating Ratings versus Year Built
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Figure 4.4: Inventory and Operating Ratings versus Designated Design Load

4.1.2 Preliminary Model Assessment

Study results indicated that the best overall performing model for inventory rating was year
built (4ge), design load (DL), structure kind (Struc), deck width (W), and structure type (Type).
The best overall performing model for operating rating includes year built (4ge), design load (DL),
structure kind (Struc), and deck width (7). The general forms to estimate the baseline load ratings

(both models in metric tons) are expressed as
Y =Bo+ B1Age+f,DL+ B3Struc + B, W +LsType
Equation 4.1

Y =00+ B1Aget+P,DL+ B3Struc + LW
Equation 4.2

The significant max span length was not included in the preliminary baseline load rating
models because including this variable did not minimize the MSE when the preliminary model
was applied to the pristine test bridge datasets for both the inventory and operating ratings. A
degree of uncertainty was present with the inclusion of the design live load predictor (DL) in
Equations 4.1 and 4.2; however, because design loads encoded as 0 indicate that field evaluation
and engineering judgment were used to determine the reported live load, meaning that 29 pristine
training bridges and 36 training bridges without design plans were present in the inventory and
operating rating training dataset, potentially skewing the model predictions for the baseline load

rating (FHWA, 2011).
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The preliminary models and their predictor S are described in Tables 4.3 and 4.4 for
inventory and operating ratings, respectively. Figures 4.5 and 4.6 display the trained baseline load
rating model and validated testing dataset for the inventory rating, while Figures 4.7 and 4.8 show
the trained baseline load rating model and validated testing dataset for the operating rating. The
preliminary models performed reasonably well, with a coefficient of determination of 0.40 and
0.35 for the inventory and operating ratings, respectively, and a standard error of 7.93 tons for the
inventory rating and 13.49 metric tons for the operating rating. Both preliminary models also met
the criteria for an approximate zero mean of the residuals. Therefore, the developed preliminary

model was used to predict baseline load ratings for pristine condition bridges.

Table 4.3: Preliminary Baseline Load Rating Regression Model for Pristine Inventory
Rating Bridges

Predictor Name Weight Term (8)
Xi YEAR_BUILT_027 0.313
X2 DESIGN_LOAD_031 1.437
X3 STRUCTURE_KIND_043A -1.08
X4 DECK_WIDTH_MT_052 0.413
Xs STRUCTURE_TYPE_043B -0.907
Intercept - -591.345

Table 4.4: Preliminary Baseline Load Rating Regression Model for Pristine Operating
Rating Bridges

Predictor Name Weight Term (8)
Xi YEAR_BUILT_027 0.489
X2 DESIGN_LOAD_031 2.060
X3 STRUCTURE_KIND_043A -2.109
X4 DECK_WIDTH_MT_052 0.739
Intercept - -924.08
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Figure 4.7: Preliminary Baseline Load Rating Estimation for Pristine Operating Rating
Training Bridges (N = 1,442)
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4.2 Adjustment Factor Uncertainty Analysis

4.2.1 Applied Sliding Scale Adjustment Factors

The sliding scale adjustment factors (Equation 3.6) listed in Tables 4.5 and 4.6 are based
on the median load rating of a given deteriorated bridge (super structure condition 2 to 7) relative
to the median load rating of a pristine bridge (super structure condition 8). For example, the
adjustment factor for condition factor 7 for the operating rating in Table 4.6 is 52.2 / 67.1 = 0.78,
proving that bridges with a low condition factor are typically weaker than bridges with a high
condition factor due to diminished structure condition. Section 3.1.5 verified the validity of the
sliding approach because both the training and testing datasets had similarly diminished load
ratings with decreasing condition rating. The adjustment factors (¢) were then applied to the model
for the inventory and operating ratings to create Equation 3.10, which was applied to the entire

training dataset.

