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University of Kansas. Transportation professionals in KDOT and the universities jointly develop 
the projects included in the research program. 
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this report. 
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contact the Office of Public Affairs, Kansas Department of Transportation, 700 SW Harrison, 2nd 
Floor – West Wing, Topeka, Kansas 66603-3745 or phone (785) 296-3585 (Voice) (TDD). 
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Abstract 

This study developed a new approach to establish baseline load ratings for bridges in 

Kansas without plans using data from the National Bridge Inventory (NBI). The approach is 

comprised of linear regression models to estimate load ratings for bridges with a condition rating 

of 8 or higher and adjustment factors to lower the estimated load rating to account for bridge 

condition ratings of 7 or lower. This approach beneficially establishes baseline load rating 

estimates for structures without prior ratings and secondary load ratings for bridges with prior load 

ratings to identify outliers and potential errors. The adjustment factors can be used to adjust load 

ratings obtained by any method to account for bridge condition if the condition was not specifically 

integrated into the analyses. Both the linear regression models and condition adjustment factors 

are designed to reflect trends among Kansas bridges within the NBI, not engineering judgment. 

This approach answers the following question for a given bridge: Knowing nothing more about 

the structure than what is available within the NBI, what is the expected rating based on similar 

bridges in similar condition within Kansas? 

The proposed linear regression models include bridge age, modeled design load, structure 

kind (construction material), structure type (truss, girder, etc.) and deck width because, among 

variables reported in the NBI, these were most closely correlated with load rating. The adjustment 

factors were developed based on the median reported load rating for bridges with various condition 

ratings, and uncertainty was estimated using a bootstrapping simulation. The proposed models 

demonstrated satisfactory performance, capturing approximately half the variance observed in the 

data for the Inventory (R2 = 0.50) and Operating (R2 = 0.49) Ratings. Further validation and 

refinement, inclusion of additional predictors, and exploration of alternative methods are suggested 

to improve accuracy and applicability. 
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Chapter 1: Introduction 

The Kansas Department of Transportation (KDOT) is in the process of assigning load 

ratings to approximately 25,000 bridges within the state inventory, nearly 8,000 of which are 

concrete bridges with no record of design plans. However, assigning a reasonable load rating to a 

bridge can be challenging and costly when no reinforcement details are available, and the task is 

further complicated by the need to account for bridge condition, represented by a 0–9 rating scale 

based on inspectors’ observations. 

1.1 Problem Statement 

A simple tool is needed to produce baseline load rating values for bridges in good or better 

condition. This tool should help establish expected load rating values for unrated bridges and 

identify erroneous load rating values that warrant further review. A method to simply account for 

bridge condition ratings is also needed. 

1.2 Objectives 

The primary objective of this study was to develop and evaluate a statistical model using 

the National Bridge Inventory (NBI) database to establish baseline load ratings for bridges in 

Kansas. A linear regression model was used to identify key variables, such as age and bridge 

condition, that correlate with recorded inventory and operating load ratings. This method can 

produce an expected load rating for most concrete bridges in Kansas, establish baseline load ratings 

for structures without prior ratings, designate adjustment factors to adjust load ratings to account 

for bridge condition degradation, and validate model predictions for recorded load ratings. This 

approach answers the following question for a given bridge: Knowing nothing more about the 

structure than what is available within the NBI, what is the expected rating based on similar bridges 

in similar condition within Kansas? 

1.3 Methodology 

To establish an expected load rating for bridges without design plans, this study constructed 

a workflow to describe the applied modeling approach (Figure 1.1), starting with a critical 
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examination of NBI data by filtering out all non-applicable structures, such as culverts, and all 

non-concrete structures and identifying potential outliers and errors in the data to establish a well-

constrained dataset. The remaining, applicable concrete structures included all slab, beam, 

reinforced-concrete, and post-tensioned concrete structures not classified as culverts. 

Multivariable linear regression was then used to establish a baseline load rating for pristine bridges 

with condition ratings of 8 or 9 (i.e., very good condition) by identifying key variables that 

correlated with reported inventory and operating load ratings. Adjustment factors were then 

developed as a function of superstructure condition rating to reduce the estimated load rating and 

account for bridge deterioration and distress. Finally, the multivariable linear regression model 

and adjustment factors were combined to produce an expected load rating for applicable concrete 

structures based on key variables (e.g., age, span length, structure type) and estimates of condition 

rating. 
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Figure 1.1: Workflow Framework to Develop Reduction Factors and a Linear Regression 

Model for Concrete Bridges with No Prior Plans 
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Chapter 2: Design Equations 

Load rating is the process of determining the live load carrying capacity of a bridge (Gao, 

2013; Ruiz, 2020). The bridge superstructure controls the live load carrying capacity, and the 

dominant load carrying members are the beams and slabs. Live load rating is computed at the 

inventory, operating, legal, and permitting levels. This analysis focuses on the two most prominent 

ratings: 

• Inventory rating – the live load that a bridge can withstand for an 

indefinite amount of time without reducing the structural integrity of the 

bridge. 

• Operating rating – the absolute maximum permissible live load that a 

bridge can be subjected to for a limited number of occurrences. 

Load rating methodology has changed to reflect shifts in design over time. The allowable 

stress, load factor rating (LFR), and load and resistance factor rating (LRFR) approaches each 

utilize unique methodology. 

2.1 Allowable Stress 

The allowable stress method is based on allowable stress design (ASD), which was 

introduced in the 1930s to ensure that the stress applied load does not exceed the allowable stress 

of the design material that is assigned a safety factor. Allowable stress results rating factors are 

presented as: 

RF = 
𝐹𝐹𝑎𝑎 − 𝑓𝑓𝑑𝑑
𝑓𝑓(𝐿𝐿𝐿𝐿+𝐼𝐼)

 

Equation 2.1 
Where: 

Fa = allowable stress of the material, 

fd = stress associated with the bridge weight (dead load), and 

f(LL + I) = stress caused by live load and dynamic impact. 

 

When determining inventory and operating load ratings, operating stress is 33% higher 

than inventory allowable stress (AASHTO, 2018; Ruiz, 2020). 
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2.2 Load Factor Rating Method 

The LFR method, introduced in the 1970s, is based on load factor design (LFD). This 

method utilizes load and resistance factors calibrated by principles of reliability to obtain a more 

consistent probability of failure than determined by the ASD method. The load rating is reported 

in rating factor or tonnage (AASHTO, 2018) as: 

RF = 
𝜑𝜑𝑅𝑅𝑛𝑛 −  𝛾𝛾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝛾𝛾𝐿𝐿𝐿𝐿(𝐿𝐿𝐿𝐿 + 𝐼𝐼)

 

Equation 2.2 
Where: 

Rn = nominal strength (or structural capacity), 

DL = load effect from the dead load on the bridge structure, 

(LL + I) = lad effect from live load and dynamic impact, 

𝜑𝜑 = resistance factor, 

𝛾𝛾𝐷𝐷𝐷𝐷 = dead load factor, and 

𝛾𝛾𝐿𝐿𝐿𝐿 = live load factor. 

 

When determining inventory and operating ratings, a live load factor of 2.17 is used for the 

inventory rating and a live load factor of 1.3 is used for the operating rating. 

2.3 Load and Resistance Factor Rating 

Introduced in the 1990s, the LRFR method, the current method for modern load rating, is 

based on load and resistance factor design (LRFD). Because LRFR is a relatively recent addition 

to load rating, fewer LRFR bridges lack design plans compared to bridges rated by other methods. 