Table 4.5: Median Inventory Rating with Condition Rating and Adjustment Factor (¢) for
Training Dataset

Super Structure Inventory Rating Adjustment
Condition Median Factor (¢;)
2 5.9 0.15
3 7.7 0.19
4 16.2 0.40
5 17.5 0.44
6 20.9 0.52
7 31.5 0.79
8 40.1 1

Table 4.6: Median Operating Rating with Condition Rating and Adjustment Factor (@) for
Testing Dataset

Super Structure Operating Rating Adjustment
Condition Median Factor (¢;)
2 9.1 0.13
3 12.6 0.19
4 24.5 0.36
5 27.0 0.40
6 33.8 0.50
7 52.2 0.77
8 67.6 1
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4.2.2 Reduction Factor Uncertainty Analysis

One limitation of applying a sliding scale adjustment factor (¢) based on the median is the
increase of uncertainty for the reported load ratings with different condition factors. Normalization
of the adjustment factor to the reported median rating only captures the downward trend of the
central tendency; it does not encompass the variation of the reduction from pristine condition to
bridges in poor condition. To verify this downward trend, this study performed a bootstrap
simulation that randomly sampled the load ratings from different condition rating subsets 10,000
times to obtain a distribution of uncertainty for the sliding scale adjustment factor (Thomopoulos,
2013). Bootstrap simulation results shown in Figures 4.9 and 4.10 verify the downward trend with
the uncertainty range with decreased condition rating. However, the upper range (75" percentile)
of the IQR for the adjustment factors rating of “8” to “7” exceeded 1.0 because some bridges in
pristine condition have a lower load rating than some bootstrap samples of bridges with a condition
rating less than “7”. Nonetheless, a clear general reduction of the adjustment factor uncertainty
range was reported (Tables 4.7 and 4.8). Thus, this systematic approach for the applied adjustment

factor in Equation 3.11 is valid within a reasonable degree of uncertainty.

Table 4.7: Uncertainty IQR Range and Median for Inventory Rating Training Dataset

Condition Rating Lower End (¢) Median (¢) Upper End (¢)
Adjustment (¢i) (25" percentile) (50™ percentile) (75" percentile)
8to7 0.58 0.80 1.08
8to6 0.40 0.59 0.80
8to5 0.35 0.47 0.69
8to4 0.30 0.40 0.55
8to3 0.12 0.20 0.35
8to2 0.07 0.15 0.22

Table 4.8: Uncertainty IQR Range and Median for Operating Rating Training Dataset

Condition Rating Lower End (¢) Median (¢) Upper End (¢)
Adjustment (¢i) (25" percentile) (50" percentile) (75" percentile)
8to7 0.59 0.78 1.07
8to6 0.41 0.58 0.81
8to5 0.36 0.49 0.70
8to4 0.30 0.41 0.57
8to3 0.12 0.20 0.35
8to2 0.07 0.16 0.22
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4.2.3 Adjustment Factor (p) Applied to Full Training Dataset

Based on study results, the adjustment factors (¢) in Tables in 4.5 and 4.6 were applied to
Equations 4.1 and 4.2 for the baseline load ratings models for inventory and operating ratings. The
inventory final training model resulted in an R? of 0.50, an MSE of 128.06, and a standard error
of 11.3 metric tons. The operating rating final training model resulted in an R? of 0.49, an MSE of
356.02, and a standard error of 18.89 metric tons. When the preliminary model was applied to the
full training dataset with the applied reduction factor, the model performance metric, R? increased
due to an increased sample size. However, when a linear regression model was applied to a larger
dataset, the model was less sensitive to errors and more likely to capture the relationship between
predictors and the inventory or operating ratings (Liu et al., 2022). As shown in Figures 4.11 and
4.12, the inventory rating model more effectively predicted the training datasets because of the
lower MSE than the fully developed operating model, indicating that the inventory rating model

is more accurate than the operating rating model, with less resultant error in model predictions.
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Figure 4.11: Fully Developed Linear Regression Model with the Adjustment Factors for
Full Inventory Training Dataset with Applied Adjustment Factor (N = 5,342)
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Figure 4.12: Fully Developed Linear Regression Model with the Adjustment Factors for
Full Operating Training Dataset with Applied Adjustment Factor (N = 5,571)

4.3 Model Validation

This study then compared the developed inventory and operating rating models to the
testing dataset, as shown in Figures 4.13 and 4.14. The validation dataset was comprised of 20%
of the filtered dataset from section 4.1, totaling 1,336 bridges with inventory ratings and 1,393
bridges with operating ratings. The inventory rating validation model exhibited a slightly higher
coefficient of determination of 0.51, capturing more variation in the validation dataset compared
to 0.45 for the operating dataset. Additionally, the inventory rating model had less error for model
predictions, with a standard error of 11.31 metric and an MSE of 128.07 compared to a standard
error of 19.19 metric tons and an MSE of 368.29. Application of the fully developed model with
the applied adjustment factors and standard error from the training datasets for inventory and
operating ratings resulted in 94.9% of testing inventory rating bridges and 94.0% of testing
operating rating bridges within the 95% prediction intervals. The remaining 5.1% of bridges not
captured by the 95% prediction interval for the inventory rating model primarily were HS20
designs or designs with load ratings larger than 40 metric tons and superstructure in good or fair

condition.
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Chapter 5: Discussion

5.1 Baseline Load Ratings for Bridges with No Design Plans

To establish baseline inventory and operating load ratings for bridges without design plans,
this study initially omitted non-applicable bridges from the dataset to develop the linear regression
model. All non-concrete bridge structures, outliers, and bridges with unusually high reported
strength frequencies were omitted, thereby reducing the dataset from 24,925 bridges to 6,692
inventory rating bridges and 6,964 operating rating bridges. The sample datasets for the inventory
and operating ratings were then split, with 80% for training and 20% for model validation. The
training and testing split resulted in 5,432 training and 1,336 testing bridges for inventory rating
and 5,571 training bridges and 1,393 testing bridges for operating rating model development. Then
the dataset was filtered to select only bridges with a condition rating of 8 (pristine condition
bridges) to estimate baseline load rating, the median load rating was tabulated, and the distributions
for each condition rating were graphed for the inventory and operating ratings (Tables 4.1 and 4.2)
to confirm the validity of this approach. Although results showed that the approach was valid,
uncertainty remained, as described in section 5.2.

When developing the preliminary model for the inventory and operating ratings, a thorough
analysis was conducted to determine the best-performing and ideal number of predictors to
minimize model error predictions. Analysis results from backward selection ANOVA test and
forward selection showed preliminary models for inventory (Equation 4.1) and operating
(Equation 4.2) ratings. The preliminary models satisfactorily captured the variance, achieving a
40% capture rate for inventory rating pristine training bridges and a 35% capture rate for the
pristine training operating bridges. Both models (Equations 4.1 and 4.2) met the assumption of
normal distribution with a mean of residuals centered around zero. However, the inventory rating
preliminary model performed better than the operating rating when applied to the full training
dataset, demonstrating an R? of 0.50 for the inventory rating compared to 0.49 for the operating
rating. The inventory rating also had less error overall in the model, with an MSE of 128 for the
testing dataset compared to an MSE of 368 for the operating rating.

One significant uncertainty is that bridges without design plans were used to construct the

preliminary model since the predictor DL (Design Load 31) used bridges with design load 0,
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which denotes that the modeled design load is unknown. A total of 715 and 755 training bridges
with DL = 0 were present in the training datasets for the inventory and operating ratings,
respectively. Overall, however, the preliminary model was useful for estimating baseline load
ratings for bridges in pristine condition without prior design plans. In addition, the model is based
on readily available bridge inventory data that can be easily collected and used to estimate baseline
load ratings. However, further validation and refinement of the model may be necessary to improve

its accuracy and applicability for different bridge types and conditions.

5.2 Adjustment Factors to Account for Bridge Condition Degradation

This study developed a systematic sliding scale adjustment factor to account for changes
in load rating due to bridge deterioration and distress. The adjustment factor (¢) is a normalized
value between 0 and 1, which is intended to scale a bridge from its predicted pristine rating
(condition rating of “8”) to its likely deteriorated load rating (condition rating “2” to “7”°) given
information from a superstructure evaluation. This approach is reasonable and valid because both
the training and testing datasets displayed similar diminished reported load ratings with decreasing
condition rating (Figures 3.7 and 3.8).

However, uncertainty was present regarding the sliding scale adjustment factors (¢)
obtained from the reported load ratings with decreasing condition ratings. Therefore, a
bootstrapping simulation was performed, which included random sampling from load ratings with
various condition rating subsets (10,000 times) to obtain an uncertainty distribution for the sliding
scale adjustment factor with decreasing condition ratings. The bootstrapping simulation results
verified a downward trend in the IQR uncertainty with a reduction in condition rating (Tables 4.8
and 4.9). Because the sampling of distributions is random, occasional bootstraps of a lower
condition rating (e.g., 7) would have a higher load rating than a pristine condition bridge (i.e., 8).
This can be observed in the 75" percentile of an 8-to-7 adjustment factor (Table 4.7 and Figure
4.9), which indicates as adjustment factor of 1.07, that is the load rating would increase despite the
drop in condition rating. However, this is not typically the case; and the median (50™ percentile)

8-to-7 adjustment factor was 0.80, suggesting a 20% drop in load rating. Overall, the adjustment
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factors accurately capture the overall downward trend, with decreased reported load ratings with

reduced condition rating, as expected given bridge deterioration.