LRFR utilizes load and resistance factors that are calibrated using the structural reliability theory 

to achieve reliability for strength limit. The LRFR method is presented as a rating factor and is the 

general equation applied for reinforced concrete bridges. 
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RF = 
𝜑𝜑𝑐𝑐𝜑𝜑𝑠𝑠𝜑𝜑𝑅𝑅𝑛𝑛 −  𝛾𝛾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 − 𝛾𝛾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 

𝛾𝛾𝐿𝐿𝐿𝐿(𝐿𝐿𝐿𝐿 + 𝐼𝐼𝐼𝐼)
 

Equation 2.3 
Where: 

Rn = nominal strength, 

DC = load effect from the dead load of structural components, 

DW = load affect from wearing surfaces on the bridge surface, 

𝐿𝐿𝐿𝐿 + 𝐼𝐼𝐼𝐼 = live load effect caused by live load and dynamic impact, 

𝜑𝜑𝑐𝑐 = condition factor that accounts for uncertainty with bridge condition, 

𝜑𝜑 = resistance factor, 

𝛾𝛾𝐷𝐷𝐷𝐷 = dead load factor for structural components, 

𝛾𝛾𝐷𝐷𝐷𝐷 = dead load factor for wearing surface, and 

𝛾𝛾𝐿𝐿𝐿𝐿 = live load factor. 

 

The LRFR inventory and operating ratings are calculated using a 𝛾𝛾𝐿𝐿𝐿𝐿 of 1.75 for inventory 

rating and 1.35 for operating rating (AASHTO, 2018; Ruiz, 2020). 
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Chapter 3: Statistical Methods 

3.1 Task One: Create Robust Dataset 

3.1.1 Filtering Criteria 

The 2022 Kansas NBI database contains 24,925 bridges, but because the primary area of 

interest for this analysis was concrete bridge structures, all non-concrete bridge structures were 

removed from the sample dataset, reducing the sample size from 24,925 bridges to 16,564 bridges. 

In addition, all the 8,088 culverts within the Kansas bridge inventory of the NBI dataset were 

removed because they were outside the scope of this project, thereby reducing the sample size 

from 16,564 bridges to 8,476. Load rating methods were then used to determine inventory and 

operating load ratings (Tables 3.1 and 3.2). Load rating method 0 indicated field evaluation and 

documented engineering judgment, rating method 1 showed load factor, method 2 highlighted 

allowable stress, method 3 showed load and resistant factor, method 4 specified load testing, and 

method 5 indicated that no rating analysis or evaluation was performed. Load rating method 6 

indicated load factor using MS18 loading, while method 7 showed allowable stress using MS18 

loading, and method 8 showed load and resistance factor ratings using HL-93 loadings (FHWA, 

1995; FHWA, 2011; AASHTO, 2018). 

Although rating method D is not listed in the NBI Guide, load rating method C indicates 

that another load rating method was used to determine the load rating (FHWA, 2011). Therefore, 

bridges encoded as C or D in the dataset were removed from the sample size since they are not 

representative of the overall dataset. Pedestrian bridges and railroad bridges were also excluded 

from the sample dataset, and bridges that had no superstructure condition rating (denoted as N or 

0, Table 3.3) were omitted from the training dataset because the adjustment factor is based on 

superstructure condition rating. Additional omissions further reduced the sample dataset from 

8,476 bridges to 7,914 bridges. 
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Table 3.1: Common Rating Methods to Determine Inventory and Operating Ratings 
Load Rating Method (Item 63) 1 2 3 4 5 

- 6,461 982 125 168 243 

Table 3.2: Updated Load Rating Methods to Determine Inventory and Operating Ratings 
Load Rating Method (Item 64) C D 0 6 7 8 

- 2 1 15 5 0 465 

 

3.1.2 Superstructure Condition Rating Statistics 

Figures 3.1, 3.2, and 3.3 depict the superstructure condition ratings (item 59 in NBI) for 

load factor, allowable stress, and load and resistance factor, respectively. As shown in the 

condition ratings and descriptions of overall structural integrity in Table 3.3, allowable stress is 

the load rating method that includes bridges with the lowest mean condition rating, with an average 

of 6.43 ± 0.96. Comparatively, the LFR method has an average condition rating of 6.96 ± 0.51. As 

shown in the table, the LRFR method has the highest condition rating, with an average condition 

rating of 7.76 ± 0.51. No bridges in Kansas have condition ratings of 9 or 1, and most have 

condition ratings of 7 or 8, indicating that most bridges in Kansas demonstrate satisfactory to very 

good condition. 

 
Figure 3.1: LFR Method Condition Rating Distribution 
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Figure 3.2: Allowable Stress Load Rating Method Condition Rating Distribution 

 
Figure 3.3: LRFR Method Condition Distribution 
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Table 3.3: Superstructure Condition and Structural Condition Ratings 
Superstructure Condition 

Rating (item 59) 
Condition Rating 

N Not Applicable 

9 Excellent Condition 

8 Very Good Condition – no problems 

7 Good Condition – some minor issues 

6 Satisfactory Condition – some deterioration 

5 
Fair Condition – all primary structural elements are 

sound but may have structural issues 

4 Poor Condition – advanced section loss 

3 
Serious Condition – loss of section, structural integrity 

is compromised 

2 
Critical Condition – advanced structural integrity of 

primary structure 

1 Imminent Failure – major deterioration 

0 Failed Condition – bridge is out of service 

 

3.1.3 Inventory and Operating Rating Dataset Statistics 

The reported inventory and operating load ratings are depicted in Figures 3.4 and Figure 

3.5. As shown, the inventory load rating has a median of 30.1 metric tons, while the operating 

rating has a median of 47.3 metric tons. Although both load rating distributions are approximately 

normal, Figure 3.6 shows that the inventory load rating has outliers above 62.3 metric tons. 

Outliers may decrease model predictions as they are not representative of the overall dataset. 
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Figure 3.4: Inventory Strength Distribution 

 
Figure 3.5: Operating Strength Distribution 
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Figure 3.6: Operating versus Inventory Load Rating Distribution 

 

3.1.4 Removal of Outliers and Erroneous Datapoints 

Multiple regression models can be used to estimate the value of interest, such as inventory 

rating, based on known variables. However, because multiple regression models are dependent on 

the data used to develop them, they are sensitive to outliers and error. Therefore, this study 

conducted a thorough evaluation to remove potential outliers outside the general range of the 

dataset. Outliers are datapoints that deviate significantly from most datapoints within a dataset. 

Their presence can lead to unreliable multiple regression models, potentially altering the estimated 

mean and standard deviation of the sample dataset (Perez & Tah, 2020). Defining an outlier 

requires arbitrary selection of a reasonable range of values based on a lower and upper limit. The 

Interquartile Range (IQR) is often used to define reasonable bounds for the data. IQR is a measure 

of variability in a dataset, found by dividing the data into an ordered set of elements, or the 

difference between the 25th percentile and 75th percentile (Perez & Tah, 2020): 

IQR = 𝑄𝑄0.75 - 𝑄𝑄0.25 
Equation 3.1 

Where Q0.25 is the 25th percentile, and Q0.75 is the 75th percentile. 
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In this work, a point was considered an outlier if it exceeded 1.5 times the IQR with the 

upper limit and lower limit defined as 

Lower Limit = 𝑄𝑄0.25-1.5∙IQR 
Equation 3.2 

Upper Limit = 𝑄𝑄0.75+1.5∙IQR 
Equation 3.3 

 

The application of this method to the inventory and operating rating datasets led to the 

omission of 26 outliers from the inventory dataset, but no outliers exceeded the upper or lower 

limits for the operating dataset. After omitting the outliers, 7,888 bridges remained in the inventory 

rating dataset and 7,915 bridges in the operating dataset. However, the inventory dataset was then 

only applicable to bridges with a maximum inventory load rating of 70.2 metric tons, which applies 

to 98.5% of bridges in Kansas. 

Prior to the evaluation of independent predictors, certain values of the inventory and 

operating load ratings had an unusually high frequency of occurrence. For example, bridge owners 

commonly assign load ratings based on engineering judgment rather than by explicit calculation 

(Ruiz, 2020). These values, listed from highest to lowest repeating frequency, are 19.8, 24.3, 23.4, 

32.4, and 32.7 metric tons for inventory ratings and 24.3, 32.4, 38.7, 40.5, and 90.6 metric tons for 

operating load ratings. These common values don’t necessarily reflect an explicit calculation, but 

rather an expert judgement thus they may not be predictable by our mathematical model. 

Therefore, this study considered two cases for how to handle these high-frequency ratings. In the 

first case, no high frequency loads were assumed to be correct, (i.e., load rating entries with an 

unusually high frequency) were miscoded and have a different value than the one reported. 

However, this approach disregarded the common practice of using these values for load rating 

based on engineering judgment and accepted the inclusion of potentially incorrect cases. The 

second case removed the ten most frequently repeated inventory and operating load ratings and 

assumed that all the high frequency cases reported for the inventory and operating ratings were 

miscoded, prompting the removal of possible incorrectly coded cases but potentially removing 

cases with correct inventory or operating ratings. This study utilized the second case to remove all 

high frequency load ratings and prevent the removal of miscoded cases to improve the training 
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dataset for model development, resulting in 1,210 repeated values for the inventory rating dataset 

and 951 repeated values for the operating rating dataset. Removal of all potentially miscoded high 

frequency load ratings resulted in 6,692 cases for inventory ratings and 6,964 bridges for operating 

ratings. 

3.1.5 Final Training/Testing Dataset 

The remaining 6,678 bridges and 6,964 bridges for the inventory and operating rating 

sample datasets, respectively, were divided so that 80% were designated for the training dataset to 

train the multivariable linear regression model and 20% were assigned to the testing dataset to 

confirm model performance (R2) (van der Goot, 2021). The split resulted in 5,432 training bridges 

and 1,336 testing bridges for inventory ratings and 5,571 training bridges and 1,393 testing bridges 

for operating ratings. 

3.1.6 Central Tendency and Variability Between Testing/Training Datasets 

The development of a linear regression model to estimate a baseline load rating for bridges 

without design plans first required verification that the training and testing datasets exhibited the 

same decreasing central tendencies in load ratings with decreasing condition rating factor. As 

shown in Figures 3.7 and 3.8, both datasets demonstrated decreasing reported load ratings with 

decreasing condition factor. Therefore, the preliminary linear regression model was developed to 

establish baseline load ratings for bridges in very good condition. 
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Figure 3.7: Condition Rating for Inventory Training Dataset (N = 5,342) and Testing 

Dataset (N = 1,336) 
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Figure 3.8: Condition Rating for Operating Training Dataset (N = 5,571) and Testing 

Dataset (N = 1,393) 

 

3.2 Task Two: Develop Multivariable Linear Regression 

To establish a baseline load rating for bridges without design plans, this study initially 

developed a multiple linear regression model for bridges with a superstructure condition rating of 

8, meaning no detectable or notable structural deficiencies are present and the bridge is in excellent 

to superb condition. Consequently, a linear regression model for bridges in pristine condition 

established a baseline load rating for bridges with no deterioration in structural capacity/condition. 

This study used 1,453 bridges and 1,442 bridges to train the baseline load rating for inventory and 

operating ratings, respectively. After applying the 80%/20% training split previously described, 

356 testing bridges and 360 bridges were reserved for the inventory and operating baselines, 

respectively, to evaluate load rating model performance. 
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3.2.1 Multiple Regression Model 

This study also developed a multiple linear regression model to estimate the load rating of 

concrete bridges. A multiple linear regression model can estimate relationships between one 

dependent variable and one or more independent variables to create an equation to predict 

dependent variables based on observed data (Khainge et al., 2019). Development of a linear 

regression model requires an understanding of the assumptions and uncertainty associated with the 

model. To apply the multiple linear regression model, the ordinary least squared method was 

performed, including estimating the coefficients by minimizing the squared errors between the 

observations and the model. The least squared errors provide an estimation of the expected value 

of the dependent variable (i.e., inventory or operating rating). However, this predicted value differs 

from actual observation, a difference known as the residual or error. The resultant residuals can be 

positive or negative, and errors from well-fit multiple linear regression models are normally 

distributed, with a constant variance and a mean of zero (Uyanık & Güler, 2013). 

3.2.2 Preliminary Predictor Selection 

A usable multiple linear regression model must include input data that is readily available. 

Table 3.4 summarizes the NBI items considered for baseline load rating model development. The 

definitions of the NBI items are in the Recording and Coding Guide for the Structure Inventory 

and Appraisal of the Nation’s Bridges (FHWA, 1995). 
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Table 3.4: NBI Items Considered as Potential Predictors 
NBI Item Number Qualification 

Inventory rating (66) Dependent variable 

Operating rating (64) Dependent variable 

Year built (27)  Material properties, standard design practices 

Design load (31) Live load used for model 

Structure kind (43A) Construction material 

Structure type (43B) Structure type (i.e. truss, girder) 

Deck width (52) Design, load effects 

Traffic lanes (28A) 
Design, load effects from number of lanes on 

structure 

Max span length (48) Design, load effects 

Main unit spans (45) Design, load effects 

Approach spans (46) Design, load effects 

Minimum lateral under 

clearance (55B) 
Design, load effects 

Average daily truck traffic 

(109) 
Design, load effects 

Total horizontal clearance 

(47) 
Design, load effects 

Left curb width (50A) Design, load effects 

Right curb width (50B) Design, load effects 

Approach width (32) Design, load effects 

Structure length (49) Design, load effects 

Traffic lanes under (42B) Design, load effects 

Degrees skew (34) Design, load effects 

Traffic direction (102) Design, load effects 

Average daily traffic (29) Design, load effects 
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3.2.3 Backward Selection Analysis of Variance to Select Significant Predictors 

The backwards selection technique of analysis of variance (ANOVA) can be used in 

multiple linear regression to select significant predictors. The ANOVA test, which is primarily 

used to find differences between group means, uses a student’s t-test to determine whether a 

predictor is significantly different than the dependent variable (Kim, 2017). The general form of 

multiple linear regression is 

𝑦𝑦� = 𝛽𝛽0 +  𝛽𝛽1𝑥𝑥1+𝛽𝛽2𝑥𝑥2 +…𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘 + 𝜀𝜀𝑖𝑖 
Equation 3.4 

Where: 

𝑦𝑦� = dependent variable (inventory or operating rating), 

𝑥𝑥𝑖𝑖 = independent variable, 

k = number of independent variables, 

𝛽𝛽0 = dependent variable sample mean, and 

𝛽𝛽𝑘𝑘 = difference in the means between the independent variable and dependent 

variable k (Kim, 2017; Rouder et al., 2021; Yu et al., 2022). 

 

When running the test, the ANOVA tests compares if there is a significant difference the 

dependent variable mean and predictor k, if the random errors, 𝜀𝜀𝑖𝑖 are independent of each other, 

normally distributed, and have equal variances. Thereafter, the F test can be used to assess the null 

hypothesis (H0 : µ1 = µ2 = µ3) that there is no significant difference between the dependent variable 

sample mean, and predictor k sample mean at a 95% confidence interval (Kim, 2017). In the 

alternative hypothesis (HA), if the p-value from the student’s t-test is less than 0.05, then there is 

sufficient evidence to reject the null hypothesis and prove there is a significant difference between 

the predictor k and the dependent variable; therefore, the predictor k can be used to develop the 

multiple linear regression model (Kim, 2017; Yu et al., 2022). This study applied ANOVA by 

iteratively conducting the test with all the predictors and evaluating the p-value for each predictor 

k with the highest p-value, assuming it to be the least significant predictor. The test was repeated 

until only one predictor remained. 
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3.2.4 Number of Selected Predictors Used in Linear Regression Equation 

Forward selection was used for the chosen number of predictors for the finalized linear 

regression. Forward selection is a stepwise procedure that includes predictors in the developed 

model if they improve model predictions for inventory or operating ratings. This procedure 

continues until no additional predictors improve model performance (Schneider et al., 2010). This 

study initiated forward selection with one predictor, followed by the coefficient of determination 

(R2) and the mean squared error (MSE) (Equations 3.5 and 3.7) to assess model improvements. 