5.3 Developed Model Application and Limitations

The fully developed models for the inventory and operating ratings with the applied

adjustment factors are displayed in Equations 5.1-5.4 (reported in metric tons):

Pmp= — 591.345 + 0.3134ge+1.347DL+ — 1.08Struc + 0.413W -0.907Type

Equation 5.1
Vinv-959%= @i Jinp) = 1.96 X 11.32
Equation 5.2
?opr = —924.08 + 0.49Age+2.06DL — 2.109Struc + 0.739W
Equation 5.3
Vopr-95% = @i(Jopr) £ 1.96 X 18.87
Equation 5.4

Where:

Ymv = developed baseline load rating for inventory rating,

Yimv—ose, = fully developed inventory rating model with applied adjustment factor
corresponding to the 95% prediction intervals,

Jopr = developed baseline load rating model for operating rating,

Yopr-osy = fully developed operating rating model with applied adjustment
factors,

11.32 (metric tons) = standard error from the fully developed inventory rating
model,

18.87 (metric tons) = standard error from the fully developed operating rating
model (section 4.2.3), and

1.96 = z-score corresponding to the two-tailed central limits of the central 95%
probability of a normal distribution (p-values of 2.5% and 97.5%) (Aityan, 2022).

The predictors used in the models are Year Built (4ge), Design Load (DL), Structure Kind
(Struc), Deck Width (W), and Structure Type (7ype). The descriptions of each predictor, their units,

and the applied adjustment factors are described in Tables 5.1-5.7. Tables 5.5-5.7 use the same
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NBI code for the model input because this model uses readily available data from the NBI

database, meaning the model input for each predictor uses the same input as the database.

Table 5.1: Load Rating Regression Model for Pristine Inventory Rating Bridges

Predictor NBI Code Predictor Units
Name
Xi YEAR_BUILT_027 Age ()
X2 DESIGN_LOAD_031 DL Refer to table 5.5
X3 STRUCTURE_KIND 043A Struc Refer to table 5.6
X4 DECK_WIDTH_MT_052 w Meters
Xs STRUCTURE_TYPE_043B Type Refer to Table 5.7

Table 5.2: Load Rating Regression Model for Pristine Operating Rating Bridges

Predictor NBI Code Predictor Name Units
X1 YEAR _BUILT_027 Age (-)
X2 DESIGN_LOAD_031 DL Refer to Table 5.5
X3 STRUCTURE_KIND_ 043A Struc Refer to Table 5.6
X4 DECK_WIDTH_MT_052 W Meters

Table 5.3: Median Inventory Rating at a Reported Condition Rating and Associated
Adjustment Factor (@) Based on Training Dataset

Superstructure Inventory Rating Adjustment
Condition Median Factor (¢;)
2 5.85 0.15
3 7.65 0.19
4 16.2 0.40
5 17.5 0.44
6 20.85 0.52
7 31.5 0.79
8 40.1 1

Table 5.4: Median Operating Rating at a Reported Condition Rating and Associated
Adjustment Factor (@) Based on Training Dataset

Superstructure Operating Rating Adjustment
Condition Median Factor (¢;)
2 9.05 0.13
3 12.6 0.19
4 245 0.36
5 27.0 0.40
6 33.8 0.50
7 52.2 0.77
8 67.65 1
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Table 5.5: Design Load (DL)/DESIGN_LOAD_031 Units and Description

Design Load Model Code Metric Design English Design
NBI Code Description Description
1 1 M9 H 10
2 2 M 13.5 H15
3 3 MS 13.5 HS 15
4 4 M 18 H 20
5 5 MS HS 20
6 6 MS 18+Mod HS 10+Mod
9 9 MS 22.5 HS 25
0 0 Other or Unknown -

Table 5.6: Structure Kind (Struc)/STRUCTURE_KIND_043A Units and Construction
Material Description for Model Development

Structure Type Model Code Construction Material
NBI Code Description
1 1 Concrete

2 2 Concrete Continuous

5 5 Prestressed Concrete*

6 6 Prestressed Concrete

Continuous *
Note: *Post-tensioned concrete uses the same code as prestressed concrete.