This process was iterated until the MSE was minimized for the testing dataset since the addition 

of variables always improves the R2 for the training dataset. However, as the coefficient of 

determination improves, the MSE changes based on predictor combinations. The number of 

selected predictors for the developed model is complete when the MSE is minimized within the 

testing pristine bridge dataset. 
MSE = 

𝑆𝑆𝑆𝑆𝑆𝑆
𝑛𝑛 − (𝑘𝑘 + 1) 

Equation 3.5 
Where: 

SSE = the sum of squared error (Equation 3.6), 

n = sample size, and 

k + 1 = the number of predictors and the intercept. 

 

SSE = �(𝑒𝑒𝑖𝑖 − 𝑒̅𝑒)2
𝑛𝑛

𝑖𝑖=1

 

Equation 3.6 
Where: 

𝑒𝑒𝑖𝑖 = residual errors, which is the difference between the linear regression and the 

observations (𝑒𝑒 =  𝑦𝑦𝚤𝚤� − 𝑦𝑦𝑖𝑖), 

SSE = the measure of error, and 

𝑒̅𝑒 = 0. 

 

The coefficient of determination (R2) is 

𝑅𝑅2 = 1 −
𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆

 

Equation 3.7 
Where SSE is the sum of squared error defined above, and SST is the sum of 

squares total. 
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The coefficient of determination is the proportion of variation within the dependent variable that 

is estimated by the developed multiple linear regression model. 

𝑆𝑆𝑆𝑆𝑆𝑆 =  �(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2
𝑛𝑛

𝑖𝑖=1

 

Equation 3.8 
Where 𝑦𝑦𝑖𝑖 is the observation, and 𝑦𝑦� is the average of the dependent variable. The 

sum of squares total is the summation of the squared deviation between the 

dependent variable and the average of the dependent variable. The SST is a 

measure of variance within the dependent variable (Wilks, 2020). 

3.3 Task Three: Establish Adjustment Factor and Final Developed Model 

3.3.1 Development of Adjustment Factors 

Lequesne and Collins (2019) describe several methods for assigning load ratings to 

concrete bridges without design plans: rating based on historic design loads, rating based on bridge 

age and traffic loads, rating based on similar bridges with known load ratings, calculations with 

assumed measurements/properties, and load testing. Superstructure condition ratings describe the 

condition of a bridge and classify structural deficiencies, ranging from excellent condition to a 

threat of imminent failure (Table 3.5). Several state departments of transportation (DOTs) assign 

inventory and operating rating factors using engineering judgment typically only for structures 

with a condition rating of 5 or higher due to the limited guidance for load ratings with conditions 

less than 5. 

Several DOTs (States F, L, and O) apply a sliding scale factor in which the load rating 

factors diminish based on condition ratings (Lequesne & Collins, 2019). This approach may be 

robust and cost effective for bridges without design plans due to the correlation between condition 

rating and reported strength load rating, but the factors differ among states. Therefore, robust 

adjustment factors must be systematically developed for bridge condition. 

This study applied a systematic approach of sliding scale adjustment factor based on the 

median reported inventory and operating ratings. The applied adjustment factor (𝜑𝜑) to account for 

deterioration was calculated by relating the decrease in load rating relative to a pristine bridge as: 
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𝜑𝜑𝑖𝑖 = 𝐿𝐿𝑖𝑖 𝐿𝐿8⁄  
Equation 3.9 

Where: 

𝜑𝜑𝑖𝑖 = sliding scale adjustment factor (from 0 to 1), 

L = median operating or inventory load rating for a given condition rating, and 

𝑖𝑖 = index for condition rating (ranging from 2 to 8). 

 

Table 3.5: Superstructure Condition Rating and Bridge Condition 
Super Structure 

Condition 
Condition Rating 

1 Imminent Failure 
2 Critical Condition 
3 Serious Condition 
4 Poor Condition 
5 Fair Condition 
6 Satisfactory Condition 
7 Good Condition 
8 Very Good Condition 
9 Excellent 

 

3.3.2 Bootstrapping Uncertainty Analysis for Adjustment Factors 

This study employed a bootstrapping simulation without replacement to investigate the 

relationship between reported load ratings and sliding scale adjustment factors. This simulation is 

often used to model and analyze complex systems by incorporating random sampling and repeated 

iterations (Awang et al., 2015). The primary objective of the bootstrapping simulation was to verify 

the downward trend in reported load ratings while accounting for uncertainty associated with 

various adjustment factors from pristine condition to poor condition ratings. This approach 

captured the variability and distribution of load rating reductions for bridges in a variety of 

conditions. The uncertainty analysis applied the following procedure: 

1. Subset sampling: Various condition rating subsets based on different 

condition factors were created from the training datasets for inventory 

and operating ratings to represent the range of reported bridge condition 

ratings. 
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2. Random sampling without replacement: Within each adjustment factor 

subset, load ratings were randomly sampled from the pristine condition 

bridges and the low-rated condition bridges. This random sampling 

process ensured that the simulated load ratings captured the inherent 

variability within each adjustment factor subset. 

3. Iterative simulation: The bootstrapping simulation was performed by 

conducting 10,000 iterations of the random sampling process to 

generate an uncertainty distribution of load ratings adjustments for each 

adjustment factor subset. 

4. Analysis and visualization: After completing the bootstrapping 

simulation, the adjustment factor uncertainty distributions were 

analyzed and the uncertainty range IQR associated with adjustment 

factor (𝜑𝜑𝑖𝑖) was assessed. 

3.4 Task Four: Model Application and Validation 

The general form the applied adjustment factors equation is defined as: 

𝑦𝑦 = 𝜑𝜑𝑦𝑦� 
Equation 3.10 

Where: 

y = predicted (deteriorated) load rating, 

φ = sliding scale adjustment factor (Equation 3.10), and 

𝑦𝑦� = pristine bridge rating (Equation 3.4). 

 

Generalization of the final model (Equation 3.4) for inventory and operating was compared 

to the testing dataset. The testing/validation dataset consisted of 20% of the total data for the 

inventory and operating ratings. The 95% prediction interval for inventory and operating ratings 

for each set was calculated as: 
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𝑦𝑦�95% =  𝑦𝑦 ± 1.96 * SE 
Equation 3.11 

Where: 

𝑦𝑦�95% = inventory or operating estimate from Equation 3.4, 

SE = standard error (metric tons) from the inventory or operating rating model 

(Equation 3.11), and 

1.96 = z-score that corresponds to the two-tailed central limits of the central 95% 

probability of a normal distribution (p-values of 2.5% and 97.5%) (Aityan, 2022). 

 

Equation 3.11 is an estimate of the observed trend of observation variation the model 

captures. The prediction interval was compared to the validation dataset once the 95% confidence 

intervals were calculated. 
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Chapter 4: Results 

4.1 Preliminary Model Development 

4.1.1 Selection of Significant Predictors for the Linear Regression Model 

This study applied a backward selection approach to ANOVA on pristine bridges to 

determine which predictors can be used to estimate inventory or operating rating (Equation 3.4). 

The automated process iteratively eliminated the least significant predictor or the predictor with 

the highest p-value until only one significant predictor remained. As shown in Table 4.1 and Table 

4.2, the test results showed nine significant predictors for inventory rating and 12 significant 

predictors with a p-value less than 0.05 for operating rating. 

Some significant variables from the ANOVA test have the potential to improve the model 

more than others. For example, there are trade-offs with model improvement and complexity, so 

this study utilized forward selection on the significant predictors from the backward selection 

ANOVA test to minimize model complexity and error and determine which combination and 

number of predictors would minimize the mean squared error when Equation 3.4 was applied to 

the entire training dataset without the applied reduction factor (excluding pristine bridges). Results 

showed that four predictors were required to minimize the MSE for both inventory and operating 

ratings in the test dataset, as shown in Figures 4.1 and 4.2, respectively. Forward selection results 

also showed that five predictors were required to minimize the MSE for the inventory rating: 

YEAR_BUILT_027, DESIGN_LOAD_031, STRUCTURE_KIND_043A, 

DECK_WIDTH_MT_052, and STRUCTURE_TYPE_043B for an MSE of 62.95 and 66.61 for 

the testing and training datasets, respectively. Forward selection on the operating rating showed 

that four predictors were required to minimize the MSE for the testing dataset: 

YEAR_BUILT_027, DESIGN_LOAD_031, STRUCTURE_KIND_043A, and 

DECK_WIDTH_MT_052. The training operating rating MSE was 182.07, while the testing 

dataset MSE for operating rating was 182.27. Both models met the assumption of zero sum of 

model residuals, as shown in Figures 4.1 and 4.2. Combinations of predictors that improved model 

performance were then used without increasing model complexity for both models. 
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Table 4.1: Backward Selection ANOVA Test Results for Pristine Inventory Rating Bridges 
Predictor 
Number 

R2 Name/NBI Code P-Value 

24 0.402 DECK_AREA 0.945 
23 0.402 MEDIAN_CODE_033 0.719 
22 0.402 TRAFFIC_DIRECTION_102 0.582 
21 0.402 RIGHT_CURB_MT_050B 0.573 
20 0.402 TRAFFIC_LANES_UND_028B 0.505 
19 0.401 LEFT_CURB_MT_050A 0.427 
18 0.401 LAT_UND_MT_055B 0.440 
17 0.401 YEAR_ADT_030 0.368 
16 0.401 ADT_029 0.367 
15 0.400 STRUCTURE_LEN_MT_049 0.277 
14 0.400 TRAFFIC_LANES_ON_028A 0.190 
13 0.399 MAIN_UNIT_SPANS_045 0.212 
12 0.398 DEGREES_SKEW_034 0.160 
11 0.398 APPR_SPANS_046 0.059 
10 0.396 SERVICE_UND_042B 0.081 
9 0.395 HORR_CLR_MT_047 0.032 
8 0.393 PERCENT_ADT_TRUCK_109 0.001 
7 0.389 APPR_WIDTH_MT_032 0.002 
6 0.384 MAX_SPAN_LEN_MT_048 0.000 
5 0.378 STRUCTURE_TYPE_043B 0.000 
4 0.368 DECK_WIDTH_MT_052 0.000 
3 0.354 STRUCTURE_KIND_043A 0.000 
2 0.321 DESIGN_LOAD_031 0.000 
1 0.245 YEAR_BUILT_027 0.000 
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Table 4.2: Backward Selection ANOVA Test Results for Pristine Operating Rating Bridges  
Predictor 
Number 

R2 Name/ NBI Code P-Value 

24 0.394 DEGREES_SKEW_034 0.951 
23 0.394 RIGHT_CURB_MT_050B 0.762 
22 0.394 TRAFFIC_LANES_UND_028B 0.583 
21 0.394 ADT_029 0.604 
20 0.394 SERVICE_UND_042B 0.497 
19 0.393 APPR_WIDTH_MT_032 0.511 
18 0.393 MEDIAN_CODE_033 0.361 
17 0.393 STRUCTURE_LEN_MT_049 0.330 
16 0.393 YEAR_ADT_030 0.322 
15 0.392 PERCENT_ADT_TRUCK_109 0.218 
14 0.391 LEFT_CURB_MT_050A 0.141 
13 0.391 TRAFFIC_DIRECTION_102 0.134 
12 0.390 DECK_AREA 0.026 
11 0.387 MAIN_UNIT_SPANS_045 0.027 
10 0.385 HORR_CLR_MT_047 0.019 
9 0.383 TRAFFIC_LANES_ON_028A 0.004 
8 0.379 APPR_SPANS_046 0.002 
7 0.375 LAT_UND_MT_055B 0.000 
6 0.366 STRUCTURE_TYPE_043B 0.000 
5 0.357 MAX_SPAN_LEN_MT_048 0.000 
4 0.344 STRUCTURE_KIND_043A 0.000 
3 0.334 DECK_WIDTH_MT_052 0.000 
2 0.323 DESIGN_LOAD_031 0.000 
1 0.251 YEAR_BUILT_027 0.000 
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Figure 4.1: Forward Selection for Inventory Rating 

 

The top left figure in Figure 4.1 plots the developed linear regression model for pristine 

testing bridges, while the top right figure shows the best predictor selection for training pristine 

bridges. The middle plot compares the MSE with additional predictors added via forward selection. 

The red line in the middle plot is the MSE for the testing dataset, and the blue line is the MSE for 
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the training pristine bridges dataset. The bottom error plot shows that the error in the residuals is 

centered around 0 for the inventory rating preliminary model. 

 
Figure 4.2: Forward Selection for Operating Rating 

 

The top left figure in Figure 4.2 plots the developed linear regression model for pristine 

testing bridges, while the top right figure shows the best predictor selection for training pristine 
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bridges. The middle plot compares the MSE with predictors added via forward selection. The red 

line in the middle plot is the MSE for the testing dataset, and the blue line is the MSE for the 

training pristine bridges dataset. The bottom error plot shows that the error in the residuals is 

centered around 0 for the operating rating preliminary model. 

Figures 4.3 and 4.4 illustrate the correlation between the two most important predictor 

variables (YEAR_BUILT_027 and DESIGN_LOAD_031), respectively, and bridge rating. As 

shown, newer bridges and bridges designed for heavy truck loads have higher inventory and 

operating ratings. YEAR_BUILT_027 and DESIGN_LOAD_031 also correlate because newer 

bridges tend to be designed for heavy truck loads. Nevertheless, the previous analyses suggested 

that both predictors include relevant information. In other words, the model outputs improve if 

both YEAR_BUILT_027 and DESIGN_LOAD_031 are considered instead of just 

YEAR_BUILT_027. Results in the figures are shown as the mean plus-minus one standard 

deviation for all bridges. 

 
Figure 4.3: Inventory and Operating Ratings versus Year Built 
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Figure 4.4: Inventory and Operating Ratings versus Designated Design Load 

 

4.1.2 Preliminary Model Assessment 

Study results indicated that the best overall performing model for inventory rating was year 

built (Age), design load (DL), structure kind (Struc), deck width (W), and structure type (Type). 

The best overall performing model for operating rating includes year built (Age), design load (DL), 

structure kind (Struc), and deck width (W). The general forms to estimate the baseline load ratings 

(both models in metric tons) are expressed as 
𝑦𝑦� = 𝛽𝛽0 +  𝛽𝛽1𝐴𝐴𝐴𝐴𝐴𝐴+𝛽𝛽2𝐷𝐷𝐷𝐷+ 𝛽𝛽3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝛽𝛽4𝑊𝑊 +𝛽𝛽5𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

Equation 4.1 

𝑦𝑦� = 𝛽𝛽0 +  𝛽𝛽1𝐴𝐴𝐴𝐴𝐴𝐴+𝛽𝛽2𝐷𝐷𝐷𝐷+ 𝛽𝛽3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 +  𝛽𝛽4𝑊𝑊 
Equation 4.2 

 

The significant max span length was not included in the preliminary baseline load rating 

models because including this variable did not minimize the MSE when the preliminary model 

was applied to the pristine test bridge datasets for both the inventory and operating ratings. A 

degree of uncertainty was present with the inclusion of the design live load predictor (DL) in 

Equations 4.1 and 4.2; however, because design loads encoded as 0 indicate that field evaluation 

and engineering judgment were used to determine the reported live load, meaning that 29 pristine 

training bridges and 36 training bridges without design plans were present in the inventory and 

operating rating training dataset, potentially skewing the model predictions for the baseline load 

rating (FHWA, 2011). 
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The preliminary models and their predictor βk are described in Tables 4.3 and 4.4 for 

inventory and operating ratings, respectively. Figures 4.5 and 4.6 display the trained baseline load 

rating model and validated testing dataset for the inventory rating, while Figures 4.7 and 4.8 show 

the trained baseline load rating model and validated testing dataset for the operating rating. The 

preliminary models performed reasonably well, with a coefficient of determination of 0.40 and 

0.35 for the inventory and operating ratings, respectively, and a standard error of 7.93 tons for the 

inventory rating and 13.49 metric tons for the operating rating. Both preliminary models also met 

the criteria for an approximate zero mean of the residuals. Therefore, the developed preliminary 

model was used to predict baseline load ratings for pristine condition bridges. 