Table 5.7: Structure Type (Type)/STRUCTURE_TYPE_043B Units and Description for
Model Development

Structure Type Model Code Structure Description
NBI Code
1 1 Slab
2 2 Stringer/Multi-beam or
Girder
3 3 Girder and Floorbeam
System
4 4 Tea Beam
5 5 Box Beams or Girders —
Multiple
7 7 Frame (excluding culverts)
11 11 Arch — Deck
12 12 Arch — Thru
20 20 Mixed Types
22 22 Channel Beam
0 0 Other

45



The fully developed models (Equations 5.2 and 5.4) explained 50% and 49% of the
variance in the observed inventory and operating rating. Equations 4.1 and 4.2 were used for
training and validation using predictors from section 4.1.1. The developed models (Equations 5.2
and 5.4) are intended to estimate inventory and operating ratings for all Kansas concrete bridge
structures without design plans and that follow the selection criteria outlined in the methods.
Extrapolation of the model to bridge conditions and types that are outside of the ranges used in
training could result in erroneous prediction.

The models developed in this study compared reasonably well to the model by Ruiz (2020),
which had an R? of 0.51 and standard error of 6.51 metric tons. The fully developed inventory
rating model had an R? of 0.50 with a standard error of 11.31 metric tons, while the operating
rating model had an R? of 0.49 and standard error of 18.87 metric tons when applied to the training
datasets. When the developed models with the applied adjustment factors were validated against
the testing dataset, approximately 94.9% and 94.0% of the testing bridges’ reported ratings were
within the 95% prediction intervals for inventory and operating ratings, respectively. The
remaining 5.1% of the bridges for the inventory rating model had design rankings of HS20, and
the remaining 6.0% of the bridges for the operating rating model were HS20 designs that were not
captured by the model.

The inventory and operating rating models developed in this study were shown to
beneficially estimate baseline load ratings for bridges in pristine condition with no original design
plans. These models use accessible bridge inventory data to estimate baseline load ratings by
applying a reduction factor to accommodate changes in bridge condition rating. However, because
the models reflect trends among Kansas bridges within the NBI and not engineering judgment,
further validation and refinement of the models is needed to enhance their accuracy and
applicability to various bridge types and conditions.

One crucial aspect needing further consideration is the uncertainty associated with omitting
outliers in the developed inventory rating model, as discussed in section 3.1.4, since the developed
model is only applicable to inventory load ratings up to 70.2 metric tons. This limitation introduces
a potential source of bias that may affect the accuracy of the model predictions for inventory ratings

exceeding 70.2 tons. Therefore, the developed models should be used to augment engineering
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judgment rather than replace it. In addition, the NBI data used in this study had inherent limitations,
such as the presence of incorrect data entries or a lack of predictors (e.g., slab thickness) that could
enhance the model’s performance (Ruiz, 2020). Machine learning models could also be employed

as an alternative approach to approximate concrete bridge load ratings.
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Chapter 6: Conclusions

The primary objectives of this study were to develop a linear regression model to estimate
load ratings for concrete bridges in Kansas with no original design plans using data from the NBI
database and to establish adjustment factors to account for decreases in load rating correlated with
bridge condition rating. These models reflect trends among Kansas bridges within the NBI, not
engineering judgment. This approach sought to answer the following question for a given bridge:
Knowing nothing more about the structure than what is available within the NBI, what is the
expected rating based on similar bridges in similar condition in Kansas?

The developed linear regression models considered predictor variables of bridge age,
design load, structure kind, deck width, and structure type. The preliminary models exhibited
satisfactory performance, effectively capturing a substantial portion of variance of the observed
data for the reported inventory (R?= 0.4) and operating (R? = 0.35) ratings. To account for changes
in load rating due to bridge condition, a sliding scale adjustment factor was applied to normalize
the median reported load rating for bridges with a condition rating of 8 or 9 (i.e., very good
condition). The adjustment factor was validated with a bootstrapping simulation that demonstrated
a downward trend in adjustment factor uncertainty with low condition ratings. However, the
sliding scale approach does not apply universally to all bridges in the datasets since some bridges
with low condition ratings have higher reported load ratings than pristine bridges.

The final developed model with the applied reduction factors showed satisfactory
performance, capturing half the variance in the observed data for inventory (R* = 0.51) and
operating (R* = 0.45) ratings within the 95% prediction limits when applied to the testing datasets.
The models are best used to enhance engineering judgment, help identify outliers and potential
errors, and establish expected load ratings for bridges by capturing approximately half the variance
in the data. These models also provide a comprehensive approach to estimating load ratings by
incorporating adjustment factors to account for decreases bridge loading rating and bridge
condition degradation. The model prediction intervals account for the probabilistic uncertainty

with predicted load ratings to establish a range engineers can utilize based on familiarity with the
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respective bridge structure. Further validation and refinement of the models are recommended to

improve accuracy and applicability for various bridge types and conditions throughout Kansas.
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