Table 4.3: Preliminary Baseline Load Rating Regression Model for Pristine Inventory 
Rating Bridges 

Predictor Name Weight Term (𝛽𝛽) 
X1 YEAR_BUILT_027 0.313 
X2 DESIGN_LOAD_031 1.437 
X3 STRUCTURE_KIND_043A -1.08 
X4 DECK_WIDTH_MT_052 0.413 
X5 STRUCTURE_TYPE_043B -0.907 

Intercept - -591.345 

Table 4.4: Preliminary Baseline Load Rating Regression Model for Pristine Operating 
Rating Bridges 

Predictor Name Weight Term (𝛽𝛽) 
X1 YEAR_BUILT_027 0.489 
X2 DESIGN_LOAD_031 2.060 
X3 STRUCTURE_KIND_043A -2.109 
X4 DECK_WIDTH_MT_052 0.739 

Intercept - -924.08 
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Figure 4.5: Preliminary Baseline Load Rating Estimation of Pristine Inventory Rating 

Training Bridges (N = 1,453) 

 
Figure 4.6: Preliminary Baseline Load Rating Estimation of Pristine Inventory Rating 

Testing Bridges (N = 356) 
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Figure 4.7: Preliminary Baseline Load Rating Estimation for Pristine Operating Rating 

Training Bridges (N = 1,442) 

 
Figure 4.8: Preliminary Baseline Load Rating Estimation for Pristine Operating Rating 

Testing Bridges (N = 360) 
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4.2 Adjustment Factor Uncertainty Analysis 

4.2.1 Applied Sliding Scale Adjustment Factors 

The sliding scale adjustment factors (Equation 3.6) listed in Tables 4.5 and 4.6 are based 

on the median load rating of a given deteriorated bridge (super structure condition 2 to 7) relative 

to the median load rating of a pristine bridge (super structure condition 8). For example, the 

adjustment factor for condition factor 7 for the operating rating in Table 4.6 is 52.2 / 67.1 = 0.78, 

proving that bridges with a low condition factor are typically weaker than bridges with a high 

condition factor due to diminished structure condition. Section 3.1.5 verified the validity of the 

sliding approach because both the training and testing datasets had similarly diminished load 

ratings with decreasing condition rating. The adjustment factors (𝜑𝜑) were then applied to the model 

for the inventory and operating ratings to create Equation 3.10, which was applied to the entire 

training dataset. 

Table 4.5: Median Inventory Rating with Condition Rating and Adjustment Factor (𝝋𝝋) for 
Training Dataset 

Super Structure 
Condition 

Inventory Rating 
Median 

Adjustment 
Factor (𝜑𝜑𝑖𝑖) 

2 5.9 0.15 

3 7.7 0.19 
4 16.2 0.40 
5 17.5 0.44 
6 20.9 0.52 
7 31.5 0.79 
8 40.1 1 

Table 4.6: Median Operating Rating with Condition Rating and Adjustment Factor (𝝋𝝋) for 
Testing Dataset 

Super Structure 
Condition 

Operating Rating 
Median  

Adjustment 
Factor (𝜑𝜑𝑖𝑖) 

2 9.1 0.13 

3 12.6 0.19 
4 24.5 0.36 
5 27.0 0.40 
6 33.8 0.50 
7 52.2 0.77 
8 67.6 1 
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4.2.2 Reduction Factor Uncertainty Analysis 

One limitation of applying a sliding scale adjustment factor (𝜑𝜑) based on the median is the 

increase of uncertainty for the reported load ratings with different condition factors. Normalization 

of the adjustment factor to the reported median rating only captures the downward trend of the 

central tendency; it does not encompass the variation of the reduction from pristine condition to 

bridges in poor condition. To verify this downward trend, this study performed a bootstrap 

simulation that randomly sampled the load ratings from different condition rating subsets 10,000 

times to obtain a distribution of uncertainty for the sliding scale adjustment factor (Thomopoulos, 

2013). Bootstrap simulation results shown in Figures 4.9 and 4.10 verify the downward trend with 

the uncertainty range with decreased condition rating. However, the upper range (75th percentile) 

of the IQR for the adjustment factors rating of “8” to “7” exceeded 1.0 because some bridges in 

pristine condition have a lower load rating than some bootstrap samples of bridges with a condition 

rating less than “7”. Nonetheless, a clear general reduction of the adjustment factor uncertainty 

range was reported (Tables 4.7 and 4.8). Thus, this systematic approach for the applied adjustment 

factor in Equation 3.11 is valid within a reasonable degree of uncertainty. 

Table 4.7: Uncertainty IQR Range and Median for Inventory Rating Training Dataset 
Condition Rating 
Adjustment (𝜑𝜑i) 

Lower End (𝜑𝜑) 
(25th percentile) 

Median (𝜑𝜑) 
(50th percentile) 

Upper End (𝜑𝜑) 
(75th percentile) 

8 to 7 0.58 0.80 1.08 
8 to 6 0.40 0.59 0.80 
8 to 5 0.35 0.47 0.69 
8 to 4 0.30 0.40 0.55 
8 to 3 0.12 0.20 0.35 
8 to 2 0.07 0.15 0.22 

Table 4.8: Uncertainty IQR Range and Median for Operating Rating Training Dataset 
Condition Rating 
Adjustment (𝜑𝜑i) 

Lower End (𝜑𝜑) 
(25th percentile) 

Median (𝜑𝜑) 
(50th percentile) 

Upper End (𝜑𝜑) 
(75th percentile) 

8 to 7 0.59 0.78 1.07 
8 to 6 0.41 0.58 0.81 
8 to 5 0.36 0.49 0.70 
8 to 4 0.30 0.41 0.57 
8 to 3 0.12 0.20 0.35 
8 to 2 0.07 0.16 0.22 
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Figure 4.9: Inventory Rating Training Dataset Condition Rating, Adjustment Factor 

Uncertainty Analysis 

 
Figure 4.10: Operating Rating Training Dataset Condition Rating, Adjustment Factor 

Uncertainty Analysis 
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4.2.3 Adjustment Factor (𝜑𝜑) Applied to Full Training Dataset 

Based on study results, the adjustment factors (𝜑𝜑) in Tables in 4.5 and 4.6 were applied to 

Equations 4.1 and 4.2 for the baseline load ratings models for inventory and operating ratings. The 

inventory final training model resulted in an R2 of 0.50, an MSE of 128.06, and a standard error 

of 11.3 metric tons. The operating rating final training model resulted in an R2 of 0.49, an MSE of 

356.02, and a standard error of 18.89 metric tons. When the preliminary model was applied to the 

full training dataset with the applied reduction factor, the model performance metric, R2 increased 

due to an increased sample size. However, when a linear regression model was applied to a larger 

dataset, the model was less sensitive to errors and more likely to capture the relationship between 

predictors and the inventory or operating ratings (Liu et al., 2022). As shown in Figures 4.11 and 

4.12, the inventory rating model more effectively predicted the training datasets because of the 

lower MSE than the fully developed operating model, indicating that the inventory rating model 

is more accurate than the operating rating model, with less resultant error in model predictions. 

 
Figure 4.11: Fully Developed Linear Regression Model with the Adjustment Factors for 

Full Inventory Training Dataset with Applied Adjustment Factor (N = 5,342) 
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Figure 4.12: Fully Developed Linear Regression Model with the Adjustment Factors for 

Full Operating Training Dataset with Applied Adjustment Factor (N = 5,571) 

 

4.3 Model Validation 

This study then compared the developed inventory and operating rating models to the 

testing dataset, as shown in Figures 4.13 and 4.14. The validation dataset was comprised of 20% 

of the filtered dataset from section 4.1, totaling 1,336 bridges with inventory ratings and 1,393 

bridges with operating ratings. The inventory rating validation model exhibited a slightly higher 

coefficient of determination of 0.51, capturing more variation in the validation dataset compared 

to 0.45 for the operating dataset. Additionally, the inventory rating model had less error for model 

predictions, with a standard error of 11.31 metric and an MSE of 128.07 compared to a standard 

error of 19.19 metric tons and an MSE of 368.29. Application of the fully developed model with 

the applied adjustment factors and standard error from the training datasets for inventory and 

operating ratings resulted in 94.9% of testing inventory rating bridges and 94.0% of testing 

operating rating bridges within the 95% prediction intervals. The remaining 5.1% of bridges not 

captured by the 95% prediction interval for the inventory rating model primarily were HS20 

designs or designs with load ratings larger than 40 metric tons and superstructure in good or fair 

condition. 
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Figure 4.13: Linear Regression Model with Adjustment Factors for Inventory Applied to 

the Testing Dataset (N = 1,336) 

 
Figure 4.14: Linear Regression Model with Adjustment Factors for Operating Rating 

Applied to the Testing Dataset (N = 1393) 



41 

Chapter 5: Discussion 

5.1 Baseline Load Ratings for Bridges with No Design Plans 

To establish baseline inventory and operating load ratings for bridges without design plans, 

this study initially omitted non-applicable bridges from the dataset to develop the linear regression 

model. All non-concrete bridge structures, outliers, and bridges with unusually high reported 

strength frequencies were omitted, thereby reducing the dataset from 24,925 bridges to 6,692 

inventory rating bridges and 6,964 operating rating bridges. The sample datasets for the inventory 

and operating ratings were then split, with 80% for training and 20% for model validation. The 

training and testing split resulted in 5,432 training and 1,336 testing bridges for inventory rating 

and 5,571 training bridges and 1,393 testing bridges for operating rating model development. Then 

the dataset was filtered to select only bridges with a condition rating of 8 (pristine condition 

bridges) to estimate baseline load rating, the median load rating was tabulated, and the distributions 

for each condition rating were graphed for the inventory and operating ratings (Tables 4.1 and 4.2) 

to confirm the validity of this approach. Although results showed that the approach was valid, 

uncertainty remained, as described in section 5.2. 

When developing the preliminary model for the inventory and operating ratings, a thorough 

analysis was conducted to determine the best-performing and ideal number of predictors to 

minimize model error predictions. Analysis results from backward selection ANOVA test and 

forward selection showed preliminary models for inventory (Equation 4.1) and operating 

(Equation 4.2) ratings. The preliminary models satisfactorily captured the variance, achieving a 

40% capture rate for inventory rating pristine training bridges and a 35% capture rate for the 

pristine training operating bridges. Both models (Equations 4.1 and 4.2) met the assumption of 

normal distribution with a mean of residuals centered around zero. However, the inventory rating 

preliminary model performed better than the operating rating when applied to the full training 

dataset, demonstrating an R2 of 0.50 for the inventory rating compared to 0.49 for the operating 

rating. The inventory rating also had less error overall in the model, with an MSE of 128 for the 

testing dataset compared to an MSE of 368 for the operating rating. 

One significant uncertainty is that bridges without design plans were used to construct the 

preliminary model since the predictor 𝐷𝐷𝐷𝐷 (Design_Load_31) used bridges with design load 0, 
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which denotes that the modeled design load is unknown. A total of 715 and 755 training bridges 

with DL = 0 were present in the training datasets for the inventory and operating ratings, 

respectively. Overall, however, the preliminary model was useful for estimating baseline load 

ratings for bridges in pristine condition without prior design plans. In addition, the model is based 

on readily available bridge inventory data that can be easily collected and used to estimate baseline 

load ratings. However, further validation and refinement of the model may be necessary to improve 

its accuracy and applicability for different bridge types and conditions. 

5.2 Adjustment Factors to Account for Bridge Condition Degradation 

This study developed a systematic sliding scale adjustment factor to account for changes 

in load rating due to bridge deterioration and distress. The adjustment factor (𝜑𝜑) is a normalized 

value between 0 and 1, which is intended to scale a bridge from its predicted pristine rating 

(condition rating of “8”) to its likely deteriorated load rating (condition rating “2” to “7”) given 

information from a superstructure evaluation. This approach is reasonable and valid because both 

the training and testing datasets displayed similar diminished reported load ratings with decreasing 

condition rating (Figures 3.7 and 3.8). 

However, uncertainty was present regarding the sliding scale adjustment factors (𝜑𝜑) 

obtained from the reported load ratings with decreasing condition ratings. Therefore, a 

bootstrapping simulation was performed, which included random sampling from load ratings with 

various condition rating subsets (10,000 times) to obtain an uncertainty distribution for the sliding 

scale adjustment factor with decreasing condition ratings. The bootstrapping simulation results 

verified a downward trend in the IQR uncertainty with a reduction in condition rating (Tables 4.8 

and 4.9). Because the sampling of distributions is random, occasional bootstraps of a lower 

condition rating (e.g., 7) would have a higher load rating than a pristine condition bridge (i.e., 8). 

This can be observed in the 75th percentile of an 8-to-7 adjustment factor (Table 4.7 and Figure 

4.9), which indicates as adjustment factor of 1.07, that is the load rating would increase despite the 

drop in condition rating. However, this is not typically the case; and the median (50th percentile) 

8-to-7 adjustment factor was 0.80, suggesting a 20% drop in load rating. Overall, the adjustment 
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factors accurately capture the overall downward trend, with decreased reported load ratings with 

reduced condition rating, as expected given bridge deterioration. 

5.3 Developed Model Application and Limitations 

The fully developed models for the inventory and operating ratings with the applied 

adjustment factors are displayed in Equations 5.1–5.4 (reported in metric tons): 

𝑦𝑦�𝐼𝐼𝐼𝐼𝐼𝐼= − 591.345 +  0.313𝐴𝐴𝐴𝐴𝐴𝐴+1.347𝐷𝐷𝐷𝐷+ − 1.08𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 +  0.413𝑊𝑊 -0.907𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
Equation 5.1 

𝑦𝑦�𝐼𝐼𝐼𝐼𝐼𝐼−95%= 𝜑𝜑𝑖𝑖(𝑦𝑦�𝐼𝐼𝐼𝐼𝐼𝐼) ± 1.96 × 11.32 
Equation 5.2 

𝑦𝑦�𝑂𝑂𝑂𝑂𝑂𝑂 = − 924.08 +  0.49𝐴𝐴𝐴𝐴𝐴𝐴+2.06𝐷𝐷𝐷𝐷 −  2.109𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 +  0.739𝑊𝑊 
Equation 5.3 

𝑦𝑦�𝑂𝑂𝑂𝑂𝑂𝑂−95% = 𝜑𝜑𝑖𝑖(𝑦𝑦�𝑂𝑂𝑂𝑂𝑂𝑂) ± 1.96 × 18.87 
Equation 5.4 

Where: 

𝑦𝑦�𝐼𝐼𝐼𝐼𝐼𝐼 = developed baseline load rating for inventory rating, 

𝑦𝑦�𝐼𝐼𝐼𝐼𝐼𝐼−95% = fully developed inventory rating model with applied adjustment factor 

corresponding to the 95% prediction intervals, 

𝑦𝑦�𝑂𝑂𝑂𝑂𝑂𝑂 = developed baseline load rating model for operating rating, 

𝑦𝑦�𝑂𝑂𝑂𝑂𝑂𝑂−95% = fully developed operating rating model with applied adjustment 

factors, 

11.32 (metric tons) = standard error from the fully developed inventory rating 

model, 

18.87 (metric tons) = standard error from the fully developed operating rating 

model (section 4.2.3), and 

1.96 = z-score corresponding to the two-tailed central limits of the central 95% 

probability of a normal distribution (p-values of 2.5% and 97.5%) (Aityan, 2022). 

 

The predictors used in the models are Year Built (Age), Design Load (DL), Structure Kind 

(Struc), Deck Width (W), and Structure Type (Type). The descriptions of each predictor, their units, 

and the applied adjustment factors are described in Tables 5.1–5.7. Tables 5.5–5.7 use the same 
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NBI code for the model input because this model uses readily available data from the NBI 

database, meaning the model input for each predictor uses the same input as the database. 

Table 5.1: Load Rating Regression Model for Pristine Inventory Rating Bridges 
Predictor NBI Code Predictor 

Name 
Units 

X1 YEAR_BUILT_027 Age (-) 
X2 DESIGN_LOAD_031 DL Refer to table 5.5 
X3 STRUCTURE_KIND_043A Struc Refer to table 5.6 
X4 DECK_WIDTH_MT_052 W Meters 
X5 STRUCTURE_TYPE_043B Type Refer to Table 5.7 

Table 5.2: Load Rating Regression Model for Pristine Operating Rating Bridges 
Predictor NBI Code Predictor Name Units 

X1 YEAR_BUILT_027 Age (-) 
X2 DESIGN_LOAD_031 DL Refer to Table 5.5 
X3 STRUCTURE_KIND_043A Struc Refer to Table 5.6 
X4 DECK_WIDTH_MT_052 W Meters 

Table 5.3: Median Inventory Rating at a Reported Condition Rating and Associated 
Adjustment Factor (𝝋𝝋) Based on Training Dataset 

Superstructure 
Condition 

Inventory Rating 
Median 

Adjustment 
Factor (𝜑𝜑𝑖𝑖) 

2 5.85 0.15 
3 7.65 0.19 
4 16.2 0.40 
5 17.5 0.44 
6 20.85 0.52 
7 31.5 0.79 
8 40.1 1 

Table 5.4: Median Operating Rating at a Reported Condition Rating and Associated 
Adjustment Factor (𝝋𝝋) Based on Training Dataset 

Superstructure 
Condition 

Operating Rating 
Median  

Adjustment 
Factor (𝜑𝜑𝑖𝑖) 

2 9.05 0.13 
3 12.6 0.19 
4 24.5 0.36 
5 27.0 0.40 
6 33.8 0.50 
7 52.2 0.77 
8 67.65 1 
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Table 5.5: Design Load (DL)/DESIGN_LOAD_031 Units and Description 
Design Load 

NBI Code 
Model Code Metric Design 

Description 
English Design 

Description 
1 1 M9 H 10 
2 2 M 13.5 H 15 
3 3 MS 13.5 HS 15 
4 4 M 18 H 20 
5 5 MS  HS 20 
6 6 MS 18+Mod HS 10+Mod 
9  9 MS 22.5 HS 25 
0 0 Other or Unknown - 

Table 5.6: Structure Kind (Struc)/STRUCTURE_KIND_043A Units and Construction 
Material Description for Model Development 

Structure Type 
NBI Code 

Model Code Construction Material 
Description 

1 1 Concrete 
2 2 Concrete Continuous 
5 5 Prestressed Concrete* 
6 6 Prestressed Concrete 

Continuous * 
Note: *Post-tensioned concrete uses the same code as prestressed concrete. 

Table 5.7: Structure Type (Type)/STRUCTURE_TYPE_043B Units and Description for 
Model Development 

Structure Type 
NBI Code 

Model Code Structure Description 

1 1 Slab 

2 2 Stringer/Multi-beam or 
Girder 

3 3 Girder and Floorbeam 
System 

4 4 Tea Beam 
5 5 Box Beams or Girders – 

Multiple 
7 7 Frame (excluding culverts) 

11 11 Arch – Deck 
12 12 Arch – Thru 
20 20 Mixed Types 
22 22 Channel Beam 
0 0 Other 
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The fully developed models (Equations 5.2 and 5.4) explained 50% and 49% of the 

variance in the observed inventory and operating rating. Equations 4.1 and 4.2 were used for 

training and validation using predictors from section 4.1.1. The developed models (Equations 5.2 

and 5.4) are intended to estimate inventory and operating ratings for all Kansas concrete bridge 

structures without design plans and that follow the selection criteria outlined in the methods. 

Extrapolation of the model to bridge conditions and types that are outside of the ranges used in 

training could result in erroneous prediction. 

The models developed in this study compared reasonably well to the model by Ruiz (2020), 

which had an R2 of 0.51 and standard error of 6.51 metric tons. The fully developed inventory 

rating model had an R2 of 0.50 with a standard error of 11.31 metric tons, while the operating 

rating model had an R2 of 0.49 and standard error of 18.87 metric tons when applied to the training 

datasets. When the developed models with the applied adjustment factors were validated against 

the testing dataset, approximately 94.9% and 94.0% of the testing bridges’ reported ratings were 

within the 95% prediction intervals for inventory and operating ratings, respectively. The 

remaining 5.1% of the bridges for the inventory rating model had design rankings of HS20, and 

the remaining 6.0% of the bridges for the operating rating model were HS20 designs that were not 

captured by the model. 

The inventory and operating rating models developed in this study were shown to 

beneficially estimate baseline load ratings for bridges in pristine condition with no original design 

plans. These models use accessible bridge inventory data to estimate baseline load ratings by 

applying a reduction factor to accommodate changes in bridge condition rating. However, because 

the models reflect trends among Kansas bridges within the NBI and not engineering judgment, 

further validation and refinement of the models is needed to enhance their accuracy and 

applicability to various bridge types and conditions. 

One crucial aspect needing further consideration is the uncertainty associated with omitting 

outliers in the developed inventory rating model, as discussed in section 3.1.4, since the developed 

model is only applicable to inventory load ratings up to 70.2 metric tons. This limitation introduces 

a potential source of bias that may affect the accuracy of the model predictions for inventory ratings 

exceeding 70.2 tons. Therefore, the developed models should be used to augment engineering 
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judgment rather than replace it. In addition, the NBI data used in this study had inherent limitations, 

such as the presence of incorrect data entries or a lack of predictors (e.g., slab thickness) that could 

enhance the model’s performance (Ruiz, 2020). Machine learning models could also be employed 

as an alternative approach to approximate concrete bridge load ratings. 
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Chapter 6: Conclusions 

The primary objectives of this study were to develop a linear regression model to estimate 

load ratings for concrete bridges in Kansas with no original design plans using data from the NBI 

database and to establish adjustment factors to account for decreases in load rating correlated with 

bridge condition rating. These models reflect trends among Kansas bridges within the NBI, not 

engineering judgment. This approach sought to answer the following question for a given bridge: 

Knowing nothing more about the structure than what is available within the NBI, what is the 

expected rating based on similar bridges in similar condition in Kansas? 

The developed linear regression models considered predictor variables of bridge age, 

design load, structure kind, deck width, and structure type. The preliminary models exhibited 

satisfactory performance, effectively capturing a substantial portion of variance of the observed 

data for the reported inventory (R2 = 0.4) and operating (R2 = 0.35) ratings. To account for changes 

in load rating due to bridge condition, a sliding scale adjustment factor was applied to normalize 

the median reported load rating for bridges with a condition rating of 8 or 9 (i.e., very good 

condition). The adjustment factor was validated with a bootstrapping simulation that demonstrated 

a downward trend in adjustment factor uncertainty with low condition ratings. However, the 

sliding scale approach does not apply universally to all bridges in the datasets since some bridges 

with low condition ratings have higher reported load ratings than pristine bridges. 

The final developed model with the applied reduction factors showed satisfactory 

performance, capturing half the variance in the observed data for inventory (R2 = 0.51) and 

operating (R2 = 0.45) ratings within the 95% prediction limits when applied to the testing datasets. 

The models are best used to enhance engineering judgment, help identify outliers and potential 

errors, and establish expected load ratings for bridges by capturing approximately half the variance 

in the data. These models also provide a comprehensive approach to estimating load ratings by 

incorporating adjustment factors to account for decreases bridge loading rating and bridge 

condition degradation. The model prediction intervals account for the probabilistic uncertainty 

with predicted load ratings to establish a range engineers can utilize based on familiarity with the 



49 

respective bridge structure. Further validation and refinement of the models are recommended to 

improve accuracy and applicability for various bridge types and conditions throughout Kansas. 
